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Toy Examples of Spatial Interpolation

Let’s consider two spatial images, each with a missing pixel
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Question: What is your best guess of the value of the missing
pixel, denoted as Y (s0), for each case?
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Visualizing Spatial Dependence Structure

Similar to time series analysis, we can compute the covariance
between data points in space to examine the degree of spatial
dependence.
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Interpolating Paraná State Precipitation Data
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Goal: To interpolate the values in the spatial domain
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The Spatial Interpolation Problem

Given observations of a spatially varying quantity Y at n spatial
locations

y(s1), y(s2),⋯, y(sn), si ∈ S, i = 1,⋯, n

We want to estimate this quantity at any unobserved location

Y (s0), s0 ∈ S

Applications

Mining: ore grade

Climate: temperature, precipitation, ⋯

Remote Sensing: CO2 retrievals

Environmental Science: air pollution levels, ⋯
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Some History of Spatial Statistics

Mining (Krige 1951)
Matheron (1960s),
Forestry (Matérn
1960)

More recent work:
Cressie (1993) Stein
(1999)
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Linear Interpolation

The best guess (in a statistical sense) should be based on the
conditional distribution [Y (s0) ∣Y = y] where

y = (y (s1) ,⋯, y (sn))
T

Calculating this conditional distribution can be difficult

Instead we use a linear predictor:

Ŷ (s0) = λ0 +
n

∑
i=1

λiy(si)

The best linear predictor is completely determined by the
mean and covariance of {Y (s), s ∈ S}

Next, we will introduce a class of spatial model where the
distribution is fully determined by its mean and covariance
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Gaussian Process (GP) Spatial Model

We assume that the observed data {y(si)}
n
i=1 is one partial

realization of a (continuously indexed) spatial GP {Y (s)}s∈S .

Model:
Y (s) =m(s) + ϵ(s), s ∈ S ⊂ Rd

where
Mean function:

m(s) = E [Y (s)] =XT
(s)β

Covariance function:

{ϵ(s)}s∈S ∼ GP (0,K (⋅, ⋅)) , K(s1,s2) = Cov (ϵ(s1), ϵ(s2))
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Assumptions on Covariance Function

In practice, the covariance must be estimated from the data
(y(s1),⋯, y(sn))

T. We need to impose some structural
assumptions

Stationarity:

K(s1,s2) = Cov (ϵ(s1), ϵ(s2)) = C(s1 − s2)

= Cov (ϵ(s1 +h), ϵ(s2 +h)))

Isotropy:

K(s1,s2) = Cov (ϵ(s1), ϵ(s2)) = C(∥s1 − s2∥)
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A Valid Covariance Function Must Be Positive Definite!

A covariance function is positive definite (p.d.) if

n

∑
i,j=1

aiajC(si − sj) ≥ 0

for any finite locations s1,⋯,sn, and for any constants ai,
i = 1,⋯, n

Question: what is the consequence if a covariance function is
NOT p.d.? ⇒We can get a negative variance

Question: How to guarantee a C(⋅) is p.d.?
Using a parametric covariance function (see some
examples in next slide)

Using Bochner’s Theorem to construct a valid
covariance function
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Some Commonly Used Covariance Functions

Powered exponential:

C(h) = σ2 exp(−(
h

ρ
)
α
) , σ2

> 0, ρ > 0, 0 < α ≤ 2

Spherical:

C(h) = σ2
(1 − 1.5

h

ρ
+ 0.5(

h

ρ
)

3

)1{h≤ρ}, σ2, ρ > 0

Note: it is only valid for 1,2, and 3 dimensional spatial
domain.
Matérn:

C(h) = σ2
(
√
2νh/ρ)

ν
Kν (
√
2νh/ρ)

Γ(ν)2ν−1
, σ2

> 0, ρ > 0, ν > 0

“Use the Matérn model” – Stein (1999, pp. 14)
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1-D Realizations from Matérn Model with Fixed σ2, ρ

Figure: courtesy of Rasmussen & Williams 2006

The larger ν is, the smoother the process is
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2-D Realizations from Matérn Model with Fixed σ2
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Outline

1 Background

2 Gaussian Process Spatial Model

3 Spatial Interpolation
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Conditional Distribution of Multivariate Normal

If

(
Y1

Y2
) ∼ N((

µ1

µ2
) ,(

Σ11 Σ12

Σ21 Σ22
))

Then
[Y1∣Y2 = y2] ∼ N (µ1∣2,Σ1∣2)

where

µ1∣2 = µ1 +Σ12Σ
−1
22 (y2 −µ2)

Σ1∣2 = Σ11 −Σ12Σ
−1
22Σ21
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GP-Based Spatial Interpolation: Kriging

If {Y (s)}s∈S follows a GP, then

(
Y0

Y
) ∼ N((

m0

m
) ,(

σ2
0 kT

k Σ
))

We have
[Y0∣Y = y] ∼ N (mY0∣Y =y, σ

2
Y0∣Y =y

)

where

mY0∣Y =y =m0 + k
TΣ−1 (y −m)

σ2
Y0∣Y =y

= σ2
0 − k

TΣ−1k

Next, we are going to revisit our toy examples
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Toy Examples Revisited

For simplicity, we assume m(s) = 0 for s ∈ S, the spatial
covariance only depends on distance
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mY0∣Y =y = 0 + k
TΣ−1 (y − 0) , σ2

Y0∣Y =y
= σ2

0 − k
TΣ−1k

Spatial uncorrelated field:
mY0∣Y = 0

σ2
Y0∣Y =y

= σ2
0

Spatial correlated field:
mY0∣Y = k

TΣ−1y

σ2
Y0∣Y =y

= σ2
0 − k

TΣ−1k
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Interpolating Multiple Points in Space
In practice, we would like to predict the values at many
locations. The Gaussian conditional distribution formula can
still be used:

[Y0∣Y = y] ∼ N (mY0∣Y =y,ΣY0∣Y =y)

where

mY0∣Y =y =m0 + k
TΣ−1 (y −m)

ΣY0∣Y =y = Σ0 − k
TΣ−1k

−2 −1 0 1 2

Observed

−2 −1 0 1 2

Predicted

0.00 0.05 0.10 0.15 0.20

Predicted Sd
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GP-Based Spatial Interpolation: Kriging

If {Y (s)}s∈S follows a GP, then

(
Y0

Y
) ∼ N((

m0

m
) ,(

Σ0 kT

k Σ
))

We have
[Y0∣Y = y] ∼ N (mY0∣Y =y,ΣY0∣Y =y)

where

mY0∣Y =y =m0 + k
TΣ−1 (y −m)

ΣY0∣Y =y = Σ0 − k
TΣ−1k

Question: what if we don’t know m(s;β), c(h;θ)?

⇒We need to estimate the mean and covariance from the
data y.



Interpolation of
Spatial Data I

Background

Gaussian Process
Spatial Model

Spatial Interpolation

14.22

Summary

These slides cover:

The problem of spatial interpolation

Stationarity and Isotropy of a spatial process

Gaussian Process Spatial Models

R functions/tricks to know:

vgram (under the package fields) for visualizing spatial
dependence

image.plot (under the package fields) for visualizing
spatial images

Some matrix calculation tricks for speeding up
computation
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Bochner’s Theorem

A complex-valued function C on Rd is the covariance function
for a weakly stationary mean square contituous
complex-valued random process on Rd if and only if it can be
represented as

C(h) = ∫
Rd

exp(iωTh)F (dω),

with F a positive finite measure. When F has a density with
respect to Lebesgue measure, we have the spectral density f
and

f(ω) =
1

2π
∫

Rd
exp(−iωTh)C(h)dh
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