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Agenda
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Fixed Effects

Most settings we have dealt with so far (except the analysis of
split-plot designs) have involved fixed effects:

CRD: yij = µ + αi + ϵij
RCBD: yij = µ + αi + βj + ϵij
Factorial: yij = µ + αi + βj + (αβ)ij + ϵij

The treatment effects are unknown but constants⇒ if we
ran the experiment over again, would expect the same
treatment effects

We can increase the power of all of our tests by increasing
the sample size n

We perform inference on the treatment effects via t-tests
and F -tests
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Random Effects

Random effects models look very similar to fixed effects
models. For example, we could have

yij = µ + αi + ϵij .

The difference is in the assumptions we make for the treatment
effects

Fixed Effects

Treatment effects αis are
unknown constants that add to
zero (or some other constraint)

Random Effects

αis ∼ N(0, σ2
α)

αis are independent of ϵij



Random and Mixed
Effects Models,

Computer
Experiments

Random and Mixed
Effects Models

Computer Experiments

11.5

How and Why Are Things So Different?

Fixed effects:

The treatments are the treatments and they are
unchanging

If we rerun the experiment, we are still studying the same
treatments

Random effects:

The treatments are a random sample from a population of
potential treatments

If we rerun the experiment, we are looking at an entirely
new sample of treatments

Inference is on the population of potential treatments
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Variance Components

Fixed effects:

Var(yij) = σ2

All yijs are independent of each other

Interest is about αis

Random effects:

Var(yij) = σ2
α + σ2

Cor(yij , ykl) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if i ≠ k
σ2
α

σ2
α+σ2 if i = k; j ≠ l

1 if i = k; j = l

Interest is (mostly) about σ2
α
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An Example of Fixed Effects vs Random Effects

1 Compare reading ability of 10 2nd grade classes in NY:

Select g = 10 specific classes of interest. Randomly
choose n students from each classroom. Want to compare
αis (class-specific effects)⇒ Fixed effects

2 Compare variability among all 2nd grade classes in NY:

Randomly choose g = 10 classes from large number of
classes. Randomly choose n students from each
classroom. Want to assess σ2

α (class to class variability)⇒
Random effects
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Random Effects Model (CRD)

yij = µ + αi + ϵij ,
where

µ is the overall mean

αi: ith treatment effect and αi ∼ N(0, σ2
α)

{αi} and {ϵij} independent

The hypotheses are:

H0 ∶ σ2
α = 0

Ha ∶ σ2
α > 0

One can use either “old school” method (ANOVA) or “new
school” method (REML) to make inference about σ2

α
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Random Effects Example

Suppose that an agronomist is studying a large number of
varieties of soybeans for yield. The agronomist randomly
selects three varieties, and then randomly assigns each of
those varieties to 10 of the 30 available plots

Soybean Yield
V1 6.6, 6.4, 5.9, 6.6, 6.2, 6.7, 6.3, 6.5, 6.5, 6.8
V2 5.6, 5.2, 5.3, 5.1, 5.7, 5.6, 5.6, 6.3, 5.0, 5.4
V3 6.9, 7.1, 6.4, 6.7, 6.5, 6.6, 6.6, 6.6, 6.8, 6.8
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Fixed Effects Analysis
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Random Effects Analysis
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Concrete Cylinder Example Revisited

Suppose you are manufacturing concrete cylinders for bridge
supports. There are three ways of drying concrete (say A, B,
and C), and you want to find the one that gives you the best
compressive strength. The concrete is mixed in batches that
are large enough to produce exactly three cylinders, and your
production engineer believes that there is substantial variation
in the quality of the concrete from batch to batch.

If we were treat the batch effects as random effects, then we
have a Mixed Effects Model
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Concrete Cylinder Example: Mixed Effects Analysis
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What is a Computer Experiment

In some situations, it is economically, ethically, or simply not
possible to run a physical experiment. Instead, the following
scenario might be feasible:

the physical process can be described by a mathematical
model (e.g., a system of differential equations)

computer code (simulator) can be written to compute the
response from the mathematical model

Input
x ∈ X

Model
f ∶ X ↦ Y

Output
y = f(x)

In this case, a researcher can conduct a computer
experiment by running the computer code, which serves as a
proxy for the physical process, to compute a “response” at any
combination of values of the inputs
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Examples of Computer Models
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Computer Experiments vs. Physical Experiments

“Experimental results are believed by everyone, except for
the person who ran the experiment”

“Computational results are believed by no one, except the
person who wrote the code”

Replication, randomization and blocking are irreverent
for a computer experiment because many computer
codes are deterministic and all the inputs to the code
are known and can be controlled

Here we are concerning about design and analysis of
computer experiments:

Design: Which configurations of {xi}ni=1 to run the
computer model

Analysis: How to estimate the input-output relationship
y = f(x) using data {xi, yi}ni=1 from a computer experiment
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Design of Computer Experiments

Question: where to make the runs, i.e., the selection of inputs
{xi}ni=1 for a given computational budget n.

Example: xi = (xi1, xi2)T ∈ [0,1]2 with n = 30
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The Latin hypercube design is an example of space-filling
designs, which allow for an evenly spread of points
encompassing the entire design space.
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Analysis of Computer Experiments (aka Emulation)

Goal: fit a statistical model to the computer model
inputs-output {yi,xi}ni=1 to “emulate” the simulator and to
quantify the prediction uncertainty for y(xnew) via a Gaussian
Process Model GP (m (⋅) ,K (⋅, ⋅)), where

m(x) = E[y(x)] is the mean function, usually takes a
simple form, e.g., m(x) = µ

K(x,x′) = Cov(y(x), y(x′)) is the covariance function,
usually parametrized by “distance”. e.g.,
K(x,x′) = C(x,x′;θ) = σ2∏p

j=1Cj(d(xj , x
′
j); θj).

Parameters (µ, σ2, {θj}pj=1) can be estimated by fitting a GP
model to {yi,xn

i=1} via maximum likelihood method. The
prediction (e.g., predicting y(xnew)) and prediction uncertainty
can be carried out using the Gaussian conditional distribution
formula
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Neuron Experiment [pp.776-778, DAE 2017]

The firing rate of a neuron at +380 pA current injection of a
young monkey is modeled as a deterministic function of two
input variables:

x1 gNaF: maximal conductance of the transient sodium

x2 gKDR: maximal conductance of the delayed-rectifier
potassium

Source: Fig. 20.6, DAE 2017

The goal is to reconstruct the 2D surface within the input space
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Neuron Experiment Result
A GP with squared exponential covariance function (i.e.,
C(x,x′) = σ2e−[θ1(x1−x′1)2+θ2(x2−x′2)2]) is fitted to {yi,xi}ni=1
with the estimated parameters µ̂ = 27.61 σ̂2 = 251.86,
θ̂NaF = 5.03, θ̂KDR = 50.22.

With these estimated parameters one can calculate the
predictions (Left) and their prediction uncertainties (Right)
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Summary

These slides cover:

Random and Mixed Effects Models

Computer Experiments: Concepts, Design and Analysis

R functions to know:

Random and Mixed Effects Modeling: lmer from the
packages lme4/lmerTest

Design and Analysis of Computer Experiments:
maximinLHS from the package lhs for conducting Latin
hypercube sampling designs and mlegp from the package
of the same name for GP emulation
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