Multiple Linear

Lecture 2

Multiple Linear Regression: Estimation and Inference

Reading: Faraway 2014 Chapters 2.1 - 2.6, 3.1 - 3.2; 3.5; ISLR 2021 Chapter 3.2

DSA 8020 Statistical Methods II

Whitney Huang Clemson University

Agenda

Multiple Linear Regression: Estimation and Inference

Multiple Linear Regression

Estimation & Inference

Assessing Model Fit

Multiple Linear Regression

2 Estimation & Inference

Goal: To model the relationship between two or more predictors (x's) and a response (y) by fitting a **linear equation** to observed data $\{y_i, x_{1,i}, x_{2,i}, \dots, x_{p-1,i}\}_{i=1}^n$:

$$y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \dots + \beta_{p-1} x_{p-1,i} + \varepsilon_i, \quad \varepsilon_i \overset{i.i.d.}{\sim} N(0, \sigma^2)$$

Example: Species diversity on the Galapagos Islands. We are interested in studying the relationship between the number of plant species (Species) and the following geographic variables: Area, Elevation, Nearest, Scruz, Adjacent.

Multiple Linear Regression: Estimation and Inference

Regression

Data: Species Diversity on the Galapagos Islands

ala. Speci	ies Di	versity	OII tii	e Galap	Jayus	isiai	lus	
	Species	Endemics	Area	Elevation	Nearest	Scruz	Adjacent	۱
Baltra	58	23	25.09	346	0.6	0.6	1.84	
Bartolome	31	21	1.24	109	0.6	26.3	572.33	
Caldwell	3	3	0.21	114	2.8	58.7	0.78	
Champion	25	9	0.10	46	1.9	47.4	0.18	
Coamano	2	1	0.05	77	1.9	1.9	903.82	
Daphne.Major	18	11	0.34	119	8.0	8.0	1.84	
Daphne.Minor	24	0	0.08	93	6.0	12.0	0.34	
Darwin	10	7	2.33	168	34.1	290.2	2.85	
Eden	8	4	0.03	71	0.4	0.4	17.95	
Enderby	2	2	0.18	112	2.6	50.2	0.10	
Espanola	97	26	58.27	198	1.1	88.3	0.57	
Fernandina	93	35	634.49	1494	4.3	95.3	4669.32	
Gardner1	58	17	0.57	49	1.1	93.1	58.27	
Gardner2	5	4	0.78	227	4.6	62.2	0.21	
Genovesa	40	19	17.35	76	47.4	92.2	129.49	
Isabela	347	89	4669.32	1707	0.7	28.1	634.49	
Marchena	51	23	129.49	343	29.1	85.9	59.56	
Onslow	2	2	0.01	25	3.3	45.9	0.10	
Pinta	104	37	59.56	777	29.1	119.6	129.49	
Pinzon	108	33	17.95	458	10.7	10.7	0.03	
Las.Plazas	12	9	0.23	94	0.5	0.6	25.09	
Rabida	70	30	4.89	367	4.4	24.4	572.33	
SanCristobal	280	65	551.62	716	45.2	66.6	0.57	
SanSalvador	237	81	572.33	906	0.2	19.8	4.89	
SantaCruz	444	95	903.82	864	0.6	0.0	0.52	
SantaFe	62	28	24.08	259	16.5	16.5	0.52	
SantaMaria	285	73	170.92	640	2.6	49.2	0.10	
Seymour	44	16	1.84	147	0.6	9.6	25.09	
Tortuga	16	8	1.24	186	6.8	50.9	17.95	
Wolf	21	12	2.85	253	34.1	254.7	2.33	

Multiple Linear Regression: Estimation and Inference

Multiple Linear Regression

How Do Geographic Variables Affect Species Diversity?

Multiple Linear Regression: Estimation and Inference

Multiple Linear Regression

Estimation & Inference

Let's Take a Look at the Correlation Matrix

Here we compute the correlation coefficients between the response (Species) and predictors (all the geographic variables)

round(cor(gala \lceil , -2 \rceil), 3) Species Area Elevation Nearest Scruz Adjacent 0.026 Species 1.000 0.618 0.738 -0.014 -0.171 0.180 Area 0.618 1.000 0.754 -0.111 -0.101 Elevation 0.738 0.754 1.000 -0.011 -0.015 0.536 Nearest -0.014 -0.111 -0.011 1.000 0.615 -0.116Scruz -0.171 -0.101 -0.015 0.615 1.000 0.052 Adjacent 0.026 0.180 0.536 -0.116 0.052 1.000 Multiple Linear Regression: Estimation and Inference

Multiple Linear Regression

Annanian Madal Fit

Combining Two Pieces of Information in One Plot

Multiple Linear Regression: Estimation and Inference

Multiple Linear Regression

```
Call:
lm(formula = Species ~ Elevation, data = gala)
```

Residuals:

Min 1Q Median 3Q Max -218.319 -30.721 -14.690 4.634 259.180

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 78.66 on 28 degrees of freedom Multiple R-squared: 0.5454, Adjusted R-squared: 0.5291 F-statistic: 33.59 on 1 and 28 DF, p-value: 3.177e-06

Model 1 Fit

Species = 11.33511 + 0.20079 × Elevation,
$$\hat{\sigma} = 78.66, \; \text{R}^2 = 0.5454$$

Multiple Linear Regression: Estimation and Inference

Multiple Linear Regression

Model 2: Species ~ Elevation + Area

```
Call:
lm(formula = Species ~ Elevation + Area, data = gala)
Residuals:
    Min
           10 Median
                              30
                                      Max
-192.619 -33.534 -19.199 7.541 261.514
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 17.10519 20.94211 0.817 0.42120
<u>Elevation</u> 0.17174  0.05317  3.230  0.00325 **
       0.01880
Area
                    0.02594 0.725 0.47478
Sianif. codes:
0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1
Residual standard error: 79.34 on 27 degrees of freedom
Multiple R-squared: 0.554, Adjusted R-squared: 0.521
F-statistic: 16.77 on 2 and 27 DF, p-value: 1.843e-05
```

Multiple Linear Regression: Estimation and Inference

Regression

Estimation & interence

Model 2 Fit

Species = 17.10519 + 0.17174 × Elevation + 0.01880 × Area, $\hat{\sigma} = 79.34, \; \mathrm{R}^2 = 0.554$

Multiple Linear Regression: Estimation and Inference

Multiple Linear Regression

Estimation & Inference

Model 3: Species ~ Elevation + Area + Adjacent

```
Call:
lm(formula = Species ~ Elevation + Area + Adjacent, data = gala)
Residuals:
    Min
            10
                Median
                            30
                                  Max
-124.064 -34.283 -8.733
                        27.972 195.973
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.71893 16.90706 -0.338 0.73789
Elevation 0.31498 0.05211 6.044 2.2e-06 ***
       -0.02031 0.02181 -0.931 0.36034
Area
Signif. codes:
             0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 61.01 on 26 degrees of freedom
```

Multiple R-squared: 0.746, Adjusted R-squared: 0.7167 F-statistic: 25.46 on 3 and 26 DF, p-value: 6.683e-08 Multiple Linear Regression: Estimation and Inference

Regression

Estimation & Interence

```
lm(formula = Species ~ Area + Elevation + Nearest + Scruz + Adjacent,
   data = aala
Residuals:
    Min
              10 Median
                               30
                                       Max
-111.679 -34.898 -7.862 33.460 182.584
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.068221 19.154198 0.369 0.715351
           -0.023938 0.022422 -1.068 0.296318
Area
Flevation
            0.319465
                      0.053663 5.953 3.82e-06
Nearest 0.009144 1.054136 0.009 0.993151
Scruz
          -0.240524 0.215402 -1.117 0.275208
Adjacent
          -0.074805 0.017700 -4.226 0.000297
(Intercept)
Area
Flevation
           ***
Nearest
Scruz
           ***
Adjacent
Signif. codes:
 '***' 0.001 '**' 0.01 '*' 0.05 '. '0.1 ' '1
Residual standard error: 60.98 on 24 degrees of freedom
Multiple R-sauared: 0.7658. Adiusted R-sauared: 0.7171
F-statistic: 15.7 on 5 and 24 DF, p-value: 6.838e-07
```

Multiple Linear Regression: Estimation and Inference

Regression

MLR Topics

Similar to SLR, we will discuss

- Estimation
- Inference
- Diagnostics and Remedies

We will also discuss some new topics

- Model Selection
- Multicollinearity

Multiple Linear Regression: Estimation and Inference

Regression

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{1,1} & x_{2,1} & \cdots & x_{p-1,1} \\ 1 & x_{1,2} & x_{2,2} & \cdots & x_{p-1,2} \\ \vdots & \cdots & \ddots & \vdots & \vdots \\ 1 & x_{1,n} & x_{2,n} & \cdots & x_{p-1,n} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

It will be more convenient to put this in a matrix representation as:

$$y$$
 = $Xeta$ + $arepsilon$

Error Sum of Squares (SSE) = $\sum_{i=1}^{n} \left(y_i - \left(\beta_0 + \sum_{j=1}^{p-1} \beta_j x_{j,i}\right)\right)^2$ can be expressed as:

$$(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})$$

Next, we are going to find $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1, \cdots, \hat{\beta}_{p-1})$ to minimize SSE as our estimate for $\beta = (\beta_0, \beta_1, \cdots, \beta_{p-1})$

Multiple Linear Regression: Estimation and Inference

Regression

The resulting least squares estimate is

$$\hat{\boldsymbol{\beta}} = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

(see LS_MLR.pdf for the derivation)

Fitted values:

$$\hat{\boldsymbol{y}} = \boldsymbol{X}\hat{\boldsymbol{\beta}} = \boldsymbol{X} \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{y} = \boldsymbol{H} \boldsymbol{y}$$

Residuals:

$$e = y - \hat{y} = (I - H)y$$

Multiple Linear Regression: Estimation and Inference

Regression

Estimation of σ^2

Similar as we did in SLR

$$\hat{\sigma}^{2} = \frac{e^{T}e}{n-p}$$

$$= \frac{(y - X\hat{\beta})^{T}(y - X\hat{\beta})}{n-p}$$

$$= \frac{SSE}{n-p}$$

$$= MSE$$

Multiple Linear Regression: Estimation and Inference

regression

Geometrical Representation of the Estimation β

Projecting the observed response \boldsymbol{y} into a space spanned by \boldsymbol{X}

Source: Linear Model with R 2nd Ed, Faraway, p. 15

Multiple Linear Regression: Estimation and Inference

Regression

Estimation & interence

opioacii to negression

Partitioning Sums of Squares

Total sums of squares in response

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

We can rewrite SST as

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i + \hat{y}_i - \bar{y})^2$$

$$= \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$
"Error": SSE Model: SSR

Multiple Linear Regression: Estimation and Inference

rtegression

Partitioning Total Sums of Squares: A Graphical Illustration

Regression

Estimation & Inference

CLEMS N UNIVERSIT

Regression

Estimation & Interence

Assessing Model Fit

To answer the question: Is **at least** one of the predictors x_1, \dots, x_{p-1} useful in predicting the response y?

Source	df	SS	MS	F Value
Model	p-1	SSR	MSR = SSR/(p-1)	MSR/MSE
Error	n-p	SSE	MSE = SSE/(n-p)	
Total	n-1	SST		

 \bullet F-Test: Tests if the predictors $\{x_1,\cdots,x_{p-1}\}$ collectively help explain the variation in y

•
$$H_0: \beta_1 = \beta_2 = \dots = \beta_{p-1} = 0$$

•
$$H_a$$
: at least one $\beta_k \neq 0$, $1 \leq k \leq p-1$

•
$$F^* = \frac{\text{MSR}}{\text{MSE}} = \frac{\text{SSR}/(p-1)}{\text{SSE}/(n-p)} \stackrel{H_0}{\sim} F_{p-1,n-p}$$

• Reject H_0 if $F^* > F_{1-\alpha,p-1,n-p}$

Multiple Linear Regression

Accession Baselia Ex

- We can show that $\hat{\boldsymbol{\beta}} \sim \mathrm{N}_p \left(\boldsymbol{\beta}, \sigma^2 \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \right) \Rightarrow \hat{\beta}_k \sim \mathrm{N}(\beta_k, \sigma_{\hat{\beta}_k}^2)$
- Perform t-Test:
 - $H_0: \beta_k = 0$ vs. $H_a: \beta_k \neq 0$
 - $\bullet \quad \frac{\hat{\beta}_k \beta_k}{\hat{SE}(\hat{\beta}_k)} \sim t_{n-p} \Rightarrow t^* = \frac{\hat{\beta}_k}{\hat{SE}(\hat{\beta}_k)} \overset{H_0}{\sim} t_{n-p}$
 - Reject H_0 if $|t^*| > t_{1-\alpha/2, n-p}$
- Confidence interval for β_k :

$$\hat{\beta}_k \pm t_{1-\alpha/2,n-p} \hat{SE}(\hat{\beta}_k)$$

Confidence Intervals and Confidence Ellipsoids

Comparing with individual confidence interval, confidence ellipsoids can provide additional information when inference with multiple parameters is of interest. A $100(1-\alpha)\%$ confidence ellipsoid for β can be constructed using:

$$(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^T \boldsymbol{X}^T \boldsymbol{X} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \le p \hat{\sigma}^2 F_{p, n-p}^{\alpha}.$$

Multiple Linear Regression: Estimation and Inference

Regression

ullet Coefficient of determination R^2 describes proportional of the variance in the response variable that is predictable from the predictors

$$R^2 = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}, \quad 0 \le R^2 \le 1$$

- ullet R^2 increases with the increasing p, the number of the predictors
 - Adjusted R^2 , denoted by $R^2_{\rm adj} = 1 \frac{{\rm SSE}/(n-p)}{{\rm SST}/(n-1)}$ attempts to account for p

Multiple Linear Regression: Estimation and Inference

Regression

Assessing Model Fit

Suppose the true relationship between response y and predictors (x_1, x_2) is

$$y = 5 + 2x_1 + \varepsilon,$$

where $\varepsilon \sim N(0,1)$ and x_1 and x_2 are independent to each other. Let's fit the following two models to the "data"

Model 1: $y = \beta_0 + \beta_1 x_1 + \varepsilon^1$

Model 2: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon^2$

Question: Which model will "win" in terms of R^2 ?

Let's conduct a Monte Carlo simulation to study this

- Generating a large number (e.g., M = 500) of "data sets", where each has exactly the same $\{x_{1,i}, x_{2,i}\}_{i=1}^n$ but different values of response $\{y_i = 5 + 2x_{1,i} + \varepsilon_i\}_{i=1}^n$
- ② Fitting model 1: $y = \beta_0 + \beta_1 x_1 + \varepsilon^1$ (true model) and model 2: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon^2$, respectively for each simulating data set and calculating their R^2 and R^2_{adj}
- $\ \ \,$ Summarizing $\{R_j^2\}_{j=1}^M$ and $\{R_{adj,j}^2\}_{j=1}^M$ for model 1 and model 2

```
> summary(fit1)
```

Call: $lm(formula = v \sim x1)$

Residuals:

Min 10 Median 30 Max -1.6085 -0.5056 -0.2152 0.6932 2.0118

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 5.1720 0.1534 33.71 < 2e-16 *** 1.8660 0.1589 11.74 2.47e-12 *** x1

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Residual standard error: 0.8393 on 28 degrees of freedom Multiple R-squared: 0.8313, Adjusted R-squared: 0.8253 F-statistic: 138 on 1 and 28 DF, p-value: 2.467e-12

```
> summary(fit2)
```

Call:

 $lm(formula = y \sim x1 + x2)$

Residuals:

Min 1Q Median 3Q Max -1.3926 -0.5775 -0.1383 0.5229 1.8385

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.1792 0.1518 34.109 < 2e-16 ***
x1 1.8994 0.1593 11.923 2.88e-12 ***
x2 -0.2289 0.1797 -1.274 0.213

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8301 on 27 degrees of freedom Multiple R-squared: 0.8408, Adjusted R-squared: 0.8291 F-statistic: 71.32 on 2 and 27 DF, p-value: 1.677e-11

\mathbb{R}^2 : Model 1 vs. Model 2

Multiple Linear Regression: Estimation and Inference

Multiple Linear Regression

Estimation & Inference

R_{adi}^2 : Model 1 vs. Model 2

Multiple Linear Regression: Estimation and Inference

Regression

Assessing Model Fit

Takeaways:

- ullet R^2 always pick the more "complex" model (i.e., with more predictors), even the simpler model is the true model
- $\bullet \ R^2_{adj}$ has a better chance to pick the "right" model

These slides cover:

- Parameter Estimation of MLR
- Inference: F-test and t-test; Confidence intervals/ellipsoids
- Assessing Model Fit: R^2 and R^2_{adj}
- Monte Carlo Simulation

R functions to know:

- image.plot in the fields library and scatter3D in the plot3D library for visualization
- anova for computing the ANOVA table