Lecture 5 Analysis of Covariance, Polynomial Regression and Non-linear Regression Reading: Faraway 2014 Chapters 9.4, 14.2-14.4; ISLR 2021 Chapter 3.3

DSA 8020 Statistical Methods II

Analysis of Covariance, Polynomial Regression and Non-linear Regression

Analysis of Covariance Polynomial Regression Nonlinear Regression

Whitney Huang Clemson University

Agenda

Analysis of Covariance

Analysis of Covariance, Polynomial Regression and Non-linear Regression

Regression with Both Quantitative and Qualitative Predictors

Multiple Linear Regression

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{p-1} x_{p-1} + \varepsilon, \quad \varepsilon \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$$

 $x_1, x_2, \cdots, x_{p-1}$ are the predictors.

Question: What if some of the predictors are qualitative (categorical) variables?

 \Rightarrow We will need to create **dummy (indicator) variables** for those categorical variables

Example: We can encode Gender into 1 (Female) and 0 (Male)

The 2008-09 nine-month academic salary for Assistant Professors, Associate Professors and Professors in a college in the U.S. The data were collected as part of the on-going effort of the college's administration to monitor salary differences between male and female faculty members.

Analysis of Covariance, Polynomial Regression and Non-linear Regression

Analysis of Covariance Polynomial Regression Nonlinear Regression

> head(Salaries)

	rank	discipline	yrs.since.phd	yrs.service	sex	salary
1	Prof	В	19	18	Male	139750
2	Prof	В	20	16	Male	173200
3	AsstProf	В	4	3	Male	79750
4	Prof	В	45	39	Male	115000
5	Prof	В	40	41	Male	141500
6	AssocProf	В	6	6	Male	97000

Predictors

<pre>> summary(Sala</pre>	ries)				Non-lin Regress
rank AsstProf : 67 AssocProf: 64 Prof :266	B:216	Min. 1st Qu Median Mean 3rd Qu	: 1.00 .:12.00 :21.00	yrs.service Min. : 0.00 1st Qu.: 7.00 Median :16.00 Mean :17.61 3rd Qu.:27.00 Max. :60.00	Analysis of Co Polynomial Re Nonlinear Reg
Male :358	salary Min. : 5780 1st Qu.: 9100 Median :10730 Mean :11370 3rd Qu.:13418 Max. :23154	00 00 00 06 85			

We have three categorical variables, namely, rank, discipline, and sex.

Analysis of Covariance. Polynomial **Regression and**

5 1

Dummy Variable

For binary categorical variables:

$$x_{\text{sex}} = \begin{cases} 1 & \text{if sex} = \text{male}, \\ 0 & \text{if sex} = \text{female}. \end{cases}$$

$$x_{\text{discip}} = \begin{cases} 0 & \text{if discip} = A, \\ 1 & \text{if discip} = B. \end{cases}$$

For categorical variable with more than two categories:

$$x_{\text{rank1}} = \begin{cases} 0 & \text{if rank} = \text{Assistant Prof,} \\ 1 & \text{if rank} = \text{Associated Prof.} \end{cases}$$

$$x_{\text{rank2}} = \begin{cases} 0 & \text{if rank} = \text{Associated Prof,} \\ 1 & \text{if rank} = \text{Full Prof.} \end{cases}$$

Analysis of Covariance, Polynomial Regression and Non-linear Regression

Design Matrix

> head(X)						
(Inter	cept)	rankAssocPro	f	rankProf	discipline	В	yrs.since.phd
1	1		0	1	:	1	19
2	1		0	1	:	1	20
3	1		0	0	:	1	4
4	1		0	1	:	1	45
5	1		0	1	:	1	40
6	1		1	0	:	1	6
yrs.se	rvice	sexMale					
1	18	1					
2	16	1					
3	3	1					
4	39	1					
5	41	1					
6	6	1					

Analysis of Covariance, Polynomial Regression and Non-linear Regression

Analysis of Covariance Polynomial Regression Nonlinear Regression

With the design matrix *X*, we can now use method of least squares to fit the model *Y* = $X\beta + \varepsilon$

Model Fit:

lm(salary ~ rank + sex + discipline + yrs.since.phd)

Coefficients:

	Estimate	Std. Error	t value	Pr(>ltl)		
(Intercept)	67884.32	4536.89	14.963	< 2e-16	***	
disciplineB	13937.47	2346.53	5.940	6.32e-09	***	
rankAssocProf	13104.15	4167.31	3.145	0.00179	**	
rankProf	46032.55	4240.12	10.856	< 2e-16	***	
sexMale	4349.37	3875.39	1.122	0.26242		
yrs.since.phd	61.01	127.01	0.480	0.63124		
Signif. codes:						
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1						

Residual standard error: 22660 on 391 degrees of freedom Multiple R-squared: 0.4472, Adjusted R-squared: 0.4401 F-statistic: 63.27 on 5 and 391 DF, p-value: < 2.2e-16

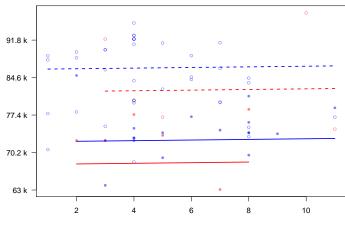
Question: Interpretation of the slopes of these dummy variables (e.g. $\hat{\beta}_{rankAssocProf}$)? Interpretation of the intercept?

Analysis of Covariance, Polynomial Regression and Non-linear Regression

Model Fit for Assistant Professors

Color	Line Type
Red: Female	—-: Applied (discipline B)
Blue: Male	: Theoretical (discipline A)

9-month salary

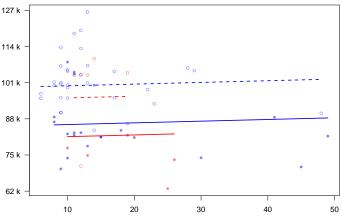


Years since PhD

Analysis of Covariance, Polynomial Regression and Non-linear Regression

Model Fit for Associate Professors

9-month salary

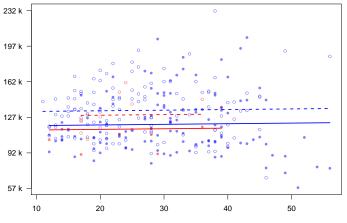


Years since PhD

Analysis of Covariance, Polynomial Regression and Non-linear Regression

Model Fit for Full Professors

9-month salary

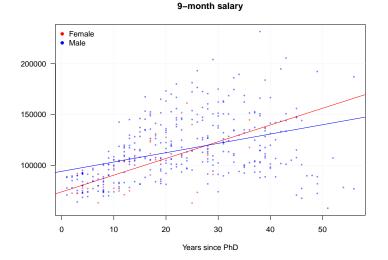


Years since PhD

Analysis of Covariance, Polynomial Regression and Non-linear Regression

Introducing Interaction Terms

lm(salary ~ sex * yrs.since.phd)



Analysis of Covariance, Polynomial Regression and Non-linear Regression

lm(salary ~ disp * yrs.since.phd)



9-month salary

Analysis of Covariance, Polynomial Regression and Non-linear Regression

Polynomial Regression

Suppose we would like to model the relationship between response y and a predictor x as a p_{th} degree polynomial in x:

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_p x^p + \varepsilon$$

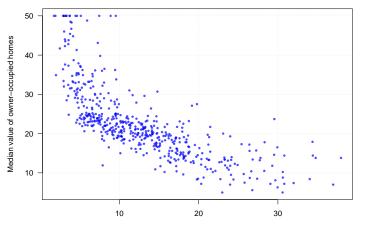
We can treat polynomial regression as a special case of multiple linear regression. In specific, the design matrix takes the following form:

$$\boldsymbol{X} = \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^p \\ 1 & x_2 & x_2^2 & \cdots & x_2^p \\ \vdots & \cdots & \ddots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^p \end{pmatrix}$$

Analysis of Covariance, Polynomial Regression and Non-linear Regression

Housing Values in Suburbs of Boston Data Set

- y: the median value of owner-occupied homes (in thousands of dollars)
- x: percent of lower status of the population

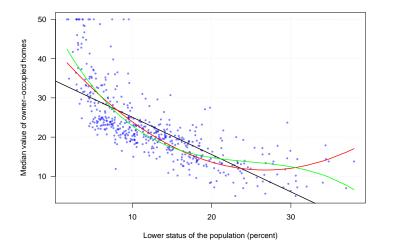


Analysis of Covariance, Polynomial Regression and Non-linear Regression

Lower status of the population (percent)

Polynomial Regression Fits

1st, 2nd, and 3rd polynomial regression fits



Analysis of Covariance, Polynomial Regression and Non-linear Regression

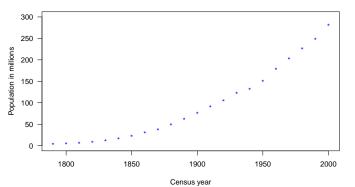
Moving Away From Linear Regression

- We have mainly focused on linear regression so far
- The class of polynomial regression can be thought as a starting point for relaxing the linear assumption
- In the next few slides we are going to discuss non-linear regression modeling

Analysis of Covariance, Polynomial Regression and Non-linear Regression

Population of the United States

Let's look at the $\tt USPop$ data set, a bulit-in data set in $\tt R.$ This is a decennial time-series from 1790 to 2000.



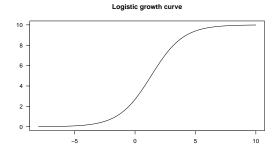
U.S. population

Logistic Growth Curve

A simple model for population growth is the logistic growth model,

$$y = \frac{\phi_1}{1 + \exp\left[-(x - \phi_2)/\phi_3\right]} + \varepsilon,$$

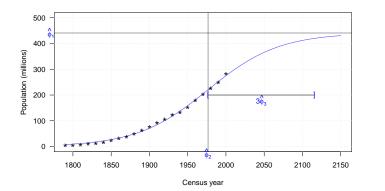
where ϕ_1 is the curve's maximum value; ϕ_2 is the curve's midpoint in x; and ϕ_3 is the "range" (or the inverse growth rate) of the curve.



Analysis of Covariance, Polynomial Regression and Non-linear Regression

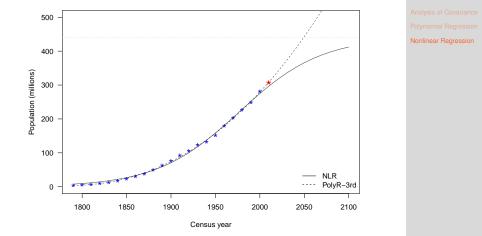
Fitting logistic growth curve to the U.S. population

$$\hat{\phi}_1 = 440.83, \, \hat{\phi}_2 = 1976.63, \, \hat{\phi}_3 = 46.29$$



Analysis of Covariance, Polynomial Regression and Non-linear Regression

Comparing the Logistic Growth Curve Fit and Cubic Polynomial Fit



5.21

Analysis of Covariance, Polynomial Regression and Non-linear Regression

NIVER

Summary

These slides cover:

- Analysis of Covariance to handle the situations where there both some of the predictors are categorical variables
- Polynomial Regression, where polynomial terms are added to increase the model flexibility
- Nonlinear Regression

R functions to know:

- Use * to create interaction terms in lm
- Use I (x) or poly (x, df) to create polynomial terms
- Use nls to perform nonlinear least squares for nonlinear regression

Analysis of Covariance, Polynomial Regression and Non-linear Regression

