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5.2

Agenda

1 Analysis of Covariance

2 Polynomial Regression

3 Nonlinear Regression
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5.3

Regression with Both Quantitative and Qualitative Predictors

Multiple Linear Regression

y = β0 + β1x1 + β2x2 +⋯ + βp−1xp−1 + ε, ε
i.i.d.
∼ N(0, σ2

)

x1, x2,⋯, xp−1 are the predictors.

Question: What if some of the predictors are qualitative
(categorical) variables?

⇒We will need to create dummy (indicator) variables for
those categorical variables

Example: We can encode Gender into 1 (Female) and 0
(Male)
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5.4

Salaries for Professors Data Set

The 2008-09 nine-month academic salary for Assistant
Professors, Associate Professors and Professors in a
college in the U.S. The data were collected as part of the
on-going effort of the college’s administration to moni-
tor salary differences between male and female faculty
members.
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5.5

Predictors

We have three categorical variables, namely, rank,
discipline, and sex.



Analysis of
Covariance,
Polynomial

Regression and
Non-linear
Regression

Analysis of Covariance

Polynomial Regression

Nonlinear Regression

5.6

Dummy Variable

For binary categorical variables:

xsex =

⎧⎪⎪
⎨
⎪⎪⎩

1 if sex = male,
0 if sex = female.

xdiscip =

⎧⎪⎪
⎨
⎪⎪⎩

0 if discip = A,
1 if discip = B.

For categorical variable with more than two categories:

xrank1 =

⎧⎪⎪
⎨
⎪⎪⎩

0 if rank = Assistant Prof,
1 if rank = Associated Prof.

xrank2 =

⎧⎪⎪
⎨
⎪⎪⎩

0 if rank = Associated Prof,
1 if rank = Full Prof.
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5.7

Design Matrix

With the design matrix X, we can now use method of
least squares to fit the model Y =Xβ + ε
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5.8

Model Fit:
lm(salary ∼ rank + sex + discipline + yrs.since.phd)

Question: Interpretation of the slopes of these dummy
variables (e.g. β̂rankAssocProf)? Interpretation of the intercept?
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5.9

Model Fit for Assistant Professors
Color Line Type
Red: Female —-: Applied (discipline B)
Blue: Male - - -: Theoretical (discipline A)
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5.10

Model Fit for Associate Professors
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5.11

Model Fit for Full Professors

10 20 30 40 50

9−month salary

Years since PhD

57 k

92 k

127 k

162 k

197 k

232 k



Analysis of
Covariance,
Polynomial

Regression and
Non-linear
Regression

Analysis of Covariance

Polynomial Regression

Nonlinear Regression

5.12

Introducing Interaction Terms

lm(salary ∼ sex ∗ yrs.since.phd)
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5.13

lm(salary ∼ disp ∗ yrs.since.phd)
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5.14

Polynomial Regression

Suppose we would like to model the relationship between
response y and a predictor x as a pth degree polynomial in x:

y = β0 + β1x + β2x
2
+⋯ + βpx

p
+ ε

We can treat polynomial regression as a special case of
multiple linear regression. In specific, the design matrix takes
the following form:

X =

⎛
⎜
⎜
⎜
⎝

1 x1 x2
1 ⋯ xp

1

1 x2 x2
2 ⋯ xp

2

⋮ ⋯ ⋱ ⋮ ⋮

1 xn x2
n ⋯ xp

n

⎞
⎟
⎟
⎟
⎠
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5.15

Housing Values in Suburbs of Boston Data Set
y: the median value of owner-occupied homes (in
thousands of dollars)

x: percent of lower status of the population
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5.16

Polynomial Regression Fits

1st, 2nd, and 3rd polynomial regression fits
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5.17

Moving Away From Linear Regression

We have mainly focused on linear regression so far

The class of polynomial regression can be thought as a
starting point for relaxing the linear assumption

In the next few slides we are going to discuss non-linear
regression modeling
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5.18

Population of the United States

Let’s look at the USPop data set, a bulit-in data set in R. This is
a decennial time-series from 1790 to 2000.
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5.19

Logistic Growth Curve

A simple model for population growth is the logistic growth
model,

y =
ϕ1

1 + exp [−(x − ϕ2)/ϕ3]
+ ε,

where ϕ1 is the curve’s maximum value; ϕ2 is the curve’s
midpoint in x; and ϕ3 is the “range” (or the inverse growth rate)
of the curve.
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5.20

Fitting logistic growth curve to the U.S. population

ϕ̂1 = 440.83, ϕ̂2 = 1976.63, ϕ̂3 = 46.29
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5.21

Comparing the Logistic Growth Curve Fit and Cubic
Polynomial Fit
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5.22

Summary

These slides cover:

Analysis of Covariance to handle the situations where
there both some of the predictors are categorical variables

Polynomial Regression, where polynomial terms are
added to increase the model flexibility

Nonlinear Regression

R functions to know:

Use * to create interaction terms in lm

Use I(x) or poly(x, df) to create polynomial terms

Use nls to perform nonlinear least squares for nonlinear
regression
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