
Multiple Linear
Regression: Model

Selection and Model
Checking

Model Selection

Model Diagnostics

Non-Constant
Variance &
Transformation

4.1

Lecture 4
Multiple Linear Regression: Model
Selection and Model Checking
Reading: Faraway 2014 Chapters 6, 9.1, and 10

DSA 8020 Statistical Methods II

Whitney Huang
Clemson University



Multiple Linear
Regression: Model

Selection and Model
Checking

Model Selection

Model Diagnostics

Non-Constant
Variance &
Transformation

4.2

Agenda

1 Model Selection

2 Model Diagnostics

3 Non-Constant Variance & Transformation
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Model Selection in Multiple Linear Regression

Multiple Linear Regression Model:

y = β0 + β1x1 + β2x2 +⋯ + βp−1xp−1 + ε, ε
i.i.d.
∼ N(0, σ2

)

Basic Problem: how to choose between competing linear
regression models?

Model too “small”: underfit the data; poor predictions; high
bias; low variance

Model too big: “overfit” the data; poor predictions; low
bias; high variance

In the next few slides we will discuss some commonly used
model selection criteria to choose the “right” model to balance
bias and variance
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4.4

An Example of Bias and Variance Tradeoff
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4.5

Balancing Bias And Variance: Mallows’ Cp Criterion
A good model should balance bias and variance to get good
predictions

(ŷi − µi)
2
= (ŷi −E(ŷi) +E(ŷi) − µi)

2

= (ŷi −E(ŷi))
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
σ2
ŷi

Variance

+ (E(ŷi) − µi)
2
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Bias2

,

where µi = E(yi∣Xi = xi)

Mean squared prediction error (MSPE):
∑

n
i=1 σ

2
ŷi
+∑

n
i=1(E(ŷi) − µi)

2

Cp criterion measure:

Γp =
∑

n
i=1 σ

2
ŷi
+∑

n
i=1(E(ŷi) − µi)

2

σ2

=
∑Varpred +∑Bias2

Varerror
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4.6

Cp Criterion

Cp statistic:

Cp =
SSE

MSEF
+ 2p − n

When model is correct E(Cp) ≈ p

When plotting models against p

Biased models will fall above Cp = p

Unbiased models will fall around line Cp = p

By definition: Cp for full model equals p

We desire models with small p and Cp around or less
than p. See R session for an example
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4.7

Adjusted R2 Criterion

Adjusted R2, denoted by R2
adj, attempts to take account of the

phenomenon of the R2 automatically and spuriously increasing
when extra explanatory variables are added to the model.

R2
adj = 1 −

SSE/(n − p − 1)
SST/(n − 1)

Choose model which maximizes R2
adj

Same approach as choosing model with smallest MSE
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4.8

Information criteria

Information criteria are statistical measures used for model
selection. Commonly used information criteria include:

Akaike’s information criterion (AIC)

n log(
SSEk

n
) + 2k

Bayesian information criterion (BIC)

n log(
SSEk

n
) + k log(n)

Here k is the number of the parameters in the model.

These criteria balance the goodness of fit of a model with
its complexity
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4.9

Automatic Search Procedures

Forward Selection: begins with no predictors and then
adds in predictors one by one using some criterion (e.g.,
p-value or AIC)

Backward Elimination: starts with all the predictors and
then removes predictors one by one using some criterion

Stepwise Search: a combination of backward elimination
and forward selection. Can add or delete predictor at each
stage

All Subset Selection: Comparing all possible models using
a selected criterion. Impractical for “large” number of
predictors



Multiple Linear
Regression: Model

Selection and Model
Checking

Model Selection

Model Diagnostics

Non-Constant
Variance &
Transformation

4.10

Model Assumptions

Model:

y = β0 + β1x1 + β2x2 +⋯ + βp−1xp−1 + ε, ε
i.i.d.
∼ N(0, σ2

)

We make the following assumptions:

Linearity:

E(y∣x1, x2,⋯, xp−1) = β0 + β1x1 + β2x2 +⋯ + βp−1xp−1

Errors have constant variance, are independent, and
normally distributed

ε
i.i.d.
∼ N(0, σ2

)
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Residuals versus Fits Plot

We will revisit this in the end of the lecture
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Assessing Normality of Residuals: Histogram
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Assessing Normality of Residuals: QQ Plot
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4.15

Leverage: Detecting “Extreme” Predictor Values

Recall in MLR that ŷ =X(XTX)−1XTy =Hy where H is the
hat-matrix

The leverage value for the ith observation is defined as:

hi =Hii

Can show that Var(ei) = σ2(1 − hi), where ei = yi − ŷi is the
residual for the ith observation

1
n
≤ hi ≤ 1, 1 ≤ i ≤ n and h̄ = ∑

n
i=1

hi

n
=

p
n
⇒ a “rule of

thumb” is that leverages greater than 2p
n

should be
examined more closely
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4.16

Leverage Values of Species ∼ Elev + Adj

●

●

●●

●

●● ●● ● ●

●

●
●

●

●

●
●

●

●●

●

● ●●● ●● ● ●

0 500 1000 1500

0

1000

2000

3000

4000

5000

Elevation

A
dj

ac
en

t

●

●



Multiple Linear
Regression: Model

Selection and Model
Checking

Model Selection

Model Diagnostics

Non-Constant
Variance &
Transformation

4.17

Standardized Residuals

As we have seen Var(ei) = σ2(1 − hi), this suggests the use of
ri =

ei
σ̂
√
(1−hi)

ri’s are called standardized residuals. ri’s are
sometimes preferred in residual plots as they have been
standardized to have equal variance.

If the model assumptions are correct then Var(ri) = 1 and
Corr(ri, rj) tends to be small
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4.18

Standardized Residuals of Species ∼ Elev + Adj
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4.19

Studentized (Jackknife) Residuals

For a given model, exclude the observation i and
recompute β̂(i), σ̂(i) to obtain ŷi(i)

The observation i is an outlier if ŷi(i) − yi is “large”

Can show
Var(ŷi(i) − yi) = σ2

(i) (1 +x
T
i (X

T
(i)X(i))

−1xi) = σ
2
(i)(1 − hi)

Define the Studentized (Jackknife) Residuals as

ti =
ŷi(i) − yi

√
σ̂2
(i)(1 − hi)

=
ŷi(i) − yi

√
MSE(i)(1 − hi)

which are distributed as a tn−p−1 if the model is correct and
ε ∼ N(0, σ2I)



Multiple Linear
Regression: Model

Selection and Model
Checking

Model Selection

Model Diagnostics

Non-Constant
Variance &
Transformation

4.20

Studentized (Jackknife) Residuals of Species ∼ Elev + Adj
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4.21

Identifying Influential Observations: DFFITS

DFFITS measures the change in the predicted values for each
observation when that observation is omitted.

Difference between the fitted values ŷi and the predicted
values ŷi(i)

DFFITSi =
ŷi−ŷi(i)√
MSE(i)hi

Concern if absolute value greater than 1 for small data
sets, or greater than 2

√
p/n for large data sets
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4.22

DFFITS of Species ∼ Elev + Adj
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4.23

Identifying Influential Observations: Cook’s Distance

Cook’s Distance quantifies how much the predicted values
change when a particular observation is excluded from the
analysis.

Cook’s distance measure (Di) is defined as:

Di =
(yi − ŷi)

2

p ×MSE
(

hi

(1 − hi)
2
)

Cook’s Distance considers both leverage and residual,
providing a broader measure of influence

Here are the guidelines commonly used:

1 If Di > 0.5, then the ith data point is worthy of further
investigation as it may be influential

2 If Di > 1, then the ith data point is quite likely to be influential
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4.24

Cook’s Distance of Species ∼ Elev + Adj
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4.25

Residual Plot of Species ∼ Elev + Adj
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4.26

Residual Plot After Square Root Transformation

√
Species ∼ Elev +Adj
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4.27

Box-Cox Transformation
The Box-Cox method [Box and Cox, 1964] is a powerful way to
determine if a transformation on the response is needed

gλ(y) = {
yλ−1
λ

if λ ≠ 0;
log(y) if λ = 0.

In R, we can use the boxcox function from the MASS package
to perform a Box-Cox transformation. The plot suggests a cube
root may be needed
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4.28

Summary

These slides cover:

Model/variable selection can be done via some
criterion-based methods to balance bias and variance

Model diagnostics is crucial to ensure valid statistical
inference

Box-Cox Transformation can be used to transform the
response in order to correct model violations

R functions to know:

regsubsets in the leaps library and step for model
selection

influence.measures includes a suite of functions
(hatvalues, rstandard, rstudent, dffits,
cooks.distance) for computing regression diagnostics

boxcox in the MASS library for performing a Box-Cox
transformation
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