Lecture 4 Multiple Linear Regression: Model Selection and Model Checking Reading: Faraway 2014 Chapters 6, 9.1, and 10

DSA 8020 Statistical Methods II

Multiple Linear Regression: Model Selection and Model Checking

Nodel Selection

Model Diagnostics

Non-Constant /ariance & Fransformation

Whitney Huang Clemson University

Agenda

Model Selection

2 Model Diagnostics

Non-Constant Variance & Transformation

Multiple Linear Regression: Model Selection and Model Checking

Nodel Selection

Model Diagnostics

Model Selection in Multiple Linear Regression

Multiple Linear Regression Model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{p-1} x_{p-1} + \varepsilon, \quad \varepsilon \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$$

Basic Problem: how to choose between competing linear regression models?

- Model too "small": underfit the data; poor predictions; high bias; low variance
- Model too big: "overfit" the data; poor predictions; low bias; high variance

In the next few slides we will discuss some commonly used model selection criteria to choose the "right" model to balance bias and variance

Model Selection

Model Diagnostics

An Example of Bias and Variance Tradeoff

True 120-Obs Ubderfit Overfit 100-Model Selection 80-> 60-40-20--10 -5 10 × 20-0--20--40--60--5 -10 ò 5 10 х Std 3-2-0--5 10 -10 5 х

Multiple Linear

Regression: Model Selection and Model Checking

Balancing Bias And Variance: Mallows' C_p Criterion

A good model should balance **bias** and **variance** to get good predictions

$$(\hat{y}_{i} - \mu_{i})^{2} = (\hat{y}_{i} - E(\hat{y}_{i}) + E(\hat{y}_{i}) - \mu_{i})^{2}$$
$$= \underbrace{(\hat{y}_{i} - E(\hat{y}_{i}))^{2}}_{\sigma_{\hat{y}_{i}}^{2}} \underbrace{(E(\hat{y}_{i}) - \mu_{i})^{2}}_{\text{Bias}^{2}},$$
Bias²

where $\mu_i = E(y_i | X_i = x_i)$

- Mean squared prediction error (MSPE): $\sum_{i=1}^{n} \sigma_{\hat{y}_{i}}^{2} + \sum_{i=1}^{n} (E(\hat{y}_{i}) - \mu_{i})^{2}$
- C_p criterion measure:

$$\begin{split} \Gamma_p &= \frac{\sum_{i=1}^n \sigma_{\hat{y}_i}^2 + \sum_{i=1}^n (\mathrm{E}(\hat{y}_i) - \mu_i)^2}{\sigma^2} \\ &= \frac{\sum \mathrm{Var}_{\mathrm{pred}} + \sum \mathrm{Bias}^2}{\mathrm{Var}_{\mathrm{error}}} \end{split}$$

Model Selection

Model Diagnostics

C_p Criterion

 C_p statistic:

$$C_p = \frac{\mathsf{SSE}}{\mathsf{MSE}_{\mathsf{F}}} + 2p - n$$

• When model is correct $E(C_p) \approx p$

1

- When plotting models against p
 - Biased models will fall above $C_p = p$
 - Unbiased models will fall around line $C_p = p$
 - By definition: C_p for full model equals p

We desire models with small p and C_p around or less than p. See R session for an example

Multiple Linear Regression: Model Selection and Model Checking

Model Selection

Model Diagnostics

Adjusted R^2 Criterion

Adjusted R^2 , denoted by R^2_{adj} , attempts to take account of the phenomenon of the R^2 automatically and spuriously increasing when extra explanatory variables are added to the model.

$$R_{\mathsf{adj}}^2 = 1 - \frac{\mathsf{SSE}/(n-p-1)}{\mathsf{SST}/(n-1)}$$

• Choose model which maximizes R_{adi}^2

Same approach as choosing model with smallest MSE

Multiple Linear Regression: Model Selection and Model Checking

Model Selection

Model Diagnostics

Information criteria

Information criteria are statistical measures used for model selection. Commonly used information criteria include:

Akaike's information criterion (AIC)

$$n\log(\frac{\mathsf{SSE}_k}{n}) + 2k$$

• Bayesian information criterion (BIC)

$$n\log(\frac{\mathsf{SSE}_k}{n}) + k\log(n)$$

Here k is the number of the parameters in the model.

These criteria balance the goodness of fit of a model with its complexity

Model Selection

Model Diagnostics

Automatic Search Procedures

- Forward Selection: begins with no predictors and then adds in predictors one by one using some criterion (e.g., *p*-value or AIC)
- Backward Elimination: starts with all the predictors and then removes predictors one by one using some criterion
- Stepwise Search: a combination of backward elimination and forward selection. Can add or delete predictor at each stage
- All Subset Selection: Comparing all possible models using a selected criterion. Impractical for "large" number of predictors

Multiple Linear Regression: Model Selection and Model Checking

Nodel Selection

Model Diagnostics

Model Assumptions

Model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{p-1} x_{p-1} + \varepsilon, \quad \varepsilon \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$$

We make the following assumptions:

• Linearity:

$$\mathbf{E}(y|x_1, x_2, \dots, x_{p-1}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{p-1} x_{p-1}$$

 Errors have constant variance, are independent, and normally distributed

$$\varepsilon \stackrel{i.i.d.}{\sim} N(0,\sigma^2)$$

Multiple Linear Regression: Model Selection and Model Checking

Nodel Selection

Model Diagnostics

All models are wrong but some are useful

Multiple Linear Regression: Model Selection and Model Checking

Model Selection

Model Diagnostics

Non-Constant /ariance & Fransformation

George E.P. Box

Residuals versus Fits Plot

```
plot(mod$fitted.values, mod$residuals, pch = 16, col = "blue")
abline(h = 0, col = "red")
```


We will revisit this in the end of the lecture

Multiple Linear

Regression: Model Selection and Model Checking

Assessing Normality of Residuals: Histogram

Multiple Linear Regression: Model Selection and Model Checking

lodel Selection

Assessing Normality of Residuals: QQ Plot

Multiple Linear Regression: Model Selection and Model Checking

Leverage: Detecting "Extreme" Predictor Values

Recall in MLR that $\hat{y} = X(X^TX)^{-1}X^Ty = Hy$ where H is the hat-matrix

• The leverage value for the *i*th observation is defined as:

 $h_i = \boldsymbol{H}_{ii}$

- Can show that $Var(e_i) = \sigma^2(1 h_i)$, where $e_i = y_i \hat{y}_i$ is the residual for the i_{th} observation
- $\frac{1}{n} \le h_i \le 1$, $1 \le i \le n$ and $\bar{h} = \sum_{i=1}^n \frac{h_i}{n} = \frac{p}{n} \Rightarrow$ a "rule of thumb" is that leverages greater than $\frac{2p}{n}$ should be examined more closely

Nodel Selection

Model Diagnostics

Leverage Values of Species ~ Elev + Adj

5000 4000 Adjacent 0005 2000 1000 -0 • ۰ 0 0.000 0.000 0 • 0 0 0 500 1000 1500 0 Elevation

Multiple Linear Regression: Model Selection and Model Checking

Nodel Selection

Model Diagnostics

Standardized Residuals

As we have seen $Var(e_i) = \sigma^2(1 - h_i)$, this suggests the use of $r_i = \frac{e_i}{\hat{\sigma}\sqrt{(1-h_i)}}$

 r_i's are called standardized residuals. r_i's are sometimes preferred in residual plots as they have been standardized to have equal variance.

 If the model assumptions are correct then Var(r_i) = 1 and Corr(r_i, r_j) tends to be small Multiple Linear Regression: Model Selection and Model Checking

Nodel Selection

Model Diagnostics

Standardized Residuals of Species ~ Elev + Adj

2

٠ 3 2 1 0 -1 -2 100 300 400 0 200

Studentized Residuals

Multiple Linear Regression: Model Selection and Model Checking

Nodel Selection

Model Diagnostics

Non-Constant Variance & Transformation

4.18

Studentized (Jackknife) Residuals

- For a given model, exclude the observation *i* and recompute β̂_(i), σ̂_(i) to obtain ŷ_{i(i)}
- The observation *i* is an outlier if $\hat{y}_{i(i)} y_i$ is "large"

• Can show

$$\operatorname{Var}(\hat{y}_{i(i)} - y_i) = \sigma_{(i)}^2 \left(1 + \boldsymbol{x}_i^T (\boldsymbol{X}_{(i)}^T \boldsymbol{X}_{(i)})^{-1} \boldsymbol{x}_i \right) = \sigma_{(i)}^2 (1 - h_i)$$

Define the Studentized (Jackknife) Residuals as

$$t_i = \frac{\hat{y}_{i(i)} - y_i}{\sqrt{\hat{\sigma}_{(i)}^2 (1 - h_i)}} = \frac{\hat{y}_{i(i)} - y_i}{\sqrt{\mathsf{MSE}_{(i)} (1 - h_i)}}$$

which are distributed as a t_{n-p-1} if the model is correct and $\varepsilon \sim N(0, \sigma^2 I)$

Multiple Linear Regression: Model Selection and Model Checking

Nodel Selection

Model Diagnostics

Studentized (Jackknife) Residuals of Species ~ Elev + Adj

Multiple Linear Regression: Model Selection and Model Checking

Nodel Selection

Model Diagnostics

DFFITS measures the change in the predicted values for each observation when that observation is omitted.

• Difference between the fitted values \hat{y}_i and the predicted values $\hat{y}_{i(i)}$

• DFFITS_i =
$$\frac{\hat{y}_i - \hat{y}_{i(i)}}{\sqrt{\mathsf{MSE}_{(i)}h_i}}$$

• Concern if absolute value greater than 1 for small data sets, or greater than $2\sqrt{p/n}$ for large data sets

Nodel Selection

Model Diagnostics

DFFITS of Species ~ **Elev** + **Adj**

Influence Diagnostics for Species

Nodel Selection

Model Diagnostics

Identifying Influential Observations: Cook's Distance

Cook's Distance quantifies how much the predicted values change when a particular observation is excluded from the analysis.

• Cook's distance measure (D_i) is defined as:

$$D_i = \frac{(y_i - \hat{y}_i)^2}{p \times \text{MSE}} \left(\frac{h_i}{(1 - h_i)^2} \right)$$

- Cook's Distance considers both leverage and residual, providing a broader measure of influence
- Here are the guidelines commonly used:
 - If D_i > 0.5, then the ith data point is worthy of further investigation as it may be influential
 - 3 If $D_i > 1$, then the ith data point is quite likely to be influential

Multiple Linear Regression: Model Selection and Model Checking

Nodel Selection

Model Diagnostics

Cook's Distance of Species ~ Elev + Adj

Multiple Linear

Regression: Model

Residual Plot of Species ~ Elev + Adj

Such a residual plot suggests a violation of constant variance

Multiple Linear Regression: Model Selection and Model Checking

Residual Plot After Square Root Transformation

$$\sqrt{\text{Species}} \sim \text{Elev} + \text{Ad}$$

Residuals

Multiple Linear Regression: Model Selection and Model Checking

Nodel Selection

Model Diagnostics

Box-Cox Transformation

The Box-Cox method [Box and Cox, 1964] is a powerful way to determine if a transformation on the response is needed

$$g_{\lambda}(y) = \begin{cases} \frac{y^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0;\\ \log(y) & \text{if } \lambda = 0. \end{cases}$$

Multiple Linear Regression: Model Selection and Model Checking

Nodel Selection

Model Diagnostics

Non-Constant Variance & Transformation

In R, we can use the ${\tt boxcox}$ function from the <code>MASS</code> package to perform a Box-Cox transformation. The plot suggests a cube root may be needed

Summary

These slides cover:

- Model/variable selection can be done via some criterion-based methods to balance bias and variance
- Model diagnostics is crucial to ensure valid statistical inference
- Box-Cox Transformation can be used to transform the response in order to correct model violations

R functions to know:

- regsubsets in the leaps library and step for model selection
- influence.measures includes a suite of functions (hatvalues, rstandard, rstudent, dffits, cooks.distance) for computing regression diagnostics
- boxcox in the MASS library for performing a Box-Cox transformation

Multiple Linear Regression: Model Selection and Model Checking

Nodel Selection

Model Diagnostics