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7.3

A Motivating Example: Horseshoe Crab Mating [Brockmann,
1996; Agresti, 2013]

Source: https://www.britannica.com/story/
horseshoe-crab-a-key-player-in-ecology-medicine-and-more

We are going to use this dataset to illustrate logistic regression.
The response variable is y ∈ {0,1}, indicates whether males
cluster around the female

https://www.britannica.com/story/horseshoe-crab-a-key-player-in-ecology-medicine-and-more
https://www.britannica.com/story/horseshoe-crab-a-key-player-in-ecology-medicine-and-more
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7.4

Logistic Regression

Let P(y = 1) = π ∈ [0,1], and x be the predictor (e.g., weight in
the previous example). In SLR we have

π(x) = β0 + β1x,

which will lead to invalid estimate of π (i.e., > 1 or < 0).

Logistic Regression

log( π(x)
1 − π(x)) = β0 + β1x.

log( π
1−π
): the log-odds or the logit

π(x) = eβ0+β1x

1+eβ0+β1x ∈ (0,1)
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7.5

Linear and Logistic Regression Fits of Horseshoe Crab
Mating Data

Linear regression:

ŷ(x) = β̂0 + β̂1x, β̂0 = −0.1449(0.1472), β̂1 = 0.3227(0.0588)

Logistic regression:
π̂(x) = eβ̂0+β̂1x

1+eβ̂0+β̂1x
, β̂0 = −3.6947(0.8802), β̂1 = 1.8151(0.3767)
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7.6

Properties of Logistic Regression

Similar to sinple linear regression, the sign of β1 indicates
whether π(x) ↑ or ↓ as x ↑

If β1 = 0, then π(x) = eβ0/(1 + eβ0) is a constant w.r.t x (i.e.,
π = P(y = 1) does not depend on x)

Logistic curve can be approximated at fixed x by straight
line to describe rate of change: dπ(x)

dx
= β1π(x)(1 − π(x))

π(−β0/β1) = 0.5

1/β1 is approximately equal to the distance between the x
values where π(x) = 0.5 and π(x) = 0.75 (or π(x) = 0.25)
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7.7

Odds Ratio Interpretation

Recall log ( π(x)
1−π(x)

) = β0 + β1x, we have the odds

π(x)
1 − π(x) = exp(β0 + β1x).

If we increase x by 1 unit, the the odds becomes

exp(β0 + β1(x + 1)) = exp(β1) × exp(β0 + β1x).

⇒ Odds at x+1
Odds at x = exp(β1), ∀x

In the horseshoe crab example, we have

β̂1 = 1.8151⇒ e1.8151 = 6.14

⇒ Estimated odds of satellite multiply by 6.1 for 1 kg increase
in weight.



Logistic Regression
and Poisson
Regression

Logistic Regression

Poisson Regression

Generalized Linear
Model

7.8

Parameter Estimation

In logistic regression we use the method of maximum likelihood
to estimate the parameters:

Statistical model: yi ∼ Bernoulli(π(xi)) where
π(xi) = exp(β0+β1xi)

1+exp(β0+β1xi)
.

Likelihood function: We can write the joint probability
density of the data {xi, yi}ni=1 as

n

∏
i=1

[ exp(β0 + β1xi)
1 + exp(β0 + β1xi)

]
yi

[ 1

1 + exp(β0 + β1xi)
]
(1−yi)

.

We treat this as a function of parameters (β0, β1) given
data.

Maximum likelihood estimate: The maximizer β̂0, β̂1 is
the maximum likelihood estimate. This maximization (for
logistic regression) can only be solved numerically.



Logistic Regression
and Poisson
Regression

Logistic Regression

Poisson Regression

Generalized Linear
Model

7.9

Horseshoe Crab Logistic Regression Fit
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7.10

Inference: Confidence Interval

A 95% confidence interval of the parameter βi is

β̂i ± z0.025 × SE(β̂i), i = 0,1

Horseshoe Crab Example
A 95% (Wald) confidence interval of β1 is

1.8151 ± 1.96 × 0.3767 = [1.077,2.553]

Therefore, a 95% CI of eβ1 , the multiplicative effect on odds of
1-unit increase in x, is

[e1.077, e2.553] = [2.94,12.85]
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7.11

Inference: Hypothesis Test

Null and Alternative Hypotheses:

H0 ∶ β1 = 0⇒ y is independent of x⇒ π(x) is a constant
Ha ∶ β1 ≠ 0

Test Statistics:

zobs =
β̂1

SE(β̂1)
= 1.8151

0.3767
= 4.819.

⇒ p-value = 1.45 × 10−6

We have sufficient evidence that weight has positive
effect on π, the probability of having satellite male horse-
shoe crabs
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7.12

Diagnostic: Raw Residual Plot
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The raw residual plot is not very informative because the
response variable, y, only takes two possible values
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7.13

Diagnostic: Binned Residual Plot
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Grouping the residuals into bins and calculating the
average for each bin

log ( π̂(x)
1−π̂(x)

) is plotted on the horizontal axis (rather than
the π̂(x)) to provide better spacing
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7.14

Model Selection
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7.15

Count Data

Daily COVID-19 Cases in South Carolina

Number of landfalling hurricanes per hurricane season
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7.16

Modeling Count Data

So far we have talked about:

Linear regression: y = β0 + β1x + ε, ε i.i.d.∼ N(0, σ2)

Logistic Regression: log( π
1−π
) = β0 + β1x, π = P(y = 1)

Count data

Counts typically have a right skewed distribution

Counts are not necessarily binary

We can use Poisson Regression to model count data
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7.17

Poisson Distribution

If Y follow a Poisson distribution, then we have

P(Y = y) = e−λλy

y!
, y = 0,1,2,⋯,

where λ is the rate parameter that represents the event
occurrence frequency

E(Y ) = Var(Y ) = λ if Y ∼ Pois(λ), λ > 0

A useful model to describe the probability of a given
number of events occurring in a fixed interval of time or
space
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7.18

Poisson Probability Mass Function
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(a): λ = 0.5: distribution gives highest probability to y = 0
and falls rapidly as y ↑

(b): λ = 2: a skew distribution with longer tail on the right

(c): λ = 5: distribution become more normally shaped
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7.19

Flying-Bomb Hits on London During World War II [Clarke,
1946; Feller, 1950]

The City of London was divided into 576 small areas of
one-quarter square kilometers each, and the number of areas
hit exactly k times was counted. There were a total of 537 hits,
so the average number of hits per area was 537

576
= 0.9323. The

observed frequencies in the table below are remarkably close
to a Poisson distribution with rate λ = 0.9323

Hits 0 1 2 3 4 5+
Observed 229 211 93 35 7 1
Expected 226.7 211.4 98.5 30.6 7.1 1.6
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7.20

US Landfalling Hurricanes

Source: https://www.kaggle.com/gi0vanni/
analysis-on-us-hurricane-landfalls

https://www.kaggle.com/gi0vanni/analysis-on-us-hurricane-landfalls
https://www.kaggle.com/gi0vanni/analysis-on-us-hurricane-landfalls
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Number of US Landfalling Hurricanes Per Hurricane Season

1850 1900 1950 2000

0

1

2

3

4

5

6

7

Year

H
ur

ric
an

e 
co

un
t

0 1 2 3 4 5 6 7

Hurricane Count

N
um

be
r 

of
 y

ea
rs

0

10

20

30

40

Research question: Can the variation of the annual
counts be explained by some environmental variable,
e.g., Southern Oscillation Index (SOI)?
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7.22

Some Potentially Relevant Predictors

Southern Oscillation Index (SOI): an indicator of wind
shear

Sea Surface Temperature (SST): an indicator of oceanic
heat content

North Atlantic Oscillation (NAO): an indicator of steering
flow

Sunspot Number (SSN): an indicator of upper air
temperature
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Hurricane Count vs. Environmental Variables
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7.24

Poisson Regression

log(λ) = β0 + β1x1 +⋯ + βp−1xp−1

⇒ y ∼ Pois(λ = exp(β0 + β1x1 +⋯ + βp−1xp−1))

Model the logarithm of the mean response as a linear
combination of the predictors

Parameter estimation is carry out using the maximum
likelihood method

Interpretation of β′s: every one unit increase in xj , given
that the other predictors are held constant, the λ increases
by a factor of exp(βj)
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7.25

US Hurricane Count: Poisson Regression Fit

Poisson Regression Model:

log(λCount) ∼ SOI + NAO + SST + SSN

Table: Coefficients of the Poisson regression model.

Estimate Std. Error z value Pr(>∣z∣)
(Intercept) 0.5953 0.1033 5.76 0.0000

SOI 0.0619 0.0213 2.90 0.0037
NAO −0.1666 0.0644 −2.59 0.0097
SST 0.2290 0.2553 0.90 0.3698
SSN −0.0023 0.0014 −1.68 0.0928

⇒ every one unit increase in SOI, the hurricane rate increases
by a factor of exp(0.0619) = 1.0639 or 6.39%.
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Issue with Linear Regression Fit

Linear Regression Model:

E(Count) ∼ SOI + NAO + SST + SSN

Table: Coefficients of the linear regression model.

Estimate Std. Error t value Pr(>∣t∣)
(Intercept) 1.8869 0.1876 10.06 0.0000

SOI 0.1139 0.0402 2.83 0.0053
NAO −0.2929 0.1173 −2.50 0.0137
SST 0.4314 0.4930 0.88 0.3830
SSN −0.0039 0.0024 −1.66 0.1000

If we use this fitted model to predict the mean hurricane count,
say SOI = -3, NAO=3, SST = 0, SSN=250

This negative number does not make sense
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Model Selection
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7.28

Generalized Linear Model

Gaussian Linear Model:

y ∼ N(µ,σ2), µ =XTβ

Bernoulli Linear Model:

y ∼ Bernoulli(π), log( π

1 − π ) =X
Tβ

Poisson Linear Regression:

y ∼ Poisson(λ), logλ =XTβ

These models fall into the family of generalized linear models
[Nelder and Wedderburn (1972); McCullagh and Nelder (1989)] with the
distributional assumptions (normal, Bernoulli, Poisson) and
the link functions (identity, logit, and log)
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7.29

Summary

These slides cover:

Logistic Regression

Poisson Regression

Both of which, as well as the linear regression models covered
in the past 6 weeks, can be unified into a single framework of
Generalized Linear Model

R functions to know:

Logistic and Poisson Regressions: glm with family
being "binomial" and "poisson", respectively

Many lm utility functions can still be used; for example,
predict can still be used for prediction, and step can
still be used for model selection
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