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1.2

Agenda

1 Simple Linear Regression

2 Parameter Estimation

3 Residual Analysis

4 Confidence/Prediction Intervals

5 Hypothesis Testing
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1.3

What is Regression Analysis?
Regression analysis: A set of statistical procedures for
estimating the relationship between response variable and
predictor variable(s)
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Simple linear regression: The relationship between the
response variable and the predictor variable is approxi-
mately linear
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1.4

Simple Linear Regression (SLR)

y: response variable; x: predictor variable

In SLR we assume there is a linear relationship between
x and y:

y = β0 + β1x + ε

We need to estimate β0 (intercept) and β1 (slope) based
on observed data {xi, yi}

n
i=1

We can use the estimated regression equation to
make predictions

study the relationship between response and predictor

control the response

Yet we need to quantify our estimation uncertainty
regarding the linear relationship
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1.5

Regression equation: y = β0 + β1x
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● Data points
Regression line

β0: E[y] when x = 0

β1: E[∆y] when x increases by 1



Review of Simple
Linear Regression

Simple Linear
Regression

Parameter Estimation

Residual Analysis

Confidence/Prediction
Intervals

Hypothesis Testing

1.6

Assumptions about the Random Error ε

In order to estimate β0 and β1, we make the following
assumptions about ε

E[εi] = 0

Var[εi] = σ
2

Cov[εi, εj] = 0, i ≠ j

Therefore, we have

E[yi] = β0 + β1xi, and

Var[yi] = σ
2

The regression line β0 + β1x represents the conditional
mean curve whereas σ2 measures the magnitude of the
variation around the regression curve
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1.7

Estimation: Method of Least Squares
For given observations {xi, yi}

n
i=1, choose β0 and β1 to minimize

the sum of squared errors:

ℓ(β0, β1) =
n

∑
i=1
(yi − (β0 + β1xi))

2

Solving the above minimization problem requires some
knowledge from Calculus (see notes LS_SLR.pdf)

β̂0 = ȳ − β̂1x̄

β̂1 =
∑

n
i=1(xi − x̄)(yi − ȳ)
∑

n
i=1(xi − x̄)2

We also need to estimate σ2

σ̂2
=
∑

n
i=1(yi − ŷi)

2

n − 2
,

where ŷi = β̂0 + β̂1xi
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1.8

Example: Maximum Heart Rate vs. Age

The maximum heart rate MaxHeartRate of a person is often
said to be related to age Age by the equation:

MaxHeartRate = 220 −Age.

Suppose we have 15 people of varying ages are tested for their
maximum heart rate (bpm)

1 Compute the estimates for the regression coefficients

2 Compute the fitted values

3 Compute the estimate for σ
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1.9

Maximum Heart Rate vs. Age

Output from ( )
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1.10

Assessing Linear Regression Fit
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Question: Is linear relationship between max heart rate and
age reasonable? ⇒ Residual Analysis
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1.11

Residuals

The residuals are the differences between the observed
and fitted values:

ei = yi − ŷi,

where ŷi = β̂0 + β̂1xi

Residuals are very useful in assessing the
appropriateness of the assumptions on εi. Recall

E[εi] = 0

Var[εi] = σ
2

Cov[εi, εj] = 0, i ≠ j
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1.12

Residuals Against Predictor Plot
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1.13

Interpreting Residual Plots

Figure courtesy of Faraway’s Linear Models with R (2014, p. 74).
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1.14

Diagnostic Plots in R
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1.15

How (Un)certain We Are?
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Can we formally quantify our estimation uncertainty? ⇒
We need additional (distributional) assumption on ε
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1.16

Normal Error Regression Model

Recall
yi = β0 + β1xi + εi

Further assume εi ∼ N(0, σ2)⇒ yi∣xi ∼ N(β0 + β1xi, σ
2)

With normality assumption, we can derive the sampling
distribution of β̂1 and β̂0 ⇒

β̂1−β1
ŜE(β̂1)

∼ tn−2, ŜE(β̂1) =
σ̂√

∑n
i=1(xi−x̄)2

β̂0−β0
ŜE(β̂0)

∼ tn−2, ŜE(β̂0) = σ̂
√

(
1
n +

x̄2

∑n
i=1(xi−x̄)2 )

where tn−2 denotes the Student’s t distribution with n − 2
degrees of freedom
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1.17

Assessing Normality Assumption on ε

Histogram of fit$residuals

fit$residuals
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The Q-Q plot is more effective in detecting subtle depar-
tures from normality, especially in the tails.
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1.18

Confidence Intervals for β0 and β1

Recall β̂1−β1

ŜE(β̂1)
∼ tn−2, we use this fact to construct a

confidence interval (CI) for β1:

[β̂1 − tα/2,n−2ŜE(β̂1), β̂1 + tα/2,n−2ŜE(β̂1)] ,

where α is the confidence level and tα/2,n−2 denotes the
1 − α/2 percentile of a student’s t distribution with n − 2
degrees of freedom

Similarly, we can construct a CI for β0:

[β̂0 − tα/2,n−2ŜE(β̂0), β̂0 + tα/2,n−2ŜE(β̂0)]
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1.19

Confidence Interval of E(ynew)

We often interested in estimating the mean response for
an unobserved predictor value, say, xnew. Therefore we
would like to construct CI for E[ynew], the corresponding
mean response

We need sampling distribution of Ê(ynew) to form CI:

Ê(ynew)−E(ynew)
ŜE(Ê(ynew))

∼ tn−2, ŜE(̂E(ynew)) = σ̂

√

(
1
n +

(xnew−x̄)2

∑n
i=1(xi−x̄)2 )

CI:

[ŷnew − tα/2,n−2ŜE(̂E(ynew)), ŷnew + tα/2,n−2ŜE(̂E(ynew))]

Quiz: Use this formula to construct CI for β0
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1.20

Prediction Interval of ynew

Suppose we want to predict the response of a future
observation ynew given x = xnew

We need to account for added variability as a new
observation does not fall directly on the regression line
(i.e., ynew = E[ynew] + εnew)

Replace ŜE(Ê(ynew)) by ŜE(ŷnew) = σ̂

√

(1 + 1
n +

(xnew−x̄)2

∑n
i=1(xi−x̄)2 )

to construct CIs for Ynew
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1.21

Maximum Heart Rate vs. Age Revisited

The maximum heart rate MaxHeartRate (HRmax) of a person
is often said to be related to age Age by the equation:

HRmax = 220 −Age.

Suppose we have 15 people of varying ages are tested for their
maximum heart rate (bpm)

Age 18 23 25 35 65 54 34 56 72 19 23 42 18 39 37
HRmax 202 186 187 180 156 169 174 172 153 199 193 174 198 183 178

Construct the 95% CI for β1

Compute the estimate for mean MaxHeartRate given
Age = 40 and construct the associated 90% CI

Construct the prediction interval for a new observation
given Age = 40
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1.22

Maximum Heart Rate vs. Age: Hypothesis Test for Slope

1 H0 ∶ β1 = 0 vs. Ha ∶ β1 ≠ 0

2 Compute the test statistic: t∗ = β̂1−0
ŜE(β̂1)

= −0.7977
0.06996 = −11.40

3 Compute P-value: P(∣t∗∣ ≥ ∣tobs∣) = 3.85 × 10−8

4 Compare to α and draw conclusion:

Reject H0 at α = .05 level, evidence suggests a neg-
ative linear relationship between MaxHeartRate
and Age
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1.23

Maximum Heart Rate vs. Age: Hypothesis Test for Intercept

1 H0 ∶ β0 = 0 vs. Ha ∶ β0 ≠ 0

2 Compute the test statistic: t∗ = β̂0−0
ŜE(β̂0)

= 210.0485
2.86694 = 73.27

3 Compute P-value: P(∣t∗∣ ≥ ∣tobs∣) ≃ 0

4 Compare to α and draw conclusion:

Reject H0 at α = .05 level, evidence suggests
evidence suggests the intercept (the expected
MaxHeartRate at age 0) is different from 0
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1.24

Summary

In this lecture, we reviewed

Simple Linear Regression: y = β0 + β1x + ε, ε iid
∼ N(0, σ2)

Method of Least Squares for parameter estimation

β̂ = argmin
β=(β0,β1)

n

∑
i=1
(yi − (β0 + β1xi))

2

Residual analysis to check model assumptions

Confidence/Prediction Intervals and Hypothesis Testing
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1.25

R Funcations

Fitting linear models

object <- lm(formula, data) where the formula is speci-
fied via y ∼ x⇒ y is modeled as a linear function of x

Diagnostic plots

plot(object)

Summarizing fits

summary(object)

Making predictions

predict(object, newdata)

Confidence Intervals for Model Parameters

confint(object)
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