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Readings: Zelterman, 2015, Chapter 10.1-10.4; Izenman,
2008 Chapter 8.1-8.4; ISLR, 2021 Chapter 9; Johnson &

Wichern 2007, Chapter 11
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Background

where Y; is the class information for the i,
observation = Y is a qualitative variable

o Classification aims to classify a new observation (or
several new observations) into one of those classes

Quantity of interest: P(Y = ky, category| X = x)

@ In this lecture we will focus on binary linear

classification

Notes
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Toy Example Classification

Wish to classify a new observation x; = (21;, 2;), LLEMOEN

denoted by (x), into one of the two groups (class 1 or Background
class 2)
10 4. Class1

+ Class2

Toy Example Cont’d Clafsmcanon ,
We can compute the distances from this new observation ~ CLEMOS@N
x = (z1,z2) to the groups, for example,

Background
di = /(@1 — p1)? + (w2 — p12)?,
dy = /(w1 — pi21)? + (w2 — pra2)?.
We can assign « to the group with the smallest distance
10 -« Class1
+ Class2
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Variance Corrected Distance Classification

In this one-dimensional example, d; = |z — p1| > |@ — po|. CLEMS@N
Does that mean z is “closer” to group 2 (red) than group 1
(blue)?

Background
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We should take the “spread” of each group into ac-
count. d = |x — pi|/o1 < da = |z — pal| /o2
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General Covariance Adjusted Distance: Mahalanobis CEssiicaky
Distance CLEMS@N

Background
The Mahalanobis distance [Mahalanobis, 1936] is a
measure of the distance between a point  and a
multivariate distribution of X:

Dus(e) = /(@ — W= (& — ),

where p is the mean vector and X is the
variance-covariance matrix of X

One can use the Mahalanobis distance, by computing the
Mahalanobis distance between an observations z; and
the “center” of the &, population py, to carry out

classification
Binary Classification with Multivariate Normal Cassifbeton
Populations CLEMS@N

Assume X; ~ MVN(u1,X), X2 ~ MVN(uq, X), that is,
¥1=3%=3%
@ Maximum Likelihood of group membership:

Group 1 if £(x, 1, ) > (@, po, X)

Background

o Linear Discriminant Function:

. _ 1 _
Group 1 if (p1—p2)" S 19”*5(#1*#2)7-2 Y(putp2) >0

@ Minimize Mahalanobis distance:

Group 1if (x—p1) "= (m—p1) < (w—p2) TS (@—pr2)

All the criteria above are equivalent in terms of clas-
sification

Priors and Misclassification Costs CEsSiicary
CLEMS@®N
In addition to the observed characteristics of units ‘
{z;}7_,, other considerations of classification rules are:

Background

@ Prior probability:

If one population is more prevalent than the other,
chances are higher that a new unit came from the
larger population. Stronger evidence would be
needed to allocate the unit to the population with the
smaller prior probability.

@ Costs of misclassification:

It may be more costly to misclassify a seriously ill
subject as healthy than to misclassify a healthy
subject as being ill.
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Classification Regions and Misclassifications °'“5"‘°"’<"°" |
@ The probability of misclassifying an object into 7 CLEMS@N
when it belongs in 7 is

P(2|1) = P(X € Ra|m)

Background

@ The probability of misclassifying an object into 7
when it belongs in 73 is

P(1]2) = P(X € Ry|m2)

PaIn= fy.rx)nx

PID = [fd

e CL.,;,M, T |

Clun{y s,

Source: Figure 11.3 from Applied Multivariate Statistical Analysis, 6th Ed (Johnson & Wichern).

Visualization is for p = 1 variable. 12,10

Probability and Expected Cost of Misclassification Classification
CLEMS@N
Let p; and p, denote the prior probabilities of 7, 72, and

¢(1]2), ¢(2|1) be the costs of misclassification: S
@ Then probabilities of the four possible outcomes are:
P(correctly classified as 1) = P(X € Ry|m1)P(m1) = P(1|1)p1
P(incorrectly classified as m) = P(X € Rq|m)P(m2) = P(1|2)ps
P(correctly classified as 1) = P(X € Ra|m)P(m2) = P(2(2)ps
P(incorrectly classified as m3) = P(X € Ra|m)P(m1) = P(2|1)py

o Classification rules are often evaluated in terms of
the expected cost of misclassification (ECM):

ECM = ¢(2|1)P(2|1)p1 + c(1]2) P(1|2)p2
and we seek rules that minimize the EcM
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Classification Rule and Special Cases of Minimum ECM CEsSiicary
Regions CLEMS@N

The regions R1, R, that minimize the ECM are defined by Background
the values of x for which

i (o) ()
g < () ()

0 ifpr=ps: ﬁg > ZE;E; = R1, otherwise R,

o if c(1]2) = (2[1) : 5 > 22 = Ry, otherwise R,

o if c(12) = c(2(1) and p1 = po : L1 > 1= Ry,
otherwise R,

1212

Notes

Notes

Notes




Example: Fisher’s Iris Data Cessiteaor |
4 variables (sepal length and width and petal length and ~ CLEMS@N Notes
width), 3 species (setosa, versicolor, and virginica)

20 25 50 25 4o 0 10 15 20 as Binary Linear

L P Cla:

Sepal.Length

Petal.Width

Task: Classify flowers into different species based

on lengths and widths of sepal and petal

Fisher’s Iris Data Cont'd Classification Not
' i LEMS@N otes
Let’s focus on the latter two classes (versicolor, and CLEMS@N
virginica)
Binary Linear
Classification
Sepal.Length
t | Petal.Length R
Petal.Width
Fisher’s iris Data Cont'd Classification
A . CLEMS®N Notes
To further simplify the matter, let’s focus on the first two ™
PCs of X
10+
0.8 4
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Rank of eigenvalues
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Linear Discriminant Analysis
Main idea: Use Bayes rule to compute

Classification
CLEMS@N
P(Y = HX = 2) = P(Y k}))?)(cxz JIY k) _ Z}:ka;(wj)

e TRFR ()
Assuming fi(z) ~ MVN(pu,>), k=1,---,K and use
7ix = 5& = it turns out the resulting classifier is linear in
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Classification Performance Evaluation

Classification

CLEMS®N

05 4 AAAA a
BRI
P S -
2 L o : :
vt
fit.LDA
versicolor virginica
versicolor 47 3
virginica 1 49

i ificati L 341
Misclassification rate: 57— = 0.04
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Logistic Regression Classifier

Main idea: Model the logit log (%) as a linear
function in « (PC1 and PC2 in this case)

Classification

CLEMS®N

- Te . + versicolor
- Predicted . + virginica
05 -
& 00 ¢ T o
&
-05 4
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-2 -1 0 1 2
PC1
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Logistic Regression Classifier Cont’d CEssiicaky
CLEMS#N

logisticPred
versicolor virginica
versicolor 48 2
virginica 1 49

i ificati . 241 _
Misclassification rate: w1 = 0.03
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Linear Discriminant Analysis Versus Logistic Classification
Regression CLEMS@N

For a binary classification problem, one can show that e —
both linear discriminant analysis (LDA) and logistic Classffcation
regression are linear classifiers. The difference is in how

the parameters are estimated:

o Logistic regression uses the conditional likelihood
based on P(Y|X = x)

o LDA uses the full likelihood based on multivariate
normal assumption on X

o Despite these differences, in practice the results are
often very similar
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Quadratic Discriminant Analysis Classification

T EMGgN

In linear discriminant analysis, we assume { fi,(z)}X_; CLEMS@N
are normal densities and 3, = X, therefore we obtain a

linear classifier.

What if 3 # 2,7 = we get quadratic discriminant
analysis

Figure courtesy of An Introduction of Statistical Learning by G. James et al. pp. 154

1221

Notes

Notes

Notes




An Algorithmic Approach to Classification

Find a hyperplane that “best” separates the classes in
feature space

@ what we mean by “separateness”?

@ what is the feature space?

Maximal Margin Classifier

Main idea: among all separating hyperplanes, find the
one that creates the biggest gap (“margin”) between the
two classes

doing so leads to the following
optimization problem:

maximzieg, g, s, M

2
subjectto Y 87 =1,

j=1
yi(Bo + Brxzi + Baziz) > M,
i=1,---,n

This problem can be solved efficiently using techniques
from quadratic programming

Supper Vector Classifier

@ Sometimes the data can not be separated by a line

@ data can be noisy which leads to unstable
maximal-margin classifier

The support vector classifier maximizes a “soft” margin

Classification

CLEMS®N

Support Vector
Machines
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Classification

CLEMS®N

Support Vector
Machines
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Classification

CLEMS®N

Support Vector
Machines
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Classification

Beyond Linear Classifier
CLEMS@N Notes

Support Vector
Machines

X X1

@ A linear boundary can fail to separate classes

@ Can expand the feature space by including
transformations, e.g., X7, X2, X1 Xs,--- = gives
non-linear decision boundaries in the original feature

space

@ However, polynomials basis can be unstable, a more
general way to introduce non-linearities is through
the use of kernels, e.g.,

F(®) = Bo+ ies diexp(—y X (x5 — wi5)?)
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SVM Vesus Logistic Regression (LR) and LDA Classification
CLEMS@N Notes

Support Vector
M.

@ When classes are (nearly) separable, SVM does

better than LR and LDA

@ Use LR to estimate class probabilities as SVM is a
non-probabilistic classifier

o For nonlinear boundaries, kernel SVMs are popular
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slemary Classification
CLEMS@N Notes
In this lecture we learned about:
@ Some classical classifiers for performing
classification Support Vector

Machines

@ How to assess the efficacy of a classifier

@ Support vector machines (SVMs)

R functions to know

@ lda/qgda from the MASS library

@ svm fromthe e1071 library

In the next lecture, we will learn about Cluster Analysis
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