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2021 Chapters 6.2 and 7.3-7.5, 7.7
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Agenda

1 Non-parametric Regression

2 Ridge Regression

3 LASSO
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6.3

Moving Away From Linear Regression

We have mainly focused on linear regression so far

Model: y =Xβ + ε, ε
i.i.d.∼ N(0, σ2)

Data: y (response vector); X (design matrix)

β̂ = (XTX)−1XTy; ŷ =Xβ̂ =X(XTX)−1XT

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

H: “Hat” matrix

y

β̂ ∼ N(β, σ2
(XTX)−1)

In this lecture we are going to discuss non-parametric
regression modeling

Model: y = f(x) + ε⇒ E[y∣x] = f(x)
The (smooth) function f(x) must be represented somehow

The degree of smoothness of f(x) must be made
controllable

Some means for estimating the most appropriate degree of
smoothness from data is required
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6.4

Data from a Simulated Motorcycle Accident [Silverman, 1985)]

This data set is taken from a simulated motor-cycle crash
experiment in order to study the efficacy of crash helmets.
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We aim to estimate the smooth regression function f(x)
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6.5

Kernel Estimators

f̂h(x) =
1

nh

n

∑
i=1

K (x − xi

h
) yi =

1

n

n

∑
i=1

wiyi, where wi =K (
x − xi

h
) /h.

K(⋅) is a kernel where ∫ K(x)dx = 1, and h is the bandwidth,
also known as the smoothing parameter in this context.

Two choices are required for implementing the kernel
estimator:

Kernel: It is desirable that the kernel provides both
smoothness and compactness. An example is the
Epanechnikov kernel

K(x) = {
3
4
(1 − x2) ∣x∣ < 1

0 otherwise

Smoothing parameter: If too small, the estimator will be
too rough; if too large, it will smooth out important features
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6.6

Representing a Smooth Function using Basis Functions

Basis function representation: f(x) = ∑J
j=1 bj(x)βj

There are many basis functions to choose from:
Polynomials, Fourier Series, Radial Basis Functions...

We are going to focus on splines: piecewise polynomials
joined together to make a single smooth curve
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6.7

An Example of a Cubic Spline Function

Source: Simon Wood, Generalized Additive Models, p. 122, Fig. 3.3
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6.8

Regression Splines

Choose J knot points to partition the range of x to form the
spline basis X

Techniques from linear regression can be used to carry
out estimation and inference

However, the model fit tends to depend strongly on J , the
number of knots, and {ξj}Jj=1, the knot locations

Few knots: Resulting class of functions may be too
restrictive (bias)

Many knots: We run the risk of overfitting (variance)
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6.9

Problems with Regression Splines

Regression splines are not truly “nonparametric” as the
choices regarding J and {ξj}Jj=1 are fundamentally
parametric choices and have a large effect on the fit

Model selection (i.e, choosing the degree of smoothing) is
not straightforward

An alternative approach to controlling smoothness is
penalization [Green and Silverman 1993]
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6.10

Controlling Smoothness with Penalization

n

∑
i=1
{yi − f(xi)}2 + λ∫ [f

′′

(x)]2 dx

The first term captures the fit to the data, while the second
penalizes curvature

λ is the smoothing parameter, and it controls the tradeoff
between the two terms:

λ = 0 imposes no restrictions and f will therefore interpolate
the data

λ =∞ returning us to ordinary linear regression

Selecting an appropriate λ is crucial
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6.11

Natural Cubic Splines Solve the Penalized Least Squares!

Theorem: Out of all twice-differentiable functions, the one that
minimizes

n

∑
i=1
{yi − f(xi)}2 + λ∫ [f

′′

(x)]2 dx

is a natural cubic spline with knots at every unique value of {xi}

This penalized approach leads to the framework of smoothing
splines, introduced by Grace Wahba to statisticians



Non-parametric
Regression and

Shrinkage Methods

Non-parametric
Regression

Ridge Regression

LASSO

6.12

Smoothing Splines (Cont’d)

Let {Nj}nj=1 denote the collection of natural cubic spline basis
functions and N denote the n × n design matrix consisting of
the basis functions evaluated at {xi}:

f(x) = ∑n
j=1Njβj , where Nij = Nj(xi)⇒ f(x) =Nβ

We can show that the objective function for penalized
splines is

(y −Nβ)T(y −Nβ) + λβTΩβ,

where Ωjk = ∫ N
′′

j (x)N
′′

k (x)dx

The minimizer is

β̂ = (NTN + λΩ)−1NTy
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6.13

Smoothing Splines are Linear Smoothers

From last slide we have

β̂ = (NTN + λΩ)−1NTy

Therefore we have

ŷ = f̂(x) =N (NTN + λΩ)−1NTy = Lλy,

⇒ a linear smoother

tr(Lλ) is a measure of the effective number of degrees of
freedom
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6.14

Choosing λ by Cross-Validation (CV)

Main idea:
Sequentially leave each observation out and predict it using the
rest of the data. Find the λ that gives the best out of sample
predictions.

CV residual:
yi − ŷ−i =

yi − ŷi
(1 −Lλ,i,i)

CV(λ):
1

n

n

∑
i=1
(yi − ŷ−i)2 =

1

n

n

∑
i=1

(yi − ŷi)2
(1 −Lλ,i,i)2

Generalized Cross-Validation (GCV):

1

n

n

∑
i=1

(yi − ŷi)2

(1 − tr(Lλ)
n
)2
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6.15

Non-parametric Regression Fits for Motorcycle Data

Regression Spline: 10 degrees of freedom quantile knot

Smoothing Spline: the amount of smoothness is estimated
from the data by GCV

Kernel Regression: K: Epanechnikov kernel and h = 5
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6.16

Generalized Additive Models for Multiple Predictors

General non-parametric regression models

y = f(x1, x2,⋯, xp) + ε

suffer from the “curse of dimensionality”

Generalized Additive Models

y = β0 + f1(x1) + f2(x2) +⋯ + fp(xp) + ε
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6.17

Shrinkage Methods

y = β0 + β1x1 + β2x2 +⋯ + βp−1xp−1 + ε, ε ∼ N(0, σ2)
x1, x2,⋯, xp−1 are the predictors.

Question: What if we have too many predictors (i.e., p is
“large”)?

Explanation can be difficult due to collinearity

Can lead to overfitting by using too many predictors

We will look at two methods, namely Ridge regression and
LASSO, that allow us to “shrink” the information contained in
all the predictors into a more useful form
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6.18

Ridge Regression [Hoerl & Kennard, 1970]

Ridge regression assumes that the regression coefficients
(after normalization) should not be very large

The ridge regression estimate chooses the β that
minimizes:

n

∑
i=1
(yi − β0 −

p−1
∑
j=1

βjxij)2 + λ
p−1
∑
j=1

β2
j ,

where λ ≥ 0 is a tuning parameter to be determined via
cross-validation

The ridge regression estimates:

β̂ridge = (XTX + λI)−1XTy

Ridge regression is particularly effective when the model
matrix is collinear
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6.19

Graphical Illustration of Ridge Regression
Estimation of ridge regression can also be solved by choosing
β to minimize

n

∑
i=1
(yi − β0 −

p−1
∑
j=1

βjxij)2

subject to ∑p
j=1 β

2
j ≤ t2

Source: p. 175, Fig. 11.9 Linear Models with R, Faraway, 2014
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6.20

Choosing λ via Cross-Validation
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6.21

Least Absolute Shrinkage and Selection Operator (LASSO)
Tibshirani, 1996

LASSO assumes the effects are sparse in that the response
can be explained by a small number of predictors with the rest
having no effect

LASSO choose β̂ to minimize:

n

∑
i=1
(yi − β0 −

p−1
∑
j=1

βjxij)2 + λ
p−1
∑
j=1
∣βj ∣

No explicit solution to this minimization problem

The penalty term has the effect of forcing some of the
coefficient estimates to be zero when the tuning parameter
λ is “large”⇒ performs shrinkage and variable selection
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6.22

Graphical Illustration of LASSO
Estimation of LASSO can also be solved by choosing β to
minimize

n

∑
i=1
(yi − β0 −

p−1
∑
j=1

βjxij)2

subject to ∑p
j=1 ∣βj ∣ ≤ t

Source: p. 175, Fig. 11.9 Linear Models with R, Faraway, 2014
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6.23

LASSO Path
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6.24

Selecting λ via Cross-Validation
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6.25

Summary

These slides cover:

Non-Parametric Regression

Ridge Regression

LASSO

R functions to know:

Non-Parametric Regression: ksmooth (kernel
regression); bs (regression splines); sreg in the fields
package (smoothing splines); gam (generalized additive
models)

Ridge Regression/LASSO: glmnet and cv.glmnet in
the glmnet package
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