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Most settings we have dealt with so far (except the analysis of S
split-plot designs) have involved fixed effects: o

CRD: Yij = U+ + €5
RCBD: Yij = 1 + oy + 5]' + €ij
Factorial: Yij = P+ o + Bj + (Oéﬁ)u + €5

@ The treatment effects are unknown but constants = if we
ran the experiment over again, would expect the same
treatment effects

@ We can increase the power of all of our tests by increasing
the sample size n

@ We perform inference on the treatment effects via ¢-tests
and F-tests



Random and Mixed

Random EffeCtS Effects Models,

Computer
Experiments
. . CLEMS@&N
Random effects models look very similar to fixed effects S
models. For example, we could have Random and Mixed
Effects Models

Yij :,U,+O(i+6ij.

The difference is in the assumptions we make for the treatment
effects

Fixed Effects Random Effects

Treatment effects «;s are o a;s~N(0,02
unknown constants that add to
zero (or some other constraint) e «;s are independent of €ij



How and Why Are Things So Different? ¥ Efeots Models,

Computer
Experiments

Fixed effects: CLEMS@®N
Random and Mixed
@ The treatments are the treatments and they are Effects Models
unchanging

o If we rerun the experiment, we are still studying the same
treatments

Random effects:

@ The treatments are a random sample from a population of
potential treatments

o If we rerun the experiment, we are looking at an entirely
new sample of treatments

@ Inference is on the population of potential treatments



Random and Mixed

Variance Components Effects Models,
Computer
Experiments
Fixed effects: CLEMS®N
2 gl m ant IXf
o Var(yij) =0 E?egg Midi\g -

@ All y;;s are independent of each other

@ Interest is about «;s

Random effects:

@ Var(yi;) =02 +0?
0 ifi+k
2
o Cor(yij,yi) = # ifi=k;j=l
1 ifi=k;j=1

@ Interest is (mostly) about o2



Random and Mixed

An Example of Fixed Effects vs Random Effects Effects Models,
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@ Compare reading ability of 10 2nd grade classes in NY:
Random and Mixed

Select g = 10 specific classes of interest. Randomly
choose n students from each classroom. Want to compare
a; s (class-specific effects) = Fixed effects

© Compare variability among all 2nd grade classes in NY:

Randomly choose g = 10 classes from large number of
classes. Randomly choose n students from each
classroom. Want to assess o2 (class to class variability) =
Random effects



Random Effects Model (CRD)

Yij = P+ Qi + €5,
where
@ yu is the overall mean
@ «;: ith treatment effect and «; ~ N(0, 02
@ {a;} and {¢;; } independent
@ The hypotheses are:

HOI :0

2

«

.2
Hy:0,>0

One can use either “old school” method (ANOVA) or “new

school” method (REML) to make inference about o2
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Random Effects Example

Suppose that an agronomist is studying a large number of
varieties of soybeans for yield. The agronomist randomly
selects three varieties, and then randomly assigns each of

those varieties to 10 of the 30 available plots

Soybean

Yield

V1
V2
V3

6.6,6.4,5.9,6.6,6.2,6.7,6.3,6.5,6.5,6.8
5.6,5.2,53,5.1,5.7,5.6,5.6,6.3,5.0, 5.4
6.9,7.1,6.4,6.7,6.5,6.6,6.6,6.6, 6.8, 6.8

yield
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Fixed Effects Analysis

> fixef <- Im(yield ~ var)
> anova(fixef)
Analysis of Variance Table

Response: yield
Df Sum Sq Mean Sqg

var 2 8.306 4.1530
Residuals 27 2.261 0.0837
Signif. codes:
@ “**¥E 0,001 ‘**’ 0.01 ‘%’
> coefficients(fixef)
(Intercept) var?

6.45 -0.97
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F value Pr(>F)
49,593 9.114e-10 ***

0.05 ‘.7 0.1 <’ 1

var3
0.25

11.10



Random Effects Analysis N Efeots Models,

> library(lme4) Eﬂﬁﬁiis

> randef <- lmer(yield ~ 1 + (1lvar), REML = TRUE) "

> summary(modl1) %\J

Linear mixed model fit by maximum likelihood . t-tests o e
use Satterthwaite's method [lmerModlLmerTest] Effects Models

Formula: yield ~ 1 + (1 | var)

AIC BIC loglik deviance df.resid
27.2 31.4 -10.6 21.2 27

Scaled residuals:
Min 10 Median 3Q Max
-1.8755 -0.6033 0.1245 0.5068 2.7574

Random effects:

Groups  Name Variance Std.Dev.
var (Intercept) 0.26849 0.5182
Residual 0.08374 0.2894

Number of obs: 3@, groups: wvar, 3

Fixed effects:
Estimate Std. Error df t value Pr(>Itl)
(Intercept) 6.2100 0.3038 3.0000 20.44 0.000256

1.1



Concrete Cylinder Example Revisited

Suppose you are manufacturing concrete cylinders for bridge
supports. There are three ways of drying concrete (say A, B,
and C), and you want to find the one that gives you the best
compressive strength. The concrete is mixed in batches that
are large enough to produce exactly three cylinders, and your
production engineer believes that there is substantial variation

in the quality of the concrete from batch to batch.

Batch
Treatment 1 2 3 4 5 | Trt Sum
A| 52 47 44 51 42 236
B| 60 55 49 52 43 259
C| 56 48 45 44 38 231
Batch Mean | 168 150 138 147 123 726

If we were treat the batch effects as random effects, then we

have a Mixed Effects Model
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Concrete Cylinder Example: Mixed Effects Analysis Tl

Computer

> randef <- lmer(x ~ trt + (1lblk), REML = TRUE, data = dat) Experiments

> summary(randef) o

Linear mixed model fit by REML. t-tests use M
Satterthwaite's method [1merModLmerTest] o s

Formula: x ~ trt + (1 | blk) E%;§%§¥Eue
Data: dat

REML criterion at convergence: 71.1
Scaled residuals:

Min 10 Median 30 Max
-1.1417 -0.6147 -0.1494 @.5772 1.3390

Random effects:

Groups  Name Variance Std.Dev.
blk (Intercept) 28.35 5.324
Residual 5.85 2.419

Number of obs: 15, groups: blk, 5

Fixed effects:

Estimate Std. Error df t value Pr(>1tl)
(Intercept) 47 .200 2.615 5.0854 18.047 8.76e-006
trtB 4.600 1.530 8.000 3.007 0.0169
trtC -1.000 1.530 8.000 -0.654 0.5316

11.13



In some situations, it is economically, ethically, or simply not

possible to run a physical experiment. Instead, the following T e

scenario might be feasible:

@ the physical process can be described by a mathematical
model (e.g., a system of differential equations)

@ computer code (simulator) can be written to compute the
response from the mathematical model

Input Model Output
TeX fr XY y=f(x)

In this case, a researcher can conduct a computer
experiment by running the computer code, which serves as a
proxy for the physical process, to compute a “response” at any
combination of values of the inputs

11.14
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MATH MODEL -
(GOVERNING EQUATIONS)

Schematic for Global Computer Experiments
Atmospheric Model L

Py T B 45 o B

Source: Coastal Emergency Risk Assessment

Source: MATLAB & Simulink

Source: Ansys, Inc. Source: Simcenter STAR-CCM+
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Random and Mixed

Computer Experiments vs. Physical Experiments Effects Models,

Computer
Experiments

o “Experimental results are believed by everyone, except for i
the person who ran the experiment” CLEMS@N

@ “Computational results are believed by no one, except the
person who wrote the code”

Computer Experiments

Replication, randomization and blocking are irreverent
for a computer experiment because many computer
codes are deterministic and all the inputs to the code
are known and can be controlled

Here we are concerning about design and analysis of
computer experiments:

@ Design: Which configurations of {«;}", to run the
computer model

@ Analysis: How to estimate the input-output relationship
y = f(x) using data {«;,y;}-, from a computer experiment

11.16



Design of Computer Experiments ¥ Efeots Models,

Computer
Experiments

Question: where to make the runs, i.e., the selection of inputs
{a;}7, for a given computational budget 7. CLEMS@N

UNITVERSITY

Example: xT; = (Iﬂ,xig)T € [0, 1]2 with n =30

Computer Experiments

Random Design Latin Hypercube Design
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The Latin hypercube design is an example of space-filling
designs, which allow for an evenly spread of points
encompassing the entire design space.
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Random and Mixed

Analysis of Computer Experiments (aka Emulation) Effects Models,

Computer
Experiments

Goal: fit a statistical model to the computer model CLEMS%N
inputs-output {y;, x; }1~, to “emulate” the simulator and to R
quantify the prediction uncertainty for y(xnew) via a Gaussian
Process Model GP (m (:), K (,-)), where

Computer Experiments

@ m(x) = E[y(x)] is the mean function, usually takes a
simple form, e.g., m(x) = u

0 K(x,x") = Cov(y(x),y(x")) is the covariance function,
usually parametrized by “distance”. e.g.,
K(z,x') =C(z,2';0) = 0? I1., Cj(d(w;,%);0;).

Parameters (i, o2, {0; }%-1) can be estimated by fitting a GP
model to {y;,x]~, } via maximum likelihood method. The
prediction (e.g., predicting y(x ..., )) and prediction uncertainty
can be carried out using the Gaussian conditional distribution
formula

11.18



Neuron Experiment [pp.776-778, DAE 2017]

The firing rate of a neuron at +380 pA current injection of a

young monkey is modeled as a deterministic function of two
input variables:

@ x1 gNaF: maximal conductance of the transient sodium

@ 5 gKDR: maximal conductance of the delayed-rectifier
potassium
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The goal is to reconstruct the 2D surface within the input space

o
>
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Onar (MS/em?)

(a) 30 x 2 LHD

1
04 0608
02 n

(b) Firing rates

Source: Fig. 20.6, DAE 2017
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Neuron Experiment Result
@ A GP with squared exponential covariance function (i.e.,
C(x,z') = 026’[91(9”1’9”’1)2+92(“’2’Z'2)2]) is fitted to {y;, z; 17,
with the estimated parameters 4 = 27.61 62 = 251.86,
Onar = 5.03, Okpr = 50.22.

@ With these estimated parameters one can calculate the
predictions (Left) and their prediction uncertainties (Right)
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These slides cover: CLEMS@N
@ Random and Mixed Effects Models
o Computer Experiments: Concepts, Design and Analysis

R functions to know:

o Random and Mixed Effects Modeling: 1mer from the
packages 1me4/IlmerTest

@ Design and Analysis of Computer Experiments:
maximinLHS from the package 1hs for conducting Latin
hypercube sampling designs and m1egp from the package
of the same name for GP emulation

11.21
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