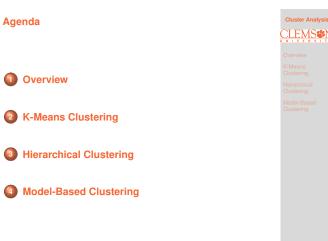


Whitney Huang Clemson University



CLEMS

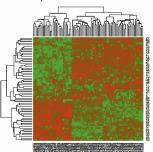
Notes

What is Cluster Analysis?

- Cluster: a collection of data objects
 - "Similar" to one another within the same cluster
 - "Dissimilar" to the objects in other clusters
- Cluster analysis: grouping a set of data objects into clusters
- Clustering is unsupervised classification, unlike classification, there is no predefined classes, and the number of clusters is usually unknown

Some Examples of Clustering Applications

- Market Segmentation: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- Clustering Gene Expression Data:



Cluster Analysis CVerview K:Means Clustering Hierarchical Clustering Model-Based Clustering

CLEMS

Notes

Source: Izenman (2008), fig. 12. 15

What Is Good Clustering?

- A good clustering method will produce clusters with
 - high within-class similarity
 - low between-class similarity

For example, one can use the Euclidean distance $d(\pmb{x}_i,\pmb{x}_j)=\sqrt{\sum_{k=1}^p [x_{i,k}-x_{j,k}]^2}$ to quantify the similarity

- The quality of a clustering result depends on both the similarity measure used and its implementation
- The performance of a clustering method is measured by its ability to discover the hidden patterns

Notes

Major Clustering Approaches

• Partitioning algorithm: partition the observations into a pre-specified number of clusters, for example, K-means clustering

• **Hierarchy algorithm:** Construct a hierarchical decomposition of the observations to build a hierarchy of clusters, for example, hierarchical agglomerative clustering

 Model-based Clustering: A model is hypothesized for each of the clusters, for example, Gaussian mixture models Overview K-Means Clustering Hierarchical Clustering

Partitioning Algorithm

Let C_1, \dots, C_K denote sets containing the indices of the observations $\{x_i\}_{i=1}^n$ in each cluster. These sets satisfy two properties:

- $C_1 \cup C_2 \cup \cdots \cup C_K = \{1, \cdots, n\} \Rightarrow$ each observation belongs to at least one of the K clusters
- $C_k \cap C_{k'} = \emptyset \, \forall k \neq k' \Rightarrow$ no observation belongs to more than one cluster

For instance, if the i_{th} observation (i.e. x_i) is in the k_{th} cluster, then $i \in C_k$

Analysis

CLEMS

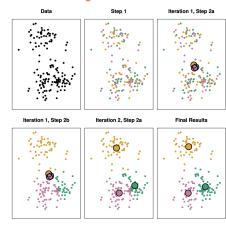
K-Means Clustering

- Step 0: Choose the number of clusters K
- Step 1: Randomly assign a cluster (from 1 to K), to each of the observations. These serve as the initial cluster assignments
- Step 2: Iterate until the cluster assignment stop changing
 - For each of the K cluster, compute the cluster centroid. The k_{th} cluster centroid is the mean vector of the observations in the $k_{th}\ {\rm cluster}$
 - Assign each observations to the cluster whose centroid is closest in terms of Euclidean distance

r Analysi

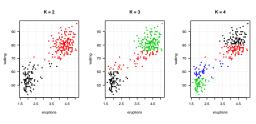
Notes

k-Means Clustering Illustration



K-Means Clustering in R

kmean3.faithful <- kmeans(x = faithful, centers = 3)</pre>



Notes

Hierarchical Clustering

- k-means clustering requires us to pre-specify the number of clusters K
- Hierarchical clustering is an alternative approach which does not require that we commit to a particular choice of K
- Agglomerative clustering: This is a "bottom-up" approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy

Overview K-Means Clustering Hierarchical Clustering Model-Based Clustering

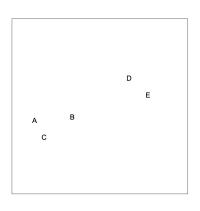
CLEMS#

Notes

Hierarchical Clustering Algorithm

- Begin with *n* observations and a similarity measure (e.g., Euclidean distance) of all the $\binom{n}{2} = \frac{n(n-1)}{2}$ pairwise dissimilarities. Treat each observation as its own cluster
- (2) For $i = n, n 1, \cdots, 2$;
 - Examine all pairwise inter-cluster dissimilarities among the *i* clusters and identify the pair of clusters that are least dissimilar. Fuse these two clusters.
 - Compute the new pairwise inter-cluster dissimilarities among the i-1 remaining clusters.

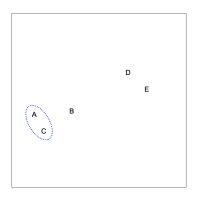
Hierarchical Agglomerative Clustering Illustration



	Cluster Analy	sis
(CLEMS	Ņ
	Hierarchical Clustering	
	Model-Based Clustering	
	1	3.13

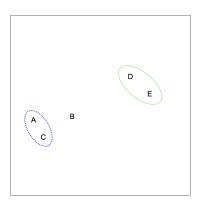
Notes

Hierarchical Agglomerative Clustering Illustration

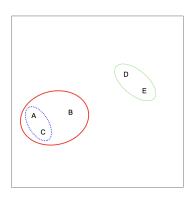


Notes

Hierarchical Agglomerative Clustering Illustration



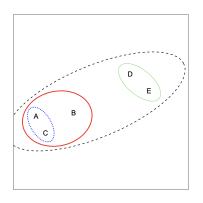
Hierarchical Agglomerative Clustering Illustration



Cluster Anal	ysis
CLEMS	
Clustering Hierarchical Clustering	
	13.16

Notes

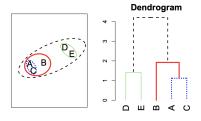
Hierarchical Agglomerative Clustering Illustration



Notes

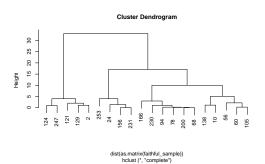
Recap: Hierarchical Agglomerative Clustering Algorithm

- Start with each observation in its own cluster
- Identify the closest two clusters and merge them
- Repeat
- Ends when all observations are in a single cluster



Hierarchical Agglomerative Clustering in R

hc.faithful <- hclust(dist(faithful_sample))
plot(hc.faithful)</pre>



Notes

Model-based clustering

- One disadvantage of K-means is that they are largely heuristic and not based on formal statistical models. Formal inference is not possible
- Model-based clustering is an alternative:
 - Sample observations arise from a mixture distribution of two or more components
 - Each component (cluster) is described by a probability distribution and has an associated probability in the mixture.
 - In Gaussian mixture models, we assume each cluster follows a multivariate normal distribution

er Analysis

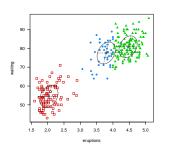
Notes

Fitting a Gaussian Mixture Model in R

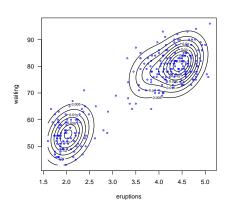
Package 'mclust' version 5.4.5
Type 'citation("mclust")' for citing this R package in publications.

BIC <- mclustBIC(faithful)
modell <- Mclust(faithful, x = BIC)</pre>

library(mclust)

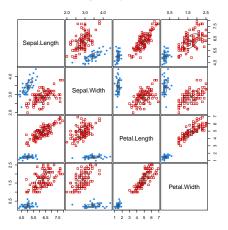


Fitting a Gaussian Mixture Model in R Cond't



Notes

Model-Based Clustering Analysis for Iris Data



Overview C-Means Clustering Hierarchical Clustering Model-Based Clustering

Notes

Summary

In this lecture we learned about some commonly used clustering methods:

- K-means clustering
- Hierarchical clustering
- Model-based clustering

