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Agenda

1 General Linear F -Test
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3 Multicollinearity
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3.3

Review: t-Test and F -Test in Linear Regression

t-Test: Testing one predictor

1 Null/Alternative Hypotheses: H0 ∶ βj = 0 vs. Ha ∶ βj ≠ 0

2 Test Statistic: t∗ = β̂j−0
SE(β̂j)

3 Reject H0 if ∣t∗∣ > t1−α/2,n−p

Overall F-Test: Test of all the predictors

1 H0 ∶ β1 = β2 = ⋯ = βp−1 = 0

2 Ha ∶ at least one βj ≠ 0,1 ≤ j ≤ p − 1

3 Test Statistic: F ∗ = MSR
MSE

4 Reject H0 if F ∗ > F1−α,p−1,n−p

Both tests are special cases of General Linear F -Test
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3.4

General Linear F -Test

Comparison of a “full model” and “reduced model” that
involves a subset of full model predictors

Consider a full model with k predictors and reduced model
with ℓ predictors (ℓ < k )

Test statistic: F ∗ = (SSEreduce−SSEfull)/(k−ℓ)
SSEfull/(n−k−1) ⇒ Testing H0 that

the regression coefficients for the extra variables are all
zero

Example 1: x1, x2,⋯, xp−1 vs. intercept only⇒ Overall
F -test

Example 2: xj ,1 ≤ j ≤ p − 1 vs. intercept only⇒ t-test for βj

Example 3: x1, x2, x3, x4 vs. x1, x3 ⇒H0 ∶ β2 = β4 = 0
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3.5

Geometric Illustration of General Linear F -Test

Source: Faraway, Linear Models with R, 2014, p.34
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3.6

Species Diversity on the Galapagos Islands: Full Model
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3.7

Species Diversity on the Galapagos Islands: Reduce Model
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3.8

Performing a General Linear F -Test

H0 ∶ βArea = 0 vs. Ha ∶ βArea ≠ 0

F ∗ = (173254−169947)/(2−1)
169947/(30−2−1) = 0.5254

P-value: P[F > 0.5254] = 0.4748, where F ∼ F 1®
k−ℓ

, 27¯
n−k−1
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3.9

Visualizing p-value
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p-value is the shaped area under the density curve of the
null distribution
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3.10

Another Example of General Linear F -Test: Full Model



Multiple Linear
Regression:

Inference and
Prediction

General Linear F -Test

Prediction

Multicollinearity

3.11

Another Example of General Linear F -Test: Reduced Model
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3.12

Performing a General Linear F -Test

Null and alternative hypotheses:

H0 ∶ βArea = βNearest = βScruz = 0
Ha ∶ at least one of the three coefficients ≠ 0

F ∗ = (100003−89231)/(5−2)
89231/(30−5−1) = 0.9657

p-value: P[F > 0.9657] = 0.425, where F ∼ F3,24
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3.13

Multiple Linear Regression Prediction

Given a new set of predictors, x0 = (1, x0,1, x0,2,⋯, x0,p−1)T, the
predicted response is

ŷ0 = β̂0 + β̂1x0,1 + β̂2x0,2 +⋯ + β̂p−1x0,p−1.

Again, we can use matrix representation to simplify the notation

ŷ0 = xT
0 β̂,

where xT
0 = (1, x0,1, x0,2,⋯, x0,p−1)

We will use this formula to carry out two different kinds of
predictions
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3.14

Two Kinds of Predictions

There are two kinds of predictions can be made for a given x0:

Predicting a future response:

Based on MLR, we have y0 = xT
0 β + ε. Since E(ε) = 0,

therefore the predicted value is

ŷ0 = xT
0 β̂

Predicting the mean response:

Since E(y0) = xT
0 β, there we have the predicted mean

response
Ê(y0) = xT

0 β̂,

the same predicted value as predicting a future response

Next, we need to assess their prediction uncertainties, and
then we will identify the differences in terms of these
uncertainties
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3.15

Prediction Uncertainty

From page 22 of slides 2, we have Var(β̂) = σ2 (XTX)−1.
Therefore we have

Var(ŷ0) = Var(xT
0 β̂) = σ2xT

0 (XTX)−1 x0

We can now construct 100(1 − α)% CI for the two kinds of
predictions:

Predicting a future response y0:

xT
0 β̂ ± tn−p,α/2 × σ̂

¿
ÁÁÀ 1®

accounting for ε

+xT
0 (XTX)−1 x0

Predicting the mean response E(y0):

xT
0 β̂ ± tn−p,α/2 × σ̂

√
xT
0 (XTX)−1 x0
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3.16

Example: Predicting Body Fat (Faraway 2014 Chapter 4.2)

What is our prediction for the future response of a “typi-
cal” (e.g., each predictor takes its median value) man?
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3.17

Example: Predicting Body Fat Cont’d

1 Calculate the median for each predictor to get x0

2 Compute the predicted value ŷ0 = xT
0 β̂

3 Quantify the prediction uncertainty
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3.18

Multicollinearity
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3.19

Multicollinearity Cont’d

Multicollinearity is a phenomenon of high inter-correlations
among the predictor variables

Numerical issue⇒ the matrix XTX is nearly singular

Statistical issues/consequences

β’s are not well estimated⇒ spurious regression coefficient
estimates

R2 and predicted values are usually okay even with
multicollinearity
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3.20

An Simulated Example

Suppose the true relationship between response y and
predictors (x1, x2) is

y = 4 + 0.8x1 + 0.6x2 + ε,
where ε ∼ N(0,1) and x1 and x2 are positively correlated with
ρ = 0.9. Let’s fit the following models:

Model 1: y = β0 + β1x1 + β2x2 + ε1
This is the true model with parameters unknown

Model 2: y = β0 + β1x1 + ε2
This is the wrong model because x2 is omitted
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3.21

Scatter Plot: x1 vs. x2
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3.22

Model 1 Fit
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3.23

Model 2 Fit
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3.24

Takeaways
Model 1 fit:

Model 2 fit:

Recall the true model:

y = 4 + 0.8x1 + 0.6x2 + ε,
where ε ∼ N(0,1), x1 and x2 are
positively correlated with ρ = 0.9

Summary:
β’s are not well estimated in
model 1

Spurious regression
coefficient estimates

In model 2, R2 and predicted
values are OK compared to
model 1
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3.25

Variance Inflation Factor (VIF)

We can use the variance inflation factor (VIF)

VIFi = 1

1 −R2
i

to quantifies the severity of multicollinearity in MLR, where R2
i

is the coefficient of determination when Xi is regressed on
the remaining predictors

R example code

√
VIF indicates how much larger the standard error increases

compared to if that variable had 0 correlation to other predictor
variables in the model.
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3.26

Summary

These slides cover:

General Linear F -Test provides a unifying framework for
hypothesis tests

Making predictions and quantifying prediction uncertainty

Multicollinearity and its implications for MLR

R commands:

anova for model comparison based on F -test

predict: obtain predicted values from a fitted model

vif under the faraway library: computes the variance
inflation factors
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