

Stock Price Data Example

Introductory Example: Intelligence Tests [Smith & Stanley (1983)]

Six tests (general, picture, blocks, maze, reading, vocab) were given to 112 individuals. The resulting sample correlation matrix of these tests is as follows:

	general	picture	blocks	maze	reading	vocab
general	1.000	0.466	0.552	0.340	0.576	0.514
picture	0.466	1.000	0.572	0.193	0.263	0.239
blocks	0.552	0.572	1.000	0.445	0.354	0.356
maze	0.340	0.193	0.445	1.000	0.184	0.219
reading	0.576	0.263	0.354	0.184	1.000	0.791
vocab	0.514	0.239	0.356	0.219	0.791	1.000

Can the correlation between the six tests be explained by one or two variables describing some general concept of intelligence?

Factor Analysis

CLEMS

Background

Overview

Factor Analysis (FA) assumes the covariance structure among a set of variables, $X = (X_1, \cdots, X_p)^T$, can be described via a linear combination of unobservable (latent) variables $F = (F_1, \cdots, F_m)^T$, called factors.

There are three typical objectives of FA:

- Data reduction: explain covariance between p variables using m
- Oata interpretation: find features (i.e., factors) that are important for explaining covariance ⇒ exploratory FA
- O Theory testing: determine if hypothesized factor strucuture fits observed data ⇒ confirmatory FA

Factor Analysis
CLEMS
Background

Factor Analysis

CLEMS

Notes

FA and PCA

FA and PCA have similar themes, i.e., to explain covariance between variables via linear combinations of other variables

However, there are distinctions between the two approaches:

- FA assumes a statistical model that describes covariation in observed variables via linear combinations of latent variables
- PCA finds uncorrelated linear combinations of observed variables that explain maximal variance

FA refers to a statistical model, whereas PCA refers to the eigenvalue decomposition of a covariance (or correlation) matrix

Notes

Factor Model

Let *X* is a random vector with mean μ and covariance Σ . The factor model postulates that *X* can be written as a linear combination of a set of *m* common factors F_1, F_2, \dots, F_m :

 $\begin{aligned} X_1 &= \mu_1 + \ell_{11}F_1 + \ell_{12}F_2 + \dots + \ell_{1m}F_m + \varepsilon_1 \\ X_2 &= \mu_2 + \ell_{21}F_1 + \ell_{22}F_2 + \dots + \ell_{2m}F_m + \varepsilon_2 \\ \vdots & \vdots & \vdots \\ X_p &= \mu_p + \ell_{p1}F_1 + \ell_{p2}F_2 + \dots + \ell_{pm}F_m + \varepsilon_p \end{aligned}$

where

- {ℓ_{jk}}_{p×m} denotes the matrix of factor loadings, that is, ℓ_{jk} is the loading (importance) of the *j*-th variable on the *k*-th factor
- $(F_1, \cdots, F_m)^T$ denotes the vector of the latent factor scores, that is, F_k is the score on the *k*-th factor
- (ε₁, · · , ε_p)^T denotes the vector of latent error terms, which correspond to the random disturbances specific to each variable

Background Factor Model Analysis Stock Price Data Example

Factor Analysis

Factor Model in Matrix Notation

The factor model can be written in a matrix form:

$$X = \mu + LF + \varepsilon,$$

where

- $\boldsymbol{L} = \{\ell_{jk}\}_{p imes m}$ is the factor loading matrix
- $\mathbf{F} = (F_1, \cdots, F_m)^T$ is the factor score vector
- $\boldsymbol{\varepsilon} = (\varepsilon_1, \cdots, \varepsilon_p)^T$ is the (latent) error vector

Unlike in linear model, we do not observe F, therefore we need to impose some assumptions to facilitate the model identification

Factor Model Assumptions

First, we assume:

 $\operatorname{Vor}(\boldsymbol{F}) = \mathbb{E}(\boldsymbol{F}\boldsymbol{F}^T) = \boldsymbol{I}$ $\mathbb{E}(\boldsymbol{F}) = \boldsymbol{0},$ $\mathbb{Vor}(\boldsymbol{\varepsilon}) = \mathbb{E}(\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^T) = \boldsymbol{\Psi} = \operatorname{diag}(\psi_i), i = 1, \cdots, p$ $\mathbb{E}(\boldsymbol{\varepsilon}) = \mathbf{0},$

Moreover, we assume F and ε are independent, so that $\mathbb{Cov}(F, \varepsilon) = 0$

- The factors have variance one (i.e., $Var(F_i) = 1$) and uncorrelated with one another
- The error vector are uncorrelated with one another with the specific variance $Var(\varepsilon_i) = \psi_i$
- Under the model assumptions, we have

 $X = \mu + LF + \varepsilon \Leftrightarrow \Sigma = LL^T + \Psi$

Notes

Factor Analysis

Factor Analysis

CLEMS#1

Factor Model Analysis

Notes

Variances and Covariances of Factor Models Under the factor model, we have

$$\operatorname{Vor}(X_i) = \ell_{i1}^2 + \ell_{i2}^2 + \dots + \ell_{im}^2 + \psi_i$$

$$\mathbb{Cov}(X_i, X_j) = \ell_{i1}\ell_{j1} + \ell_{i2}\ell_{j2} + \dots + \ell_{im}\ell_{jm}$$

The portion of the variance that is contributed by the mcommon factors is the communality:

$$h_i^2 = \ell_{i1}^2 + \ell_{i2}^2 + \dots + \ell_{im}^2,$$

and the portion that is not explained by the common factors is called the uniqueness (or the specific variance):

$$\operatorname{Var}(\varepsilon_i) = \psi_i = \operatorname{Var}(X_i) - h_i^2$$

To be determined: 1) number m of common factors; 2) factor loadings L; and 3) specific variances Ψ

Choosing the Number of Common Factors

- The factor model assumes that the p(p+1)/2 variances and covariances of X can be reproduced from the p(m+1) factor loadings and the variances of the p unique factors
- Situations in which m, the number of common factors, is small relative to p is when factor analysis works best. For example, if p = 12 and m = 2, then the $(12 \times 13)/2 = 78$ elements of Σ can be reproduced from $12 \times (2 + 1) = 36$ parameters in the factor model
- However, if m is too small, the p(m+1) parameters may not be adequate to describe Σ

Notes

Notes

Estimation in Factor Models

Given m, we consider two methods to estimate the parameters of a factor model:

Principal Component Method

PCA: $\Sigma = \lambda_1 e_1 e_1^T + \lambda_2 e_2 e_2^T + \dots + \lambda_p e_p e_p^T$ Factor Model: $\Sigma = LL^T + \Psi$

Main idea: Use the first *m* PCs to form the factor loading matrix, then use the relationship $\Psi = \Sigma - LL^T$ to estimate the specific variances $\hat{\psi}_i = s_i^2 - \sum_{j=1}^m \lambda_j \hat{e}_{ji}^2$

• Maximum Likelihood Estimation: assuming data $X \stackrel{i.i.d.}{\longrightarrow} N(\mu, \Sigma = LL^T + \Psi)$, maximizing the log-likelihood $\ell(\mu, L, \Psi) \propto -\frac{n}{2} \log |LL^T + \Psi| - \frac{1}{2} \sum_{i=1}^n (X_i - \mu)^T (LL^T + \Psi)^{-1} (X_i - \mu)$ to obtain the parameter estimates

A Goodness-of-Fit Test for Factor Model We wish to test whether the factor model (with a given *m*) appropriately describes the covariances among the *m*

appropriately describes the covariances among the p variables. Specifically, we test

$$H_{0(m)}: \boldsymbol{\Sigma} = \boldsymbol{L}\boldsymbol{L}^T + \boldsymbol{\Psi}$$

versus

 $\mathit{H}_1: \Sigma$ is an unconstrained covariance matrix

• Bartlett-Corrected Likelihood Ratio Test Statistic

$$-2\log\Lambda = (n - 1 - (2p + 4m + 5)/6)\log\frac{|\hat{L}\hat{L}^T + \hat{\Psi}|}{|\hat{\Sigma}|}$$

• Reject H_0 at level α if $-2 \log \Lambda > \chi^2_{df=\frac{1}{2}[(p-m)^2-p-m]}$ Modelling strategy: Start with small value of m and increase successively until some $H_{0(m)}$ is not rejected Background Factor Model Analysis Stock Price Data

Factor Analysis

nd odel

Factor Analysis

Factor Analysis

CLEMS#1

actor Mode Inalysis

Scale Invariance of Factor Analysis

Suppose $Y_i = c_i X_i$ or in matrix notation $\boldsymbol{Y} = C \boldsymbol{X}$ (*C* is a diagonal matrix), e.g., change of measurement units. Then,

$$Cov(Y) = C\Sigma C^{T}$$

= $C(LL^{T} + \Psi)$
= $(CL)(CL)^{T} + C\Psi C^{T}$
= $\tilde{L}\tilde{L}^{T} + \tilde{\Psi}$

That is, loadings and uniquenesses are the same if expressed in new units:

- Using covariance or correlation gives basically the same result
- The common practice is to use a correlation matrix or scale the input data

Rotationa	I Invariance	of Factor A	Analysis

Assume $RR^T = I$ and transform $F_* = R^T F$, $L_* = LR$, then

 $\boldsymbol{X}_* = \boldsymbol{\mu} + \boldsymbol{L}_* \boldsymbol{F}_* + \boldsymbol{\varepsilon} = (\boldsymbol{L}\boldsymbol{R})(\boldsymbol{R}^T \boldsymbol{F}) + \boldsymbol{\varepsilon} = \boldsymbol{L}\boldsymbol{F} + \boldsymbol{\varepsilon} = \boldsymbol{X};$ $\boldsymbol{\Sigma}_* = \boldsymbol{L}_* \boldsymbol{L}_*^T + \boldsymbol{\Psi} = (\boldsymbol{L} \boldsymbol{R}) (\boldsymbol{L} \boldsymbol{R})^T + \boldsymbol{\Psi} = \boldsymbol{L} \boldsymbol{L}^T + \boldsymbol{\Psi} = \boldsymbol{\Sigma}.$

- Rotating the factors yields exactly the same model
- Consequence: Use rotation that makes interpretation of loadings easy
- Varimax rotation is the most popular rotation. Each factor should have a few large and many small loadings

Example: Stock Price Data

Data are weekly returns in stock prices for 103 consecutive weeks for five companies: JP Morgan, City bank, Wells Fargo, Royal Dutch (Shell), and Exxon

- The first three are banks and the last two are oil companies
- The data are first standardized and the sample correlation matrix is used for the analysis
- We will fit an m = 2 factor model

Notes

Factor Analysis

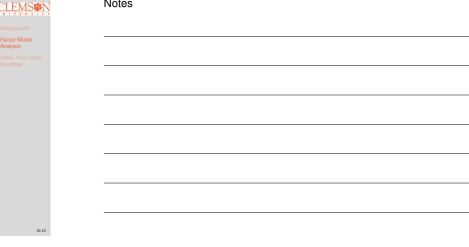
Factor Analysis

CLEMS

Factor Model Analysis

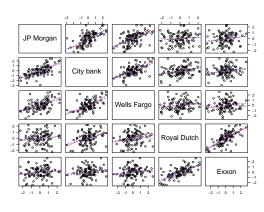
Factor Analysis

CLEMS



Notes

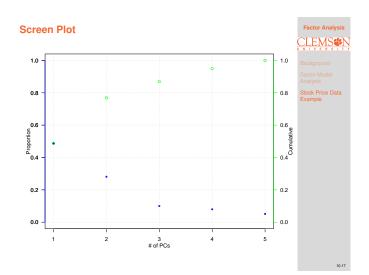
Scatter Plot Matrix of the Standardized Data



Pactor Analysis
Stock Price Data Example

Factor Analy

Notes



Notes

Factor Loading Matrix	ıs, Specific V	ariances, an	d Residual	Factor Analysis
Variable	Loadings 1	Loadings 2	Specific variance	SBackground
JP Morgan	0.732	0.437	0.273	Factor Model
City bank	0.831	0.280	0.230	
Wells Fargo	0.726	0.374	0.333	Stock Price Data Example
Royal Dutch	0.605	-0.694	0.153	
Exxon	0.563	-0.719	0.166	
The residual m	atrix is $\mathbf{\Sigma}-(\mathbf{z})$	$ ilde{m{L}} ilde{m{L}}^T+ ilde{m{\Psi}})$:		
ГО	-0.10 -0.1	8 -0.03 0.	.06]	
	0 -0.1	3 0.01 -0	0.05	
	0	0.00 0.	.01	
		0 -0).16	

-0.160

Question: Are these off-diagonal elements small enough?

Maximum Likelihood Estimation
<pre>> (stock.fac <- factanal(stock, factors = 2, + method = "mle", scale = T, center = T))</pre>
Call: factanal(x = stock, factors = 2, method = "mle", scale = T, center = T)
Uniquenesses: JP Morgan City bank Wells Fargo Royal Dutch 0.417 0.275 0.542 0.005 Exxon 0.530
Loadings: Factor1 Factor2 JP Morgan 0,763 City bank 0.819 0.232 Wells Fargo 0.668 0.108 Royal Dutch 0.113 0.991 Exxon 0.108 0.677
Factor1 Factor2 SS loadings 1.725 1.507 Proportion Var 0.345 0.301 Cumulative Var 0.345 0.646 Test of the hypothesis that 2 factors are sufficient. The chi square statistic is 1.97 on 1 degree of freedom. The p-value is 0.16

Factor Analysis
Stock Price Data Example

Notes

Factor Loading Plot



CLEMS CARACTERISTIC

Factor Analysis

Notes

PCA vs. FA Comparison Revisited

- PCA aims at explaining **variances**, while FA aims at explaining **correlations**
- PCA is exploratory and without assumptions FA is based on statistical model with assumptions
- $\bullet\,$ First few PCs will be same regardless of $m\,$ First few factors of FA depend on $m\,$
- FA is scale and rotation invariant, while this property does not hold in PCA

Factor Analysis

Summary

Concepts to know

- The form of the general Factor Model and its representation in terms of Covariance Matrix
- Scale and Rotation Invariance of Factor Model
- Interpretation of Factor Loadings
- $\ensuremath{\mathbb{R}}$ functions to know
 - factanal

In the next lecture, we will learn about Canonical Correlation Analysis

Factor Analysis CLEMSSON Background Factor Model Analysis Stock Price Data Example

Notes

Notes