Lecture 2 Multiple Linear Regression: Estimation and Inference

Reading: Faraway 2014 Chapters 2.1-2.6, 3.1-3.2; 3.5; ISLR 2021 Chapter 3.2

DSA 8020 Statistical Methods II

Whitney Huang Clemson University

Agenda

(1) Multiple Linear Regression

Multiple Linear
Regression
(2) Estimation \& Inference
(3) Assessing Model Fit

Multiple Linear Regression (MLR)

Goal: To model the relationship between two or more predictors (x 's) and a response (y) by fitting a linear equation to observed data $\left\{y_{i}, x_{1, i}, x_{2, i}, \cdots, x_{p-1, i}\right\}_{i=1}^{n}$:

$$
y_{i}=\beta_{0}+\beta_{1} x_{1, i}+\beta_{2} x_{2, i}+\cdots+\beta_{p-1} x_{p-1, i}+\varepsilon_{i}, \quad \varepsilon_{i} \stackrel{i . i . d .}{\sim} \mathrm{N}\left(0, \sigma^{2}\right)
$$

Example: Species diversity on the Galapagos Islands. We are interested in studying the relationship between the number of plant species (Species) and the following geographic variables: Area, Elevation, Nearest, Scruz, Adjacent.

Data: Species Diversity on the Galapagos Islands

	Spectes	Endemics	Area	Elevation	Nearest	Scruz	Adjacent
Baltra	58	23	25.09	346	0.6	0.6	1.84
Bartolome	31	21	1.24	109	0.6	26.3	572.33
Caldwell	3	3	0.21	114	2.8	58.7	0.78
Champion	25	9	0.10	46	1.9	47.4	0.18
Coamano	2	1	0.05	77	1.9	1.9	903.82
Daphne.Major	18	11	0.34	119	8.0	8.0	1.84
Daphne.Minor	24	0	0.08	93	6.0	12.0	0.34
Darwin	10	7	2.33	168	34.1	290.2	2.85
Eden	8	4	0.03	71	0.4	0.4	17.95
Enderby	2	2	0.18	112	2.6	50.2	0.10
Espanola	97	26	58.27	198	1.1	88.3	0.57
Fernandina	93	35	634.49	1494	4.3	95.3	4669.32
Gardner1	58	17	0.57	49	1.1	93.1	58.27
Gardner2	5	4	0.78	227	4.6	62.2	0.21
Genovesa	40	19	17.35	76	47.4	92.2	129.49
Isabela	347	89	4669.32	1707	0.7	28.1	634.49
Marchena	51	23	129.49	343	29.1	85.9	59.56
Onslow	2	2	0.01	25	3.3	45.9	0.10
Pinta	104	37	59.56	777	29.1	119.6	129.49
Pinzon	108	33	17.95	458	10.7	10.7	0.03
Las.Plazas	12	9	0.23	94	0.5	0.6	25.09
Rabida	70	30	4.89	367	4.4	24.4	572.33
SanCristobal	280	65	551.62	716	45.2	66.6	0.57
SanSalvador	237	81	572.33	906	0.2	19.8	4.89
SantaCruz	444	95	903.82	864	0.6	0.0	0.52
SantaFe	62	28	24.08	259	16.5	16.5	0.52
SantaMaria	285	73	170.92	640	2.6	49.2	0.10
Seymour	44	16	1.84	147	0.6	9.6	25.09
Tortuga	16	8	1.24	186	6.8	50.9	17.95
Wolf	21	12	2.85	253	34.1	254.7	2.33

How Do Geographic Variables Affect Species Diversity?

Here we compute the correlation coefficients between the response (Species) and predictors (all the geographic variables)

$>$	round (cor(gala[,	$-2])$,	$3)$				
	Species	Area	Elevation	Nearest	Scruz Adjacent		
Species	1.000	0.618	0.738	-0.014	-0.171	0.026	
Area	0.618	1.000	0.754	-0.111	-0.101	0.180	
Elevation	0.738	0.754	1.000	-0.011	-0.015	0.536	
Nearest	-0.014	-0.111	-0.011	1.000	0.615	-0.116	
Scruz	-0.171	-0.101	-0.015	0.615	1.000	0.052	
Adjacent	0.026	0.180	0.536	-0.116	0.052	1.000	

Combining Two Pieces of Information in One Plot

Multiple Linear Regression:
Estimation and Inference

Multiple Linear
Regression
Estimation \& Inference

Model 1: Species ~ Elevation

Call:
$\operatorname{lm}($ formula $=$ Species \sim Elevation, data = gala)

Multiple Linear Regression

Residuals:
Min 10 Median

30	Max
4.634	259.180

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
$\begin{array}{llll}\text { (Intercept) } 11.33511 & 19.20529 & 0.590 & 0.56\end{array}$
Elevation 0.20079 0.03465 5.795 3.18e-06 ***
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 '.’ 0.1 ', 1

Residual standard error: 78.66 on 28 degrees of freedom Multiple R-squared: 0.5454, Adjusted R-squared: 0.5291 F-statistic: 33.59 on 1 and 28 DF, p-value: 3.177e-06

Model 1 Fit

Multiple Linear
Regression:
Estimation and
Inference
$\hat{\text { Species }}=11.33511+0.20079 \times$ Elevation, $\hat{\sigma}=78.66, \mathrm{R}^{2}=0.5454$

Model 2: Species ~ Elevation + Area

Call:
lm (formula $=$ Species \sim Elevation + Area, data $=$ gala)
Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-192.619	-33.534	-19.199	7.541	261.514

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $17.10519 \quad 20.94211 \quad 0.817 \quad 0.42120$
Elevation $0.17174 \quad 0.05317 \quad 3.230 \quad 0.00325$ **
$\begin{array}{llllll}\text { Area } & 0.01880 & 0.02594 & 0.725 & 0.47478\end{array}$
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ' ' 1
Residual standard error: 79.34 on 27 degrees of freedom Multiple R-squared: 0.554, Adjusted R-squared: 0.521
F-statistic: 16.77 on 2 and 27 DF, p-value: 1.843e-05

Model 2 Fit

Multiple Linear

Species $=17.10519+0.17174 \times$ Elevation $+0.01880 \times$ Area,

$$
\hat{\sigma}=79.34, \mathrm{R}^{2}=0.554
$$

Multiple Linear
Regression
Estimation \& Inference Assessing Model Fit

Call:
lm(formula = Species \sim Elevation + Area + Adjacent, data = gala)

Multiple Linear
Regression

Residuals:
Min 10 Median

$3 Q$	Max
27.972	195.973

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) -5.71893 16.90706 -0.338 0.73789
$\begin{array}{lllll}\text { Elevation } 0.31498 & 0.05211 & 6.044 & 2.2 \mathrm{e}-06 \text { *** }\end{array}$
$\begin{array}{lllll}\text { Area } & -0.02031 & 0.02181 & -0.931 & 0.36034\end{array}$
Adjacent -0.07528 0.01698 -4.434 0.00015 ***
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 '.’ 0.1 ' , 1
Residual standard error: 61.01 on 26 degrees of freedom Multiple R-squared: 0.746, Adjusted R-squared: 0.7167 F-statistic: 25.46 on 3 and 26 DF, p-value: 6.683e-08
lm(formula $=$ Species \sim Area + Elevation + Nearest + Scruz + Adjacent,
\quad data $=$ gala)
Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-111.679	-34.898	-7.862	33.460	182.584

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $7.068221 \quad 19.154198 \quad 0.3690 .715351$
$\begin{array}{lllll}\text { Area } & -0.023938 & 0.022422 & -1.068 & 0.296318\end{array}$
$\begin{array}{lllll}\text { Elevation } & 0.319465 & 0.053663 & 5.953 & 3.82 \mathrm{e}-06\end{array}$
$\begin{array}{lllll}\text { Nearest } & 0.009144 & 1.054136 & 0.009 & 0.993151\end{array}$
Scruz $\quad-0.240524 \quad 0.215402-1.1170 .275208$
Adjacent $\quad-0.074805 \quad 0.017700-4.2260 .000297$
(Intercept)
Area
Elevation ***
Nearest
Scruz
Adjacent ***
Signif. codes:
0 ‘***' 0.001 ‘**’ 0.01 ‘*’ 0.05 '. 0.1 ', 1
Residual standard error: 60.98 on 24 degrees of freedom Multiple R-squared: 0.7658, Adjusted R-squared: 0.7171
F-statistic: 15.7 on 5 and 24 DF, p-value: 6.838e-07

MLR Topics

Similar to SLR, we will discuss

Multiple Linear

- Estimation
- Inference
- Diagnostics and Remedies

We will also discuss some new topics

- Model Selection
- Multicollinearity

Multiple Linear Regression in Matrix Notation

Given the actual data, we can write MLR model as:

$$
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{ccccc}
1 & x_{1,1} & x_{2,1} & \cdots & x_{p-1,1} \\
1 & x_{1,2} & x_{2,2} & \cdots & x_{p-1,2} \\
\vdots & \cdots & \ddots & \vdots & \vdots \\
1 & x_{1, n} & x_{2, n} & \cdots & x_{p-1, n}
\end{array}\right)\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{p-1}
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{n}
\end{array}\right)
$$

It will be more convenient to put this in a matrix representation as:

$$
y=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}
$$

Error Sum of Squares (SSE) $=\sum_{i=1}^{n}\left(y_{i}-\left(\beta_{0}+\sum_{j=1}^{p-1} \beta_{j} x_{j, i}\right)\right)^{2}$ can be expressed as:

$$
(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{T}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})
$$

Next, we are going to find $\hat{\boldsymbol{\beta}}=\left(\hat{\beta}_{0}, \hat{\beta}_{1}, \cdots, \hat{\beta}_{p-1}\right)$ to minimize SSE as our estimate for $\boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}, \cdots, \beta_{p-1}\right)$

Estimating Regression Coefficients

We apply method of least squares to minimize $(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{T}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})$ to obtain $\hat{\boldsymbol{\beta}}$

- The resulting least squares estimate is

$$
\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}
$$

(see LS_MLR.pdf for the derivation)

- Fitted values:

$$
\hat{\boldsymbol{y}}=\boldsymbol{X} \hat{\boldsymbol{\beta}}=\boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}=\boldsymbol{H} \boldsymbol{y}
$$

- Residuals:

$$
e=y-\hat{y}=(I-H) y
$$

Estimation of σ^{2}

Multiple Linear Regression:
Estimation and Inference

Multiple Linear

- Similar as we did in SLR

$$
\begin{aligned}
\hat{\sigma}^{2} & =\frac{\boldsymbol{e}^{T} \boldsymbol{e}}{n-p} \\
& =\frac{(\boldsymbol{y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})^{T}(\boldsymbol{y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})}{n-p} \\
& =\frac{\mathrm{SSE}}{n-p} \\
& =\text { MSE }
\end{aligned}
$$

Geometrical Representation of the Estimation β

Projecting the observed response \boldsymbol{y} into a space spanned by \boldsymbol{X}

Source: Linear Model with R 2nd Ed, Faraway, p. 15

Analysis of Variance (ANOVA) Approach to Regression

Partitioning Sums of Squares

- Total sums of squares in response

$$
\mathbf{S S T}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

- We can rewrite SST as

$$
\begin{aligned}
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} & =\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}+\hat{y}_{i}-\bar{y}\right)^{2} \\
& =\underbrace{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}_{\text {"Error": SSE }}+\underbrace{\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}}_{\text {Model: SSR }}
\end{aligned}
$$

Partitioning Total Sums of Squares: A Graphical Illustration

CLEMS
 Multiple Linear
 Regression

Estimation \& Inference
Assessing Model Fit

ANOVA Table \& F-Test

To answer the question: Is at least one of the predictors x_{1}, \cdots, x_{p-1} useful in predicting the response y ?

Source	df	SS	MS	F Value
Model	$p-1$	SSR	$\mathrm{MSR}=\mathrm{SSR} /(p-1)$	MSR/MSE
Error	$n-p$	SSE	$\mathrm{MSE}=\mathrm{SSE} /(n-p)$	
Total	$n-1$	SST		

- F-Test: Tests if the predictors $\left\{x_{1}, \cdots, x_{p-1}\right\}$ collectively help explain the variation in y
- $H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{p-1}=0$
- H_{a} : at least one $\beta_{k} \neq 0, \quad 1 \leq k \leq p-1$
- $F^{*}=\frac{\mathrm{MSR}}{\mathrm{MSE}}=\frac{\mathrm{SSR} /(p-1)}{\operatorname{SSE} /(n-p)} \stackrel{\stackrel{H}{0}^{\sim}}{\sim} F_{p-1, n-p}$
- Reject H_{0} if $F^{*}>F_{1-\alpha, p-1, n-p}$

Testing Individual Predictor

- We can show that $\hat{\boldsymbol{\beta}} \sim \mathrm{N}_{p}\left(\boldsymbol{\beta}, \sigma^{2}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1}\right) \Rightarrow$

$$
\hat{\beta}_{k} \sim \mathrm{~N}\left(\beta_{k}, \sigma_{\hat{\beta}_{k}}^{2}\right)
$$

- Perform t-Test:
- $H_{0}: \beta_{k}=0$ vs. $H_{a}: \beta_{k} \neq 0$
- $\frac{\hat{\beta}_{k}-\beta_{k}}{S E\left(\hat{\beta}_{k}\right)} \sim t_{n-p} \Rightarrow t^{*}=\frac{\hat{\beta}_{k}}{S E\left(\hat{\beta}_{k}\right)} \stackrel{H_{0}}{\sim} t_{n-p}$
- Reject H_{0} if $\left|t^{*}\right|>t_{1-\alpha / 2, n-p}$
- Confidence interval for β_{k} :

$$
\hat{\beta}_{k} \pm t_{1-\alpha / 2, n-p} \hat{S E}\left(\hat{\beta}_{k}\right)
$$

Confidence Intervals and Confidence Ellipsoids

Comparing with individual confidence interval, confidence ellipsoids can provide additional information when inference with multiple parameters is of interest. A 100 ($1-\alpha$)\% confidence ellipsoid for β can be constructed using:

$$
(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{T} \boldsymbol{X}^{T} \boldsymbol{X}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \leq p \hat{\sigma}^{2} F_{p, n-p}^{\alpha} .
$$

Quantifying Model Fit using Coefficient of Determination R^{2}

- Coefficient of determination R^{2} describes proportional of the variance in the response variable that is predictable from the predictors

$$
R^{2}=\frac{\mathrm{SSR}}{\mathrm{SST}}=1-\frac{\mathrm{SSE}}{\mathrm{SST}}, \quad 0 \leq R^{2} \leq 1
$$

- R^{2} increases with the increasing p, the number of the predictors
- Adjusted R^{2}, denoted by $R_{\text {adj }}^{2}=1-\frac{\operatorname{SSE} /(n-p)}{\operatorname{SST} /(n-1)}$ attempts to account for p

R^{2} vs. R_{adj}^{2} Example

Suppose the true relationship between response y and predictors $\left(x_{1}, x_{2}\right)$ is

$$
y=5+2 x_{1}+\varepsilon
$$

where $\varepsilon \sim \mathrm{N}(0,1)$ and x_{1} and x_{2} are independent to each other. Let's fit the following two models to the "data"

> Model 1: $y=\beta_{0}+\beta_{1} x_{1}+\varepsilon^{1}$
> Model 2: $y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\varepsilon^{2}$

Question: Which model will "win" in terms of R^{2} ?

Let's conduct a Monte Carlo simulation to study this

Outline of Monte Carlo Simulation

© Generating a large number (e.g., $M=500$) of "data sets", where each has exactly the same $\left\{x_{1, i}, x_{2, i}\right\}_{i=1}^{n}$ but different values of response $\left\{y_{i}=5+2 x_{1, i}+\varepsilon_{i}\right\}_{i=1}^{n}$
(2) Fitting model 1: $y=\beta_{0}+\beta_{1} x_{1}+\varepsilon^{1}$ (true model) and model 2: $y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\varepsilon^{2}$, respectively for each simulating data set and calculating their R^{2} and $R_{a d j}^{2}$
(0) Summarizing $\left\{R_{j}^{2}\right\}_{j=1}^{M}$ and $\left\{R_{\text {adj,j}}^{2}\right\}_{j=1}^{M}$ for model 1 and model 2

An Example of Model 1 Fit

```
> summary(fit1)
```

Call:
$\operatorname{lm}($ formula $=\mathrm{y} \sim \mathrm{x} 1$)
Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-1.6085	-0.5056	-0.2152	0.6932	2.0118

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $5.1720 \quad 0.1534 \quad 33.71<2 e-16^{* * *}$
$x 1 \quad 1.8660 \quad 0.1589 \quad 11.742 .47 \mathrm{e}-12$ ***

Signif. codes:
0 ‘***' 0.001 ‘**’ 0.01 ‘*’ 0.05 '.’ 0.1 ' ' 1
Residual standard error: 0.8393 on 28 degrees of freedom Multiple R-squared: 0.8313, Adjusted R-squared: 0.8253 F-statistic: 138 on 1 and 28 DF, p-value: 2.467e-12

An Example of Model 2 Fit

> summary(fit2)
Call:
$\operatorname{lm}($ formula $=\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2)$
Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-1.3926	-0.5775	-0.1383	0.5229	1.8385

Coefficients:

| | Estimate | Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$ | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 5.1792 | 0.1518 | 34.109 | $<2 \mathrm{e}-16^{* * *}$ |
| x1 | 1.8994 | 0.1593 | 11.923 | $2.88 \mathrm{e}-12^{* * *}$ |
| x2 | -0.2289 | 0.1797 | -1.274 | 0.213 |

Signif. codes:
0 ‘***' 0.001 ‘**’ 0.01 ‘*’ 0.05 '.’ 0.1 ' ' 1

Residual standard error: 0.8301 on 27 degrees of freedom Multiple R-squared: 0.8408, Adjusted R-squared: 0.8291 F-statistic: 71.32 on 2 and 27 DF, p-value: 1.677e-11

R^{2} : Model 1 vs. Model 2

Multiple Linear Regression:
Estimation and Inference

Model 1: R^{2}

$R_{a d j}^{2}$: Model 1 vs. Model 2

Takeaways:

- R^{2} always pick the more "complex" model (i.e., with more predictors), even the simpler model is the true model
- $R_{\text {adj }}^{2}$ has a better chance to pick the "right" model

Summary

These slides cover:

- Parameter Estimation of MLR
- Inference: F-test and t-test; Confidence intervals/ellipsoids
- Assessing Model Fit: R^{2} and $R_{\text {adj }}^{2}$
- Monte Carlo Simulation

R functions to know:

- image.plot in the fields library and scatter3D in the plot 3D library for visualization
- anova for computing the ANOVA table

