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13.2

Modeling Trend, Seasonality, and Noise

Recall the trend, seasonality, noise decomposition mentioned
last week:

Yt = µt + st + ηt,

where

µt: trend component is a long-term pattern or directionality
observed over time;

st: seasonal component is a pattern that repeats at
regular intervals within a specific time period;

ηt: random noise represents the irregular fluctuations that
may be correlated in time.

We are going to learn two approaches for estimating st, the
seasonal component
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13.3

Seasonal Component Estimation

Let’s consider the situation that a time series consists of
seasonal component only (assuming the trend has been
estimated/removed), that is,

Yt = st + ηt,

with {st} having period s (i.e., st+js = st for all integers j
and t), ∑s

t=1 st = 0 and E(ηt) = 0

Two regression methods to estimate {st}

Harmonic regression

Seasonal mean model
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Harmonic Regression

A harmonic regression model has the form

st =
k

∑
j=1

Aj cos(2πfjt + ϕj).

For each j = 1,⋯, k:

Aj > 0 is the amplitude of the j-th cosine wave

fj controls the frequency of the j-th cosine wave (how often
waves repeats)

ϕj ∈ [−π,π] is the phase of the j-th wave (where it starts)

The above can be expressed as

k

∑
j=1
{β1j cos(2πfjt) + β2j sin(2πfjt)} ,

where β1j = Aj cos(ϕj) and β2j = −Aj sin(ϕj)⇒ if {fj}kj=1
are known, we can use regression techniques to
estimate the parameters {β1j , β2j}

k
j=1
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13.5

Monthly Temperature in Dubuque, IA [Cryer & Chan, 2008]
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Let’s assume there is no trend in this time series. Here
we want to estimate st, the seasonal component
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Modeling Annual Cycle via Harmonic Regression

Model: st = β0 + β1 cos(2πt) + β2 sin(2πt)

⇒ annual cycles can be modeled by a linear combination
of cos and sin with 1-year period⇒ d = 12.

In R, we can easily create these harmonics using the
harmonic function in the TSA package
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13.7

R Code & Output

Question: What assumptions are we making here?
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The Harmonic Regression Model Fit
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Question: What can be the model limitations?
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The Harmonic Regression Model Fit
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Question: What can be the model limitations?
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Seasonal Means Model

Harmonics regression assumes the seasonal pattern
has a regular shape, i.e., the height of the peaks is the
same as the depth of the troughs

A less restrictive approach is to model {st} as

st =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

β1 for t = 1,1 + d,1 + 2d,⋯ ;
β2 for t = 2,2 + d,2 + 2d,⋯ ;
⋮ ⋮ ;
βd for t = d,2d,3d,⋯ .

This is the seasonal means model, the parameters
(β1, β2,⋯, βd)

T can be estimated under the linear model
framework (think about ANOVA)
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R Output
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The Seasonal Means Model Fit
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Estimating the Trend and Seasonal Components Together

Let’s perform a regression analysis to model both µt (assuming
a linear time trend) and st (using cos and sin)
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The Regression Fit
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Question: How well the model fits the data?
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The Regression Fit
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Backshift Operator in Time Series

We define the first order difference operator ∇ as

∇Yt = Yt − Yt−1 = (1 −B)Yt,

where B is the backshift operator and is defined as
BYt = Yt−1.

Similarly the general order difference operator ∇qYt is
defined recursively as ∇[∇q−1Yt]

The backshift operator of power q is defined as BqYt = Yt−q

A seasonal difference is the difference between an
observation and the previous observation from the same
season:

Yt − Yt−s = Yt −B
sYt = (1 −B

s
)Yt
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The Seasonal ARIMA (SARIMA) Model

Let d and D be non-negative integers. Then {Xt} is a seasonal
ARIMA(p, d, q) ×(P,D,Q) process with period s if

Yt = ∇
d
∇

D
s Xt = (1 −B)

d
(1 −Bs

)
DXt,

is a casual ARMA process define by

ϕ(B)Φ(Bs
)Yt = θ(B)Θ(B

s
)Zt,

where {Zt} ∼WN(0, σ2).
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An Illustration of Seasonal Model

Consider a monthly time series {Xt} with both a trend, and a
seasonal component of period s = 12.

Suppose we know the values of d and D such that
Yt = (1 −B)

d(1 −B12)DXt is stationary

We can arrange the data this way:

Month 1 Month 2 ⋯ Month 12
Year 1 Y1 Y2 ⋯ Y12

Year 2 Y13 Y14 ⋯ Y24

⋮ ⋮ ⋮ ⋯ ⋮

Year r Y1+12(r−1) Y2+12(r−1) ⋯ Y12+12(r−1)
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The Inter-annual Model

Here we view each column (month) of the data table from the
previous slide as a separate time series

For each month m, we assume the same ARMA(P,Q)
model. We have

Ym+12s −
P

∑
i=1

ΦiYm+12(s−i)

= Um+12s +
Q

∑
j=1

ΦjUm+12(s−j),

for each s = 0,⋯, r − 1, where
{Um+12s∶s=0,⋯,r−1} ∼WN(0, σ2

U) for each m

We can write this as

Φ(B12
)Yt = Θ(B

12
)Ut,

and this defines the inter-annual model
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13.18

The Intra-Annual Model

We induce correlation between the months by letting the
process {Ut} follow an ARMA(p, q) model,

ϕ(B)Ut = θ(B)Zt,

where Zt ∼WN(0, σ2)

This is the intra-annual model

The combination of the inter-annual and intra-annual
models for the differenced stationary series,

Yt = (1 −B)
d
(1 −B12

)
DXt,

yields a SARIMA model for {Xt}
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Steps for Modeling SARIMA Processes

1. Transform data if necessary

2. Find d and D so that

Yt = (1 −B)
d
(1 −Bs

)
DXt

is stationary

3. Examine the sample ACF/PACF of {Yt} at lags that are
multiples of s for plausible values for P and Q

4. Examine the sample ACF/PACF at lags {1,2,⋯, s − 1},
to identify possible values for p and q
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Modeling SARIMA Processes (Cont’d)

5. Use maximum likelihood method to fit the models

6. Use model summaries, diagnostics, AIC (AICC) to
determine the best SARIMA model

7. Conduct forecast
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Airline Passengers Example
We consider the data set airpassengers, which are the
monthly totals of international airline passengers from 1949 to
1960, taken from Box and Jenkins [1970]
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Here we stabilize the variance with a log10 transformation
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Sample ACF/PACF Plots
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The sample ACF decays slowly with a wave structure⇒
seasonality

The lag one PACF is close to one, indicating that
differencing the data would be reasonable
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Trying Different Orders of Differencing
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13.24

Choosing Candidate SARIMA Models

We choose a SARIMA(p,1, q) × (P,0,Q) model. Next we
examine the sample ACF/PACF of the process Yt = (1 −B)Xt
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Now we need to choose P , Q, p, and q
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Fitting a SARIMA(1,1,0) × (1,0,0) model
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A Discussion of the Model Fit

The spread of the residuals is larger in 1949-1955
compared to the later years and the residual distribution
has heavy tails

The Ljung-Box test result indicates the fitted SARIMA
(1,1,0) × (1,0,0) has sufficiently account for the temporal
dependence

95% CI for ϕ1 and Φ1 do not contain zero⇒ no need to go
with simpler model

Our estimated model is

(1 + 0.2667B)(1 − 0.9291B12
)(Xt − 0.0039) = Zt,

where {Zt}
i.i.d.
∼ N(0, σ2) with σ̂2 = 0.00033
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Comparing with a SARIMA(0,1,0) × (1,0,0) Model
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A Discussion of Model Fit2

Here we drop the AR(1) term

The residual plots looks quite similar to before: The
spread of the residuals is larger in 1949-1955 compared to
the later years and the residual distribution has heavy tails

Both σ̂2 and AIC increase (compared with model fit1)

The lag 1 of ACF and PACF now lies outside the IID noise
bounds. The Ljung-Box p-value of 0.0022, leads us to
reject the IID residual assumption

In conclusion, the SARIMA(1,1,0) × (1,0,0) model fits better
than SARIMA(0,1,0) × (1,0,0)
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Forecasting the 1960 Data
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Evaluating Forecast Performance

Metrics Model Fit1 Model Fit2
Root Mean Square Error 30.36 31.32

Mean Relative Error 0.057 0.060
Empirical Coverage 0.917 1.000
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Summary

These slides cover two methods for estimating seasonality:

Harmonic regression models

Seasonal ARIMA Models

Ways to evaluate forecasting performance

R functions to know:

harmonic (under the package TSA) for constructing
harmonic functions

Incorporating seasonal = list(order = c(P, D,
Q), period = s) in arima for SARIMA modeling
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