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12.3

Classification

Data:
{Xi, Yi}ni=1,

where Yi is the class information for the ith
observation⇒ Y is a qualitative variable

Classification aims to classify a new observation (or
several new observations) into one of those classes

Quantity of interest: P(Y = kth category|X = x)

In this lecture we will focus on binary linear
classification

Notes

Notes

Notes
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12.4

Toy Example

Wish to classify a new observation xi = (x1i, x2i),
denoted by (∗), into one of the two groups (class 1 or
class 2)

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

2 4 6 8 10

2

4

6

8

10

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

* ?

●

●

Class 1
Class2

Classification

Background

Binary Linear
Classification

Support Vector
Machines

12.5

Toy Example Cont’d
We can compute the distances from this new observation
x = (x1, x2) to the groups, for example,

d1 =
√

(x1 − µ11)2 + (x2 − µ12)2,

d2 =
√

(x1 − µ21)2 + (x2 − µ22)2.
We can assign x to the group with the smallest distance
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12.6

Variance Corrected Distance
In this one-dimensional example, d1 = |x− µ1| > |x− µ2|.
Does that mean x is “closer” to group 2 (red) than group 1
(blue)?

−3 −2 −1 0 1 2 3

0.0

0.5
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*

We should take the “spread” of each group into ac-
count. d̃1 = |x− µ1|/σ1 < d̃2 = |x− µ2|/σ2

Notes

Notes
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12.7

General Covariance Adjusted Distance: Mahalanobis
Distance

The Mahalanobis distance [Mahalanobis, 1936] is a
measure of the distance between a point x and a
multivariate distribution of X:

DM (x) =
√

(x− µ)TΣ−1(x− µ),

where µ is the mean vector and Σ is the
variance-covariance matrix of X

One can use the Mahalanobis distance, by computing the
Mahalanobis distance between an observations xi and
the “center” of the kth population µk, to carry out
classification
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12.8

Binary Classification with Multivariate Normal
Populations
Assume X1 ∼ MVN(µ1,Σ), X2 ∼ MVN(µ2,Σ), that is,
Σ1 = Σ2 = Σ

Maximum Likelihood of group membership:

Group 1 if `(x,µ1,Σ) > `(x,µ2,Σ)

Linear Discriminant Function:

Group 1 if (µ1−µ2)
TΣ−1x−1

2
(µ1−µ2)

TΣ−1(µ1+µ2) > 0

Minimize Mahalanobis distance:

Group 1 if (x−µ1)
TΣ−1(x−µ1) < (x−µ2)

TΣ−1(x−µ2)

All the criteria above are equivalent in terms of clas-
sification
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12.9

Priors and Misclassification Costs

In addition to the observed characteristics of units
{xi}ni=1, other considerations of classification rules are:

Prior probability:

If one population is more prevalent than the other,
chances are higher that a new unit came from the
larger population. Stronger evidence would be
needed to allocate the unit to the population with the
smaller prior probability.

Costs of misclassification:

It may be more costly to misclassify a seriously ill
subject as healthy than to misclassify a healthy
subject as being ill.

Notes

Notes

Notes
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12.10

Classification Regions and Misclassifications
The probability of misclassifying an object into π2
when it belongs in π1 is

P (2|1) = P(X ∈ R2|π1)

The probability of misclassifying an object into π1
when it belongs in π2 is

P (1|2) = P(X ∈ R1|π2)

Source: Figure 11.3 from Applied Multivariate Statistical Analysis, 6th Ed (Johnson & Wichern).
Visualization is for p = 1 variable.

Classification

Background

Binary Linear
Classification

Support Vector
Machines

12.11

Probability and Expected Cost of Misclassification

Let p1 and p2 denote the prior probabilities of π1, π2, and
c(1|2), c(2|1) be the costs of misclassification:

Then probabilities of the four possible outcomes are:

P(correctly classified as π1) = P(X ∈ R1|π1)P(π1) = P (1|1)p1

P(incorrectly classified as π1) = P(X ∈ R1|π2)P(π2) = P (1|2)p2

P(correctly classified as π2) = P(X ∈ R2|π2)P(π2) = P (2|2)p2

P(incorrectly classified as π2) = P(X ∈ R2|π1)P(π1) = P (2|1)p1

Classification rules are often evaluated in terms of
the expected cost of misclassification (ECM):

ECM = c(2|1)P (2|1)p1 + c(1|2)P (1|2)p2,

and we seek rules that minimize the ECM
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12.12

Classification Rule and Special Cases of Minimum ECM
Regions

The regions R1, R2 that minimize the ECM are defined by
the values of x for which

R1 :
f1(x)

f2(x)
>

(
c(1|2)

c(2|1)

)(
p2
p1

)
R2 :

f1(x)

f2(x)
<

(
c(1|2)

c(2|1)

)(
p2
p1

)

if p1 = p2 : f1(x)
f2(x)

> c(1|2)
c(2|1) ⇒ R1, otherwise R2

if c(1|2) = c(2|1) : f1(x)
f2(x)

> p2
p1
⇒ R1, otherwise R2

if c(1|2) = c(2|1) and p1 = p2 : f1(x)
f2(x)

> 1⇒ R1,
otherwise R2

Notes

Notes

Notes



Classification

Background

Binary Linear
Classification

Support Vector
Machines

12.13

Example: Fisher’s Iris Data
4 variables (sepal length and width and petal length and
width), 3 species (setosa, versicolor, and virginica)
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Task: Classify flowers into different species based
on lengths and widths of sepal and petal
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12.14

Fisher’s Iris Data Cont’d
Let’s focus on the latter two classes (versicolor, and
virginica)
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Fisher’s iris Data Cont’d

To further simplify the matter, let’s focus on the first two
PCs of X
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12.16

Linear Discriminant Analysis
Main idea: Use Bayes rule to compute

P(Y = k|X = x) =
P(Y = k)P(X = x|Y = k)

P(X = x)
=

πkfk(x)∑K
k=1 πkfk(x)

.

Assuming fk(x) ∼ MVN(µk,Σ), k = 1, · · · ,K and use
π̂k = nk

n ⇒ it turns out the resulting classifier is linear in x
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12.17

Classification Performance Evaluation
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Logistic Regression Classifier

Main idea: Model the logit log
(

P(Y=1)
1−P(Y=1)

)
as a linear

function in x (PC1 and PC2 in this case)
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Logistic Regression Classifier Cont’d
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Misclassification rate: 2+1
48+2+1+49 = 0.03
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Linear Discriminant Analysis Versus Logistic
Regression

For a binary classification problem, one can show that
both linear discriminant analysis (LDA) and logistic
regression are linear classifiers. The difference is in how
the parameters are estimated:

Logistic regression uses the conditional likelihood
based on P(Y |X = x)

LDA uses the full likelihood based on multivariate
normal assumption on X

Despite these differences, in practice the results are
often very similar
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Quadratic Discriminant Analysis

In linear discriminant analysis, we assume {fk(x)}Kk=1

are normal densities and Σ1 = Σ2, therefore we obtain a
linear classifier.

What if Σ1 6= Σ2?⇒ we get quadratic discriminant
analysis

Figure courtesy of An Introduction of Statistical Learning by G. James et al. pp. 154
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An Algorithmic Approach to Classification

Find a hyperplane that “best” separates the classes in
feature space

what we mean by “separateness”?

what is the feature space?
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Maximal Margin Classifier

Main idea: among all separating hyperplanes, find the
one that creates the biggest gap (“margin”) between the
two classes

doing so leads to the following
optimization problem:

maximzieβ0,β1,β2M

subject to
2∑
j=1

β2
j = 1,

yi(β0 + β1xi1 + β2xi2) ≥M,

i = 1, · · · , n

This problem can be solved efficiently using techniques
from quadratic programming
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Supper Vector Classifier

Sometimes the data can not be separated by a line

data can be noisy which leads to unstable
maximal-margin classifier

The support vector classifier maximizes a “soft” margin
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Beyond Linear Classifier

A linear boundary can fail to separate classes

Can expand the feature space by including
transformations, e.g., X2

1 , X
2
2 , X1X2, · · · ⇒ gives

non-linear decision boundaries in the original feature
space

However, polynomials basis can be unstable, a more
general way to introduce non-linearities is through
the use of kernels, e.g.,
f(x) = β0 +

∑
i∈S α̂i exp(−γ

∑p
j=1(xj − xij)2)
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SVM Vesus Logistic Regression (LR) and LDA

When classes are (nearly) separable, SVM does
better than LR and LDA

Use LR to estimate class probabilities as SVM is a
non-probabilistic classifier

For nonlinear boundaries, kernel SVMs are popular
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Summary

In this lecture we learned about:

Some classical classifiers for performing
classification

How to assess the efficacy of a classifier

Support vector machines (SVMs)

R functions to know

lda/qda from the MASS library
svm from the e1071 library

In the next lecture, we will learn about Cluster Analysis
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