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Level of Lake Huron 1875–1972
Annual measurements of the level of Lake Huron in feet.
[Source: Brockwell & Davis, 1991]
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Mauna Loa Atmospheric CO2 Concentration
Monthly atmospheric concentrations of CO2 at the Mauna Loa
Observatory [Source: Keeling & Whorf, Scripps Institution of Oceanography
(SIO)]
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US Unemployment Rate 1948 Jan. – 2021 July

[Source: St. Louis Federal Reserve Bank’s FRED system]
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A Simulated Time Series
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Time Series Data

A time series is a set of observations {yt, t ∈ T} made
sequentially in time (t) with the index set T

T = {0,1,2,⋯, T} ⊂ Z⇒ discrete-time time series

T = [0, T ] ⊂ R⇒ continuous-time time series

A discrete-time time series might be intrinsically discrete
or might arise from a underlying continuous-time time
series via

sampling (e.g., instantaneous wind speed)

aggregation (e.g., daily accumulated precipitation amount)

extrema (e.g., daily maximum temperature)

We will focus on dealing with discrete-time real-valued
(Yt ∈ R) time series
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Exploratory Time Series Analysis

Start with a time series plot, i.e., to plot yt versus t
Lake Huron Time Series

Look at the following:

Are there abrupt changes?

Are there “outliers”?

Is there a need to transform the data?

Examine the trend, seasonal components, and the “noise”
term
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Features of Time Series Data

Trends
One can think of trend, µt, as continuous changes, usually
in the mean, over longer time scales⇒ “the essential idea
of trend is that it shall be smooth” - [Kendall, 1973]

Typically, the form of the trend is unknown and needs to be
estimated. Upon removing the trend, we obtain a detrended
series

Seasonal or periodic components
A seasonal component st constantly repeats itself in time,
i.e., st = st+kd

We need to estimate the form and/or the period d of the
seasonal component to deseasonalize the series

The “noise” process
The noise process, ηt, is the component that is neither trend
nor seasonality

We will focus on finding plausible (typically stationary)
statistical models for this process
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Decomposing Time Series into Trend, Seasonality, and Noise
There are two commonly used approaches

Additive model:

yt = µt + st + ηt, t = 1,⋯, T

Multiplicative model:

yt = µtstηt, t = 1,⋯, T
If all {yt} are positive then we obtain the additive model by
taking logarithms:

log yt = logµt + log st + log ηt, t = 1,⋯, T
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Some Objectives of Time Series Analysis

Modeling: Find a statistical model that adequately explains the
observed time series

For example, identify a model which can account for the
fact that the depths of Lake Huron are correlated with differ
years and with a decreasing long-term trend

The fitted model can be used for further statistical
inference, for instant, to answer the question like: Is there
evidence of decreasing trend in the Lake Huron depths?
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Some Objectives of Time Series Analysis, Cont’d

Forecasting is perhaps the most common objective. One
observe a time series of given length and wish to predict or
forecast future values of the time series based on those
already observed.
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Some Objectives of Time Series Analysis, Cont’d

Adjustment: an example would be seasonal adjustment,
where the seasonal component is estimated and then
removed in order to better understand the underlying trend

Simulation: use a time series model (which adequately
describes a physical process) as a surrogate to simulate
repeatedly in order to approximate how the physical
process behaves

Control: adjust various input (control) parameters so that
the time series fits closer to a given standard (many
examples from statistical quality control)
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Time Series Models
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Lake Huron Time Series
Time series analysis is the area of statistics which deals
with the analysis of dependency between observations
over time (typically {ηt})

Some key features of the Lake Huron time series:
Lake Huron Time Series

decreasing trend

some “random” fluctuations around the decreasing trend

We extract the “noise” component by assuming a linear
trend
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Exploring the Temporal Dependence Structure of {ηt}

{ηt} exhibit some temporal dependence structure, that is, the
nearby (in time) values tend to be more alike than those far
part values. To see this, let’s make a few time lag plots
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Further Exploration of the Temporal Dependence Structure

Let’s plot the correlation as a function of the time lag

We will use this information to suggest an appropriate
model
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Time Series Models

A time series model is a probabilistic model for {Yt ∶ t ∈ T}
that describes ways that the series data {yt} could have
been generated

Will try to keep our models for {Yt} simple by assuming
stationarity⇒ characteristic of the distribution of {Yt} does
not depend on the time points, only on the “time lag”

We will focus on stationarity in means and
autocovariances

While most time series are not stationary, one either
remove or model the non-stationary parts (e.g., de-trend
or de-seasonalization) so that we are only left with a
stationary component {ηt}.
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Mean and Autocovariance

The mean function of {ηt} is

µt = E[ηt], t ∈ T

The autocovariance function of {ηt} is

γ(t, t′) = Cov(ηt, ηt′) = E[(ηt − µt)(ηt′ − µt′)], t, t′ ∈ T,

when t = t′ we obtain γ(t, t′) = Cov(ηt, ηt) = Var(ηt) = σ2
t ,

the variance function of ηt
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Autocorrelation Function

The autocorrelation function (ACF) of {ηt} is

ρ(t, t′) = Corr(ηt, ηt′) =
γ(t, t′)√

γ(t, t)γ(t′, t′)

It measures the strength of linear association between ηt and
ηt′

Properties:

1 −1 ≤ ρ(t, t′) ≤ 1, t, t′ ∈ T

2 ρ(t, t′) = ρ(t′, t), ∀t, t′ ∈ T ; ρ(t, t) = 1, ∀t ∈ T

3 ρ(t, t′) is a non-negative definite function

Partial autocorrelation function (PACF) is a conditional
correlation, i.e., the correlation at two time points given the
information at all other time points
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Stationary Processes

We will try to keep our models for {ηt} as simple as possible by
assuming stationarity, meaning that characteristic of {ηt} does
not depend on the time points, only on the “time lag”:

E[ηt] = 0, ∀t ∈ T

Cov(ηt, ηt′) = γ(t′ − t) = Cov(ηt+s, ηt′+s)

⇒ autocorrelation function (ACF):

ρ(h) = γ(h)
γ(0)
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Autoregressive Moving Average (ARMA) Models

Let {Zt} be independent and identical random variables that
follow N(0, σ2)

Moving Average Processes (MA(q)):
ηt = Zt + θ1Zt−1 + θ2Zt−2⋯+ θqZt−q

Autoregressive Processes (AR(p)):
ηt = ϕ1ηt−1 + ϕ2ηt−2 +⋯ + ϕpηt−p +Zt

Autoregressive Moving Average Processes ARMA(p,q):
ηt =
ϕ1ηt−1+ϕ2ηt−2+⋯+ϕpηt−p+Zt+θ1Zt−1+θ2Zt−2+⋯+θqZt−q
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ACF Plots
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PACF Plots
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Identification of ARMA Models using ACF/PACF Plots

Use the ACF and PACF together to identify candidate models.
The following table gives some rough guidelines.

ACF PACF
AR(p) Tails off Cuts off after lag p
MA(q) Cuts off after lag q Tails off

ARMA(p, q) Tails off Tails off

AR(1)

MA(1)

ARMA(1, 1)

ACF PACF

Unfortunately, it’s not a well-defined process and some
guesswork is usually needed
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Model Diagnostics: Ljung-Box Test [Ljung and Box, 1978]

We wish to test:

H0 ∶ {e1, e2,⋯, eT } is an i.i.d. noise sequence⇒ model adequate
H1 ∶H0 is false ⇒model not good,

where {et} are the residuals after fitting a model to {ηt}

Test statistic:

QLB = T (T − 2)
lag

∑
h=1

ρ̂2ê(h)
T − h

H0≈ χ2
k,

where T is the sample size, ρ̂ê(h) is the sample ACF at lag h,
applied to the residuals of a fitted ARIMA model. The degrees
of freedom k = Lag − p − q.

Ljung-Box test can be carried out in R using the function
Box.test
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Lake Huron Case Study

Source: https://www.worldatlas.com/articles/
what-states-border-lake-huron.html

Detrending

Model fitting and selection

Forecasting

https://www.worldatlas.com/articles/what-states-border-lake-huron.html
https://www.worldatlas.com/articles/what-states-border-lake-huron.html
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Annual Measurements of the Level of Lake Huron
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There seems to be a decreasing trend⇒ need to estimate the
trend to get the detrended series
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Plots of the Trend and Residuals

yt =
trend©
µt + ηt
®

residual

,

where we assume µt = α + βt, i.e., a linear trend in time
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ACF and PACF Plots

Tapering pattern in ACF⇒ need to include AR terms

Significant PACF values at the first 2 lags⇒ a AR(2) may
be appropriate
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Fitting an AR(2) to the Detrended Time Series
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Assessing Normality Assumption for ηt
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Histogram: To compare the shape of the distribution of
residuals with the bell-shaped normal density curve

Q-Q plot: To compare the quantiles of the residual
distribution to the quantiles of a normal distribution
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Model Selection via AIC

We can conduct model selection by using, for example, AIC
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Fitting Linear Trend and ARMA in One Step
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10-Year-Ahead Forecasts
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Forecasts from ARIMA(2,0,0) with drift
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Summary
These slides cover:

Basic concepts of time series analysis

A widely used class of models: ARMA

ARMA model identification, estimation/prediction,
inference

R functions to know:
acf and pacf for identifying candidate models

arima and Arima (under the package forecast) for
model fitting

auto.arima for model selection

Box.test for testing model adequacy

forecast (under the package forecast) for generating
forecasts and prediction intervals
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