Lecture 14 Interpolation of Spatial Data I

DSA 8020 Statistical Methods II

Interpolation of Spatial Data I

Background

Gaussian Process Spatial Model

Spatial Interpolation

Whitney Huang Clemson University

Agenda

Interpolation of Spatial Data I

Background

Gaussian Process Spatial Model

Toy Examples of Spatial Interpolation

Let's consider two spatial images, each with a missing pixel

Question: What is your best guess of the value of the missing pixel, denoted as $Y(s_0)$, for each case?

Background

Gaussian Process Spatial Model

Visualizing Spatial Dependence Structure

Similar to time series analysis, we can compute the covariance between data points in space to examine the degree of spatial dependence.

Interpolation of Spatial Data I

Background

Gaussian Process Spatial Model

Interpolating Paraná State Precipitation Data

Goal: To interpolate the values in the spatial domain

lackground

Gaussian Process Spatial Model

The Spatial Interpolation Problem

Given observations of a spatially varying quantity \boldsymbol{Y} at \boldsymbol{n} spatial locations

 $y(s_1), y(s_2), \dots, y(s_n), \qquad s_i \in \mathcal{S}, i = 1, \dots, n$

We want to estimate this quantity at any unobserved location

 $Y(s_0), \quad s_0 \in \mathcal{S}$

Applications

- Mining: ore grade
- Climate: temperature, precipitation, ...
- Remote Sensing: CO₂ retrievals
- Environmental Science: air pollution levels, ...

Background

Gaussian Process Spatial Model

Some History of Spatial Statistics

Background

Gaussian Process Spatial Model

Spatial Interpolation

 Mining (Krige 1951) Matheron (1960s), Forestry (Matérn 1960)

 More recent work: Cressie (1993) Stein (1999)

Outline

Interpolation of Spatial Data I

Background

Gaussian Process Spatial Model

Spatial Interpolation

2 Gaussian Process Spatial Model

Linear Interpolation

The best guess (in a statistical sense) should be based on the conditional distribution $[Y(s_0)|\mathbf{Y} = \mathbf{y}]$ where

$$oldsymbol{y}$$
 = $\left(y\left(oldsymbol{s}_{1}
ight), \cdots, y\left(oldsymbol{s}_{n}
ight)
ight)^{ extsf{T}}$

Calculating this conditional distribution can be difficult

Instead we use a linear predictor:

 $\hat{Y}(\boldsymbol{s}_{0})$ = λ_{0} + $\sum_{i=1}^{n} \lambda_{i} y(\boldsymbol{s}_{i})$

 The best linear predictor is completely determined by the mean and covariance of {Y(s), s ∈ S}

Next, we will introduce a class of spatial model where the distribution is fully determined by its mean and covariance

Backgroun

Gaussian Process Spatial Model

Gaussian Process (GP) Spatial Model

We assume that the observed data $\{y(s_i)\}_{i=1}^n$ is one partial realization of a (continuously indexed) spatial GP $\{Y(s)\}_{s \in S}$.

Model:

$$Y(s) = m(s) + \epsilon(s), \qquad s \in S \subset \mathbb{R}^d$$

where

Mean function:

$$m(s) = \mathrm{E}[Y(s)] = X^{T}(s)\beta$$

Ovariance function:

 $\{\epsilon(\boldsymbol{s})\}_{\boldsymbol{s}\in\mathcal{S}} \sim \operatorname{GP}(0, K(\cdot, \cdot)), \quad K(\boldsymbol{s}_1, \boldsymbol{s}_2) = \operatorname{Cov}(\epsilon(\boldsymbol{s}_1), \epsilon(\boldsymbol{s}_2))$

Background

Gaussian Process Spatial Model

Assumptions on Covariance Function

In practice, the covariance must be estimated from the data $(y(s_1), \cdots, y(s_n))^{\mathrm{T}}$. We need to impose some structural assumptions

• Stationarity:

$$K(\mathbf{s}_1, \mathbf{s}_2) = \operatorname{Cov} \left(\epsilon(\mathbf{s}_1), \epsilon(\mathbf{s}_2) \right) = C(\mathbf{s}_1 - \mathbf{s}_2)$$
$$= \operatorname{Cov} \left(\epsilon(\mathbf{s}_1 + \mathbf{h}), \epsilon(\mathbf{s}_2 + \mathbf{h}) \right)$$

Isotropy:

$$K(\boldsymbol{s}_1, \boldsymbol{s}_2) = \operatorname{Cov}\left(\epsilon(\boldsymbol{s}_1), \epsilon(\boldsymbol{s}_2)\right) = C(\|\boldsymbol{s}_1 - \boldsymbol{s}_2\|)$$

Background

Gaussian Process Spatial Model

A Valid Covariance Function Must Be Positive Definite!

A covariance function is positive definite (p.d.) if

$$\sum_{i,j=1}^n a_i a_j C(s_i - s_j) \ge 0$$

for any finite locations s_1, \cdots, s_n , and for any constants a_i , $i = 1, \cdots, n$

Question: what is the consequence if a covariance function is NOT p.d.? \Rightarrow We can get a negative variance

Question: How to guarantee a $C(\cdot)$ is p.d.?

- Using a parametric covariance function (see some examples in next slide)
- Using Bochner's Theorem 💿 to construct a valid covariance function

Background

Gaussian Process Spatial Model

Some Commonly Used Covariance Functions

• Powered exponential:

$$C(h) = \sigma^2 \exp\left(-\left(\frac{h}{\rho}\right)^{\alpha}\right), \qquad \sigma^2 > 0, \, \rho > 0, \, 0 < \alpha \le 2$$

• Spherical:

$$C(h) = \sigma^2 \left(1 - 1.5 \frac{h}{\rho} + 0.5 \left(\frac{h}{\rho} \right)^3 \right) \mathbb{1}_{\{h \le \rho\}}, \qquad \sigma^2, \, \rho > 0$$

Note: it is only valid for 1,2, and 3 dimensional spatial domain.

Matérn:

$$C(h) = \sigma^2 \frac{\left(\sqrt{2\nu}h/\rho\right)^{\nu} \mathcal{K}_{\nu}\left(\sqrt{2\nu}h/\rho\right)}{\Gamma(\nu)2^{\nu-1}}, \qquad \sigma^2 > 0, \, \rho > 0, \, \nu > 0$$

"Use the Matérn model" - Stein (1999, pp. 14)

Background

Gaussian Process Spatial Model

1-D Realizations from Matérn Model with Fixed σ^2 , ρ

Figure: courtesy of Rasmussen & Williams 2006

The larger ν is, the smoother the process is

Background

Gaussian Process Spatial Model

2-D Realizations from Matérn Model with Fixed σ^2

Interpolation of Spatial Data I

Background

Gaussian Process Spatial Model

Outline

Interpolation of Spatial Data I

Background

Gaussian Process Spatial Model

Spatial Interpolation

2 Gaussian Process Spatial Model

Conditional Distribution of Multivariate Normal

lf

$$\begin{pmatrix} \boldsymbol{Y}_1 \\ \boldsymbol{Y}_2 \end{pmatrix} \sim \mathrm{N}\left(\begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix}\right)$$

 $[\boldsymbol{Y}_1|\boldsymbol{Y}_2 = \boldsymbol{y}_2] \sim N(\boldsymbol{\mu}_{1|2}, \boldsymbol{\Sigma}_{1|2})$

where

$$\mu_{1|2} = \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (y_2 - \mu_2)$$

$$\Sigma_{1|2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

Interpolation of Spatial Data I

Background

Gaussian Process Spatial Model

GP-Based Spatial Interpolation: Kriging

If $\{Y(s)\}_{s\in\mathcal{S}}$ follows a GP, then

$$\begin{pmatrix} Y_0 \\ \boldsymbol{Y} \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} m_0 \\ \boldsymbol{m} \end{pmatrix}, \begin{pmatrix} \sigma_0^2 & k^{\mathrm{T}} \\ k & \boldsymbol{\Sigma} \end{pmatrix} \right)$$

We have

$$[Y_0| \boldsymbol{Y} = \boldsymbol{y}] \sim \mathrm{N}\left(m_{Y_0| \boldsymbol{Y} = \boldsymbol{y}}, \sigma^2_{Y_0| \boldsymbol{Y} = \boldsymbol{y}}
ight)$$

where

$$m_{Y_0|\boldsymbol{Y}=\boldsymbol{y}} = m_0 + k^{\mathrm{T}} \Sigma^{-1} (\boldsymbol{y} - \boldsymbol{m})$$

$$\sigma_{Y_0|\boldsymbol{Y}=\boldsymbol{y}}^2 = \sigma_0^2 - k^{\mathrm{T}} \Sigma^{-1} k$$

Next, we are going to revisit our toy examples

Background

Gaussian Process Spatial Model

Toy Examples Revisited

For simplicity, we assume m(s) = 0 for $s \in S$, the spatial covariance only depends on distance

Background

Gaussian Process Spatial Model

Spatial Interpolation

$$m_{Y_0|\boldsymbol{Y}=\boldsymbol{y}} = 0 + k^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \left(\boldsymbol{y} - \boldsymbol{0} \right), \quad \sigma_{Y_0|\boldsymbol{Y}=\boldsymbol{y}}^2 = \sigma_0^2 - k^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} k$$

Spatial uncorrelated field:

• $m_{Y_0|Y} = 0$

•
$$\sigma_{Y_0|\boldsymbol{Y}=\boldsymbol{y}}^2 = \sigma_0^2$$

Spatial correlated field:

$$\bullet \ m_{Y_0|\boldsymbol{Y}} = k^{\mathrm{T}} \Sigma^{-1} \boldsymbol{y}$$

•
$$\sigma_{Y_0|\mathbf{Y}=\mathbf{y}}^2 = \sigma_0^2 - k^{\mathrm{T}} \Sigma^{-1} k$$

Interpolating Multiple Points in Space

In practice, we would like to predict the values at many locations. The Gaussian conditional distribution formula can still be used:

$$[\mathbf{Y}_0|\mathbf{Y} = \mathbf{y}] \sim N(\mathbf{m}_{\mathbf{Y}_0|\mathbf{Y}=\mathbf{y}}, \Sigma_{\mathbf{Y}_0|\mathbf{Y}=\mathbf{y}})$$

Interpolation of Spatial Data I

Backgroun

Gaussian Process Spatial Model

Spatial Interpolation

where

$$egin{aligned} & m{m}_{m{Y}_0|m{Y}=m{y}} = m{m}_0 + m{k}^{\mathrm{T}} \Sigma^{-1} \left(m{y} - m{m}
ight) \ & \Sigma_{m{Y}_0|m{Y}=m{y}} = \Sigma_0 - m{k}^{\mathrm{T}} \Sigma^{-1} m{k} \end{aligned}$$

GP-Based Spatial Interpolation: Kriging

If $\{Y(s)\}_{s\in\mathcal{S}}$ follows a GP, then

$$egin{pmatrix} oldsymbol{Y}_0\ oldsymbol{Y} \end{pmatrix} \sim \mathrm{N}\left(egin{pmatrix} oldsymbol{m}_0\ oldsymbol{m} \end{pmatrix}, egin{pmatrix} \Sigma_0 & oldsymbol{k}^{\mathrm{T}}\ oldsymbol{k} & \Sigma \end{pmatrix}
ight)$$

We have

$$[\boldsymbol{Y}_0|\boldsymbol{Y} = \boldsymbol{y}] \sim \mathrm{N}\left(\boldsymbol{m}_{\boldsymbol{Y}_0|\boldsymbol{Y}=\boldsymbol{y}}, \boldsymbol{\Sigma}_{\boldsymbol{Y}_0|\boldsymbol{Y}=\boldsymbol{y}}\right)$$

where

$$egin{aligned} & m{m}_{m{Y}_0|m{Y}=m{y}} = m{m}_0 + m{k}^{\mathrm{T}} \Sigma^{-1} \left(m{y} - m{m}
ight) \ & \Sigma_{m{Y}_0|m{Y}=m{y}} = \Sigma_0 - m{k}^{\mathrm{T}} \Sigma^{-1} m{k} \end{aligned}$$

Question: what if we don't know $m(s; \beta), c(h; \theta)$?

 \Rightarrow We need to estimate the mean and covariance from the data y.

Background

Gaussian Process Spatial Model

Summary

These slides cover:

- The problem of spatial interpolation
- Stationarity and Isotropy of a spatial process
- Gaussian Process Spatial Models
- R functions/tricks to know:
 - vgram (under the package fields) for visualizing spatial dependence
 - image.plot (under the package fields) for visualizing spatial images
 - Some matrix calculation tricks for speeding up computation

Background

Gaussian Process Spatial Model

Bochner's Theorem

A complex-valued function C on \mathbb{R}^d is the covariance function for a weakly stationary mean square contituous complex-valued random process on \mathbb{R}^d if and only if it can be represented as

 $C(\boldsymbol{h}) = \int_{\mathbb{R}^d} \exp(i\omega^{\mathrm{T}}\boldsymbol{h}) F(d\boldsymbol{\omega}),$

with F a positive finite measure. When F has a density with respect to Lebesgue measure, we have the spectral density f and

$$f(\omega) = \frac{1}{2\pi} \int_{\mathbb{R}^d} \exp(-i\omega^{\mathrm{T}} \boldsymbol{h}) C(\boldsymbol{h}) \, d\boldsymbol{h}$$

Background

Gaussian Process Spatial Model