Lecture 1 Review of Simple Linear Regression Reading: ISLR 2021 Chapter 3.1
 DSA 8020 Statistical Methods II

Agenda

Simple Linear
Regression
Parameter Estimation
Residual Analysis
Confidence/Prediction
2 Parameter Estimation
(3) Residual Analysis

4 Confidence/Prediction Intervals
(5) Hypothesis Testing

What is Regression Analysis?

Regression analysis: A set of statistical procedures for estimating the relationship between response variable and predictor variable(s)

Simple linear regression: The relationship between the response variable and the predictor variable is approximately linear

Simple Linear Regression (SLR)

y : response variable; x : predictor variable

- In SLR we assume there is a linear relationship between x and y :

$$
y=\beta_{0}+\beta_{1} x+\varepsilon
$$

- We need to estimate β_{0} (intercept) and β_{1} (slope) based on observed data $\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$
- We can use the estimated regression equation to
- make predictions
- study the relationship between response and predictor
- control the response
- Yet we need to quantify our estimation uncertainty regarding the linear relationship

Regression equation: $y=\beta_{0}+\beta_{1} x$

- β_{0} : $\mathrm{E}[y]$ when $x=0$
- $\beta_{1}: \mathrm{E}[\Delta y]$ when x increases by 1

Assumptions about the Random Error ε

In order to estimate β_{0} and β_{1}, we make the following assumptions about ε

- $\mathrm{E}\left[\varepsilon_{i}\right]=0$
- $\operatorname{Var}\left[\varepsilon_{i}\right]=\sigma^{2}$
- $\operatorname{Cov}\left[\varepsilon_{i}, \varepsilon_{j}\right]=0, \quad i \neq j$

Therefore, we have

$$
\begin{aligned}
& \mathrm{E}\left[y_{i}\right]=\beta_{0}+\beta_{1} x_{i}, \text { and } \\
& \operatorname{Var}\left[y_{i}\right]=\sigma^{2}
\end{aligned}
$$

The regression line $\beta_{0}+\beta_{1} x$ represents the conditional mean curve whereas σ^{2} measures the magnitude of the variation around the regression curve

Estimation: Method of Least Squares

For given observations $\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$, choose β_{0} and β_{1} to minimize the sum of squared errors:

$$
\ell\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right)^{2}
$$

Solving the above minimization problem requires some knowledge from Calculus (see notes LS_SLR.pdf)

$$
\begin{aligned}
& \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x} \\
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
\end{aligned}
$$

We also need to estimate σ^{2}

$$
\begin{aligned}
& \hat{\sigma}^{2}=\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}, \\
& \text { where } \hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}
\end{aligned}
$$

Example: Maximum Heart Rate vs. Age

The maximum heart rate MaxHeartRate of a person is often said to be related to age Age by the equation:

MaxHeartRate $=220-$ Age.

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm)

- Compute the estimates for the regression coefficients
(2) Compute the fitted values
(Compute the estimate for σ

Maximum Heart Rate vs. Age

Output from \mathbb{R} ($\mathbb{R}^{\text {Studio }}$)

> fit <- $\operatorname{lm}($ MaxHeartRate \sim Age)
> summary (fit)
Call:
$\operatorname{lm}($ formula $=$ MaxHeartRate \sim Age $)$

Residuals:

Min 10 Median 3Q Max
$\begin{array}{lllll}-8.9258 & -2.5383 & 0.3879 & 3.1867 & 6.6242\end{array}$
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $210.04846 \quad 2.86694 \quad 73.27<2 \mathrm{e}-16$ ***
Age $\quad-0.79773 \quad 0.06996$-11.40 3.85e-08 ***
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 '.’ 0.1 ', 1
Residual standard error: 4.578 on 13 degrees of freedom Multiple R-squared: 0.9091, Adjusted R-squared: 0.9021 F-statistic: 130 on 1 and 13 DF, p-value: $3.848 \mathrm{e}-08$

Assessing Linear Regression Fit

Question: Is linear relationship between max heart rate and age reasonable? \Rightarrow Residual Analysis

Residuals

- The residuals are the differences between the observed and fitted values:

$$
e_{i}=y_{i}-\hat{y}_{i}
$$

where $\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}$

- Residuals are very useful in assessing the appropriateness of the assumptions on ε_{i}. Recall
- $\mathrm{E}\left[\varepsilon_{i}\right]=0$
- $\operatorname{Var}\left[\varepsilon_{i}\right]=\sigma^{2}$
- $\operatorname{Cov}\left[\varepsilon_{i}, \varepsilon_{j}\right]=0, \quad i \neq j$

Residuals Against Predictor Plot

Simple Linear
Regression
Parameter Estimation
Residual Analysis
Confidence/Prediction Intervals

Hypothesis Testing

Interpreting Residual Plots

Figure courtesy of Faraway's Linear Models with R (2014, p. 74).

Diagnostic Plots in R

How (Un)certain We Are?

Confidence/Prediction Intervals

Can we formally quantify our estimation uncertainty? \Rightarrow We need additional (distributional) assumption on ε

Normal Error Regression Model

Recall

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}
$$

- Further assume $\varepsilon_{i} \sim \mathrm{~N}\left(0, \sigma^{2}\right) \Rightarrow y_{i} \mid x_{i} \sim \mathrm{~N}\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right)$
- With normality assumption, we can derive the sampling distribution of $\hat{\beta}_{1}$ and $\hat{\beta}_{0} \Rightarrow$

$$
\begin{array}{ll}
\frac{\hat{\beta}_{1}-\beta_{1}}{\hat{S E}\left(\hat{\beta}_{1}\right)} \sim t_{n-2}, & \hat{S E}\left(\hat{\beta}_{1}\right)=\frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} \\
\frac{\hat{\beta}_{0}-\beta_{0}}{S E\left(\hat{\beta}_{0}\right)} \sim t_{n-2}, & \hat{S E}\left(\hat{\beta}_{0}\right)=\hat{\sigma} \sqrt{\left(\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)}
\end{array}
$$

where t_{n-2} denotes the Student's t distribution with $n-2$ degrees of freedom

Assessing Normality Assumption on ε

Histogram of fit\$residuals

The Q-Q plot is more effective in detecting subtle departures from normality, especially in the tails.

Confidence Intervals for β_{0} and β_{1}

- Recall $\frac{\hat{\beta}_{1}-\beta_{1}}{S E\left(\hat{\beta}_{1}\right)} \sim t_{n-2}$, we use this fact to construct a confidence interval (CI) for β_{1} :

$$
\left[\hat{\beta}_{1}-t_{\alpha / 2, n-2} \hat{S E}\left(\hat{\beta}_{1}\right), \hat{\beta}_{1}+t_{\alpha / 2, n-2} \hat{S E}\left(\hat{\beta}_{1}\right)\right],
$$

Confidence/Prediction Intervals
where α is the confidence level and $t_{\alpha / 2, n-2}$ denotes the $1-\alpha / 2$ percentile of a student's t distribution with $n-2$ degrees of freedom

- Similarly, we can construct a Cl for β_{0} :

$$
\left[\hat{\beta}_{0}-t_{\alpha / 2, n-2} \hat{S E}\left(\hat{\beta}_{0}\right), \hat{\beta}_{0}+t_{\alpha / 2, n-2} \hat{S E}\left(\hat{\beta}_{0}\right)\right]
$$

Confidence Interval of $\mathrm{E}\left(y_{\text {new }}\right)$

- We often interested in estimating the mean response for an unobserved predictor value, say, $x_{\text {new }}$. Therefore we would like to construct CI for $\mathrm{E}\left[y_{n e w}\right]$, the corresponding mean response
- We need sampling distribution of $\overline{\mathrm{E}\left(y_{\text {new }}\right)}$ to form Cl :
- $\frac{\overline{\mathrm{E}\left(y_{\text {new }}\right)}-\mathrm{E}\left(y_{\text {new }}\right)}{\left.\hat{S E\left(E\left(y_{\text {new }}\right)\right.}\right)} \sim t_{n-2}, \quad \hat{S E}\left(\overline{\mathrm{E}\left(y_{\text {new }}\right)}\right)=\hat{\sigma} \sqrt{\left(\frac{1}{n}+\frac{\left(x_{\text {new }}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)}$
- $\mathrm{CI}:$

$$
\left[\hat{y}_{\text {new }}-t_{\alpha / 2, n-2} \hat{S E}\left(\overline{\mathrm{E}\left(y_{\text {new }}\right)}\right), \hat{y}_{\text {new }}+t_{\alpha / 2, n-2} \hat{S E}\left(\overline{\mathrm{E}\left(y_{\text {new }}\right)}\right)\right]
$$

- Quiz: Use this formula to construct CI for β_{0}
- Suppose we want to predict the response of a future observation $y_{\text {new }}$ given $x=x_{\text {new }}$
- We need to account for added variability as a new observation does not fall directly on the regression line (i.e., $y_{\text {new }}=\mathrm{E}\left[y_{\text {new }}\right]+\varepsilon_{\text {new }}$)
- Replace $\hat{S E}\left(\overline{\mathrm{E}\left(y_{\text {new }}\right)}\right)$ by $\hat{S E}\left(\hat{y}_{\text {new }}\right)=\hat{\sigma} \sqrt{\left(1+\frac{1}{n}+\frac{\left(x_{\text {new }}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)}$ to construct Cls for $Y_{\text {new }}$

Maximum Heart Rate vs. Age Revisited

The maximum heart rate MaxHeartRate $\left(\mathrm{HR}_{\text {max }}\right)$ of a person is often said to be related to age Age by the equation:

$$
\mathrm{HR}_{\max }=220-\mathrm{Age} .
$$

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm)

Age	18	23	25	35	65	54	34	56	72	19	23	42	18	39	37
$H R_{\text {max }}$	202	186	187	180	156	169	174	172	153	199	193	174	198	183	178

- Construct the $95 \% \mathrm{Cl}$ for β_{1}
- Compute the estimate for mean MaxHeartRate given Age $=40$ and construct the associated 90% CI
- Construct the prediction interval for a new observation given Age $=40$

Maximum Heart Rate vs. Age: Hypothesis Test for Slope

(-) $H_{0}: \beta_{1}=0$ vs. $H_{a}: \beta_{1} \neq 0$
(2) Compute the test statistic: $t^{*}=\frac{\hat{\beta}_{1}-0}{S E\left(\hat{\beta}_{1}\right)}=\frac{-0.7977}{0.06996}=-11.40$
(Compute P-value: $\mathrm{P}\left(\left|t^{*}\right| \geq\left|t_{\text {obs }}\right|\right)=3.85 \times 10^{-8}$

- Compare to α and draw conclusion:

Reject H_{0} at $\alpha=.05$ level, evidence suggests a negative linear relationship between MaxHeartRate and Age

Maximum Heart Rate vs. Age: Hypothesis Test for Intercept

(-) $H_{0}: \beta_{0}=0$ vs. $H_{a}: \beta_{0} \neq 0$
(2) Compute the test statistic: $t^{*}=\frac{\hat{\beta}_{0}-0}{S E\left(\hat{\beta}_{0}\right)}=\frac{210.0485}{2.86694}=73.27$
(3) Compute P-value: $\mathrm{P}\left(\left|t^{*}\right| \geq\left|t_{\text {obs }}\right|\right) \simeq 0$

- Compare to α and draw conclusion:

Reject H_{0} at $\alpha=.05$ level, evidence suggests evidence suggests the intercept (the expected MaxHeartRate at age 0) is different from 0

Summary

In this lecture, we reviewed

- Simple Linear Regression: $y=\beta_{0}+\beta_{1} x+\varepsilon, \varepsilon \stackrel{i i d}{\sim} \mathrm{~N}\left(0, \sigma^{2}\right)$
- Method of Least Squares for parameter estimation

$$
\hat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}\right)}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right)^{2}
$$

- Residual analysis to check model assumptions
- Confidence/Prediction Intervals and Hypothesis Testing

R Funcations

- Fitting linear models
object <- lm(formula, data) where the formula is specified via $\mathrm{y} \sim \mathrm{x} \Rightarrow y$ is modeled as a linear function of x
- Diagnostic plots

```
plot(object)
```

- Summarizing fits

```
summary(object)
```

- Making predictions

```
predict(object, newdata)
```

- Confidence Intervals for Model Parameters

```
confint(object)
```

