Lecture 7 Logistic Regression and Poisson Regression Reading: Faraway 2016 Chapters 2.1-2.5; 5.1; 8.1; ISLR 2021

Chapter 4.2; 4.3.1-4.3.4; 4.6

DSA 8020 Statistical Methods II

Logistic Regression and Poisson Regression

Logistic Regression Poisson Regression Generalized Linear

Whitney Huang Clemson University

Agenda

Logistic Regression

Poisson Regression

Logistic Regression and Poisson Regression

Logistic Regression

Poisson Regression

A Motivating Example: Horseshoe Crab Mating [Brockmann, 1996; Agresti, 2013]

	sat	у	weight	width
	8	1	3.05	28.3
	0	0	1.55	22.5
Contraction of the second	9	1	2.30	26.0
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	0	2.10	24.8
The second s	4	1	2.60	26.0
Transle /	0	0	2.10	23.8
	0	0	2.35	26.5
And the second second second	0	0	1.90	24.7
	0	0	1.95	23.7
	0	0	2.15	25.6

Logistic Regression and Poisson Regression

ogistic Regression

Poisson Regression

Generalized Linear Model

Source: https://www.britannica.com/story/ horseshoe-crab-a-key-player-in-ecology-medicine-and-more

We are going to use this dataset to illustrate logistic regression. The response variable is $y \in \{0, 1\}$, indicates whether males cluster around the female

Logistic Regression

Let $P(y = 1) = \pi \in [0, 1]$, and x be the predictor (e.g., weight in the previous example). In SLR we have

$$\pi(x) = \beta_0 + \beta_1 x$$

which will lead to invalid estimate of π (i.e., > 1 or < 0).

Logistic Regression

$$\log\left(\frac{\pi(x)}{1-\pi(x)}\right) = \beta_0 + \beta_1 x.$$

• $\log(\frac{\pi}{1-\pi})$: the log-odds or the logit

•
$$\pi(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}} \in (0, 1)$$

Logistic Regression and Poisson Regression

Logistic Regression

Poisson Regression

Linear and Logistic Regression Fits of Horseshoe Crab Mating Data

Linear regression:

$$\hat{y}(x) = \hat{\beta}_0 + \hat{\beta}_1 x, \hat{\beta}_0 = -0.1449(0.1472), \hat{\beta}_1 = 0.3227(0.0588)$$

Logistic regression:

$$\hat{\pi}(x) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 x}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 x}}, \, \hat{\beta}_0 = -3.6947(0.8802), \, \hat{\beta}_1 = 1.8151(0.3767)$$

Logistic Regression

Poisson Regression

Properties of Logistic Regression

- Similar to sinple linear regression, the sign of β₁ indicates whether π(x) ↑ or ↓ as x ↑
- If $\beta_1 = 0$, then $\pi(x) = e^{\beta_0}/(1 + e^{\beta_0})$ is a constant w.r.t x (i.e., $\pi = P(y = 1)$ does not depend on x)
- Logistic curve can be approximated at fixed x by straight line to describe rate of change: $\frac{d\pi(x)}{dx} = \beta_1 \pi(x)(1 \pi(x))$

•
$$\pi(-\beta_0/\beta_1) = 0.5$$

• $1/\beta_1$ is approximately equal to the distance between the x values where $\pi(x) = 0.5$ and $\pi(x) = 0.75$ (or $\pi(x) = 0.25$)

Logistic Regression Poisson Regression Generalized Linear

Odds Ratio Interpretation

Recall
$$\log\left(\frac{\pi(x)}{1-\pi(x)}\right) = \beta_0 + \beta_1 x$$
, we have the odds
 $\frac{\pi(x)}{1-\pi(x)} = \exp(\beta_0 + \beta_1 x).$

If we increase x by 1 unit, the the odds becomes

$$\exp(\beta_0 + \beta_1(x+1)) = \exp(\beta_1) \times \exp(\beta_0 + \beta_1 x).$$

$$\Rightarrow \frac{\text{Odds at } x+1}{\text{Odds at } x} = \exp(\beta_1), \ \forall x$$

In the horseshoe crab example, we have

$$\hat{\beta}_1 = 1.8151 \Rightarrow e^{1.8151} = 6.14$$

 \Rightarrow Estimated odds of satellite multiply by 6.1 for 1 kg increase in weight.

Logistic Regression

Poisson Regression

Parameter Estimation

In logistic regression we use the method of maximum likelihood to estimate the parameters:

- Statistical model: $y_i \sim \text{Bernoulli}(\pi(x_i))$ where $\pi(x_i) = \frac{\exp(\beta_0 + \beta_1 x_i)}{1 + \exp(\beta_0 + \beta_1 x_i)}$.
- Likelihood function: We can write the joint probability density of the data {x_i, y_i}ⁿ_{i=1} as

$$\prod_{i=1}^{n} \left[\frac{\exp(\beta_0 + \beta_1 x_i)}{1 + \exp(\beta_0 + \beta_1 x_i)} \right]^{y_i} \left[\frac{1}{1 + \exp(\beta_0 + \beta_1 x_i)} \right]^{(1-y_i)}$$

We treat this as a function of parameters (β_0, β_1) given data.

• **Maximum likelihood estimate**: The maximizer $\hat{\beta}_0, \hat{\beta}_1$ is the maximum likelihood estimate. This maximization (for logistic regression) can only be solved numerically.

Logistic Regression

Poisson Regression

```
Horseshoe Crab Logistic Regression Fit
  > logitFit <- glm(y ~ weight, data = crab, family = "binomial")
  > summary(logitFit)
  Call:
  alm(formula = y \sim weight, family = "binomial", data = crab)
  Deviance Residuals:
      Min
               10 Median
                                        Max
                                 30
  -2.1108 -1.0749 0.5426
                             0.9122
                                     1.6285
  Coefficients:
             Estimate Std. Error z value Pr(>|z|)
  (Intercept) -3.6947 0.8802 -4.198 2.70e-05 ***
                          0.3767 4.819 1.45e-06 ***
  weiaht
            1.8151
  _ _ _
  Signif. codes:
  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  (Dispersion parameter for binomial family taken to be 1)
      Null deviance: 225.76 on 172 degrees of freedom
  Residual deviance: 195.74 on 171 degrees of freedom
  AIC: 199.74
```

```
Number of Fisher Scoring iterations: 4
```

Logistic Regression

Regression

Inference: Confidence Interval

A 95% confidence interval of the parameter β_i is

 $\hat{\beta}_i \pm z_{0.025} \times \text{SE}(\hat{\beta}_i), \quad i = 0, 1$

Horseshoe Crab Example

A 95% (Wald) confidence interval of β_1 is

 $1.8151 \pm 1.96 \times 0.3767 = [1.077, 2.553]$

Therefore, a 95% CI of e^{β_1} , the multiplicative effect on odds of 1-unit increase in x, is

 $[e^{1.077}, e^{2.553}] = [2.94, 12.85]$

Logistic Regression

Poisson Regression

Inference: Hypothesis Test

Null and Alternative Hypotheses:

$$H_0: \beta_1 = 0 \Rightarrow y$$
 is independent of $x \Rightarrow \pi(x)$ is a constant $H_a: \beta_1 \neq 0$

Test Statistics:

$$z_{obs} = \frac{\hat{\beta}_1}{\text{SE}(\hat{\beta}_1)} = \frac{1.8151}{0.3767} = 4.819.$$

 $\Rightarrow p$ -value = 1.45×10^{-6}

We have sufficient evidence that weight has positive effect on $\pi,$ the probability of having satellite male horse-shoe crabs

Logistic Regression

Poisson Regression

Diagnostic: Raw Residual Plot

The raw residual plot is not very informative because the response variable, y, only takes two possible values

ogistic Regression

Poisson Regression

Diagnostic: Binned Residual Plot

Logistic Regression and Poisson Regression

Logistic Regression

Poisson Regression

- Grouping the residuals into bins and calculating the average for each bin
- $\log\left(\frac{\hat{\pi}(x)}{1-\hat{\pi}(x)}\right)$ is plotted on the horizontal axis (rather than the $\hat{\pi}(x)$) to provide better spacing

Model Selection

 $> logitFit2 <- glm(y \sim weight + width, data = crab, family = "binomial")$ > step(logitFit2) Start: ATC=198.89 $y \sim weight + width$ Df Deviance ATC - weight 1 194.45 198.45 <none> 192.89 198.89 - width 1 195.74 199.74 Step: AIC=198.45 y ~ width Df Deviance ATC 194.45 198.45 <none> - width 1 225.76 227.76 Call: $glm(formula = y \sim width, family = "binomial", data = crab)$ Coefficients: (Intercept) width -12.3508 0.4972 Degrees of Freedom: 172 Total (i.e. Null); 171 Residual Null Deviance: 225.8 Residual Deviance: 194.5 ATC: 198.5

Logistic Regression

Poisson Regression

Count Data

• Daily COVID-19 Cases in South Carolina

Each day shows new cases reported since the previous day \cdot Updated less than 19 hours ago $\,\cdot\,$ Source: <u>The New York Times</u> $\cdot\,$ <u>About this data</u>

• Number of landfalling hurricanes per hurricane season

Logistic Regression

Poisson Regression

Modeling Count Data

So far we have talked about:

• Linear regression: $y = \beta_0 + \beta_1 x + \varepsilon$, $\varepsilon \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2)$

• Logistic Regression:
$$\log(\frac{\pi}{1-\pi}) = \beta_0 + \beta_1 x$$
, $\pi = P(y=1)$

Count data

- Counts typically have a right skewed distribution
- Counts are not necessarily binary

We can use Poisson Regression to model count data

Logistic Regression

Poisson Regression

Poisson Distribution

• If Y follow a Poisson distribution, then we have

$$\mathbf{P}(Y=y) = \frac{e^{-\lambda}\lambda^y}{y!}, \quad y = 0, 1, 2, \cdots,$$

where λ is the rate parameter that represents the event occurrence frequency

•
$$E(Y) = Var(Y) = \lambda \text{ if } Y \sim Pois(\lambda), \quad \lambda > 0$$

 A useful model to describe the probability of a given number of events occurring in a fixed interval of time or space

Logistic Regression

Poisson Regression

Poisson Probability Mass Function

 (a): λ = 0.5: distribution gives highest probability to y = 0 and falls rapidly as y ↑

- (b): $\lambda = 2$: a skew distribution with longer tail on the right
- (c): λ = 5: distribution become more normally shaped

Logistic Regression

Flying-Bomb Hits on London During World War II [Clarke, 1946; Feller, 1950]

The City of London was divided into 576 small areas of one-quarter square kilometers each, and the number of areas hit exactly *k* times was counted. There were a total of 537 hits, so the average number of hits per area was $\frac{537}{576} = 0.9323$. The observed frequencies in the table below are remarkably close to a Poisson distribution with rate $\lambda = 0.9323$

Hits	0	1	2	3	4	5+
Observed	229	211	93	35	7	1
Expected	226.7	211.4	98.5	30.6	7.1	1.6

Logistic Regression

Poisson Regression

US Landfalling Hurricanes

US Hurricane Landfall points

Logistic Regression and Poisson Regression

Logistic Regression

Poisson Regression

Generalized Linear Model

Source: https://www.kaggle.com/gi0vanni/ analysis-on-us-hurricane-landfalls

Number of US Landfalling Hurricanes Per Hurricane Season

Research question: Can the variation of the annual counts be explained by some environmental variable, e.g., Southern Oscillation Index (SOI)?

Logistic Regression

and Poisson

Some Potentially Relevant Predictors

- Southern Oscillation Index (SOI): an indicator of wind shear
- Sea Surface Temperature (SST): an indicator of oceanic heat content
- North Atlantic Oscillation (NAO): an indicator of steering flow
- Sunspot Number (SSN): an indicator of upper air temperature

Logistic Regression

Poisson Regression

Hurricane Count vs. Environmental Variables

Logistic Regression and Poisson Regression

Poisson Regression

$$\log(\lambda) = \beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1}$$
$$\Rightarrow y \sim \operatorname{Pois}(\lambda = \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1}))$$

- Model the logarithm of the mean response as a linear combination of the predictors
- Parameter estimation is carry out using the maximum likelihood method
- Interpretation of $\beta's$: every one unit increase in x_j , given that the other predictors are held constant, the λ increases by a factor of $\exp(\beta_j)$

Logistic Regression

Poisson Regression

Poisson Regression Model:

 $\log(\lambda_{\text{Count}}) \sim \text{SOI} + \text{NAO} + \text{SST} + \text{SSN}$

Table: Coefficients of the Poisson regression model.

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	0.5953	0.1033	5.76	0.0000
SOI	0.0619	0.0213	2.90	0.0037
NAO	-0.1666	0.0644	-2.59	0.0097
SST	0.2290	0.2553	0.90	0.3698
SSN	-0.0023	0.0014	-1.68	0.0928

⇒ every one unit increase in SOI, the hurricane rate increases by a factor of exp(0.0619) = 1.0639 or 6.39%.

Logistic Regression

Poisson Regression

Issue with Linear Regression Fit

Linear Regression Model:

 $E(Count) \sim SOI + NAO + SST + SSN$

Table: Coefficients of the linear regression model.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.8869	0.1876	10.06	0.0000
SOI	0.1139	0.0402	2.83	0.0053
NAO	-0.2929	0.1173	-2.50	0.0137
SST	0.4314	0.4930	0.88	0.3830
SSN	-0.0039	0.0024	-1.66	0.1000

If we use this fitted model to predict the mean hurricane count, say SOI = -3, NAO=3, SST = 0, SSN=250

This negative number does not make sense

Logistic Regression

Poisson Regression

Model Selection

<pre>> step(PoiFull) Start: AIC=479.64 All ~ SOI + NAO + SST + SSN</pre>
Df Deviance ATC
- SST 1 175.61 478.44
<pre><none> 174.81 479.64</none></pre>
- SSN 1 177.75 480.59
- NAO 1 181.58 484.41
- SOI 1 183.19 486.02
Step: AIC=478.44 All ~ SOI + NAO + SSN
Df Deviance AIC
<none> 175.61 478.44</none>
- SSN 1 178.29 479.12
- NAO 1 183.57 484.41
- SOI 1 183.91 484.74
Call: glm(formula = All ~ SOI + NAO + SSN, family = "poisson", data = df)
Coefficients:
(Intercept) SOI NAO SSN
0.584957 0.061533 -0.177439 -0.002201
Degrees of Freedom: 144 Total (i.e. Null); 141 Residual Null Deviance: 197.9 Residual Deviance: 175.6 AIC: 478.4

Logistic Regression

Poisson Regression

Generalized Linear Model

• Gaussian Linear Model:

$$y \sim N(\mu, \sigma^2), \quad \mu = \boldsymbol{X}^T \boldsymbol{\beta}$$

Bernoulli Linear Model:

$$y \sim \text{Bernoulli}(\pi), \quad \log(\frac{\pi}{1-\pi}) = \mathbf{X}^T \boldsymbol{\beta}$$

Poisson Linear Regression:

 $y \sim \text{Poisson}(\lambda), \quad \log \lambda = \boldsymbol{X}^T \boldsymbol{\beta}$

These models fall into the family of generalized linear models [Nelder and Wedderburn (1972); McCullagh and Nelder (1989)] with the **distributional assumptions** (normal, Bernoulli, Poisson) and the **link functions** (identity, logit, and log)

Logistic Regression

Poisson Regression

Summary

These slides cover:

- Logistic Regression
- Poisson Regression

Both of which, as well as the linear regression models covered in the past 6 weeks, can be unified into a single framework of Generalized Linear Model

R functions to know:

- Logistic and Poisson Regressions: glm with family being "binomial" and "poisson", respectively
- Many 1m utility functions can still be used; for example, predict can still be used for prediction, and step can still be used for model selection

Logistic Regression

Poisson Regression