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@ Principal Component Analysis (PCA):

Main Idea

In PCA, one starts with n data points y; € R?, then
tries to find a low-dimensional projection of these

points, e.g., 1, -+ ,x, € R" with » < p, in such a
way as to maximize the variance (thus minimizing the

reconstruction error)

@ Multidimensional Scaling (MDS):
In MDS, instead of being given the data Y = {y;}!-,,

a matrix of distances or dissimilarities between the
data points, D = {d;;}}';_, is provided. The goal of

MDS is to find a set of points in a low-dimensional
Euclidean space R", usually » = 2, whose inter-point
distances are as close as possible to the {d;;}

distances


https://stat.ethz.ch/education/semesters/ss2012/ams/slides/v4.1.pdf
https://stat.ethz.ch/education/semesters/ss2012/ams/slides/v4.1.pdf

Basic Idea of MDS
Represent a high-dimensional point cloud in a low
(usually 2)-dimensional Euclidean space while
preserving, as closely as possible, the inter-point
distances. Commonly used MDS methods include
classical/metric MDS and non-metric MDS:
o Classical/Metric MDS: Use a clever projection

@ Non-metric MDS: Squeeze data on table

Source: Dr. Markus Kalisch’s Lecture Notes on MDS

Classical MDS (cMDS)

o Goal: Given pairwise distances among points,
recover the position of the points!

o Example: Distance between 10 US major cities

> UScitiesD

Atlanta Chicago Denver Houston LosAngeles Miami NewYork SanFrancisco Seattle

Chicago

Denver 1212 920

Houston 701 940 879

LosAngeles 1936 1745 831 1374

Miami 604 1188 1726 968 2339

NewYork 748 713 1631 1420 2451 1092

SanFrancisco 2139 1858 949 1645 347 2594 2571

Seattle 2182 1737 1021 1891 950 2734 2408 678
Washington.DC 543 597 1494 1220 2300 923 205 2442

Classical MDS: First Try

loc <- cmdscale(UScitiesD)

x <- loc[, 1]; y <- loc[, 2]

plot(x, y, type = "n", xlab = "", ylab = "", asp = 1,
axes = FALSE, main = "cmdscale(UScitiesD)")

text(x, y, rownames(loc), cex = 0.8)

cmdscale(UScitiesD)
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Classical MDS: Flip Axes Multidimensional

Scaling Notes
# Flip Axes
x1 <- -loc[, 1]; yl1 <- -loc[, 2]
plot(xl, yl, type = "n", xlab = "", ylab = "", asp = 1,
axes = FALSE, main = "cmdscale(UScitiesD)")
text(x1l, yl, rownames(loc), cex = 0.8)
cmdscale(UScitiesD)
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Another Example: Air Pollution in US Cities DI
9
Notes
> summary(dat) -MS¢
S02 temp manu popul TR
Min. : 8.00 Min. :43.50  Min. : 35.0 Min. : 71.0
I1st Qu.: 13.00 1st Qu.:50.60 1st Qu.: 181.0 1st Qu.: 299.0
Median : 26.00 Median :54.60 Median : 347.0 Median : 515.0 S
Mean : 30.05 Mean :55.76  Mean : 463.1 Mean : 608.6 Scaling
3rd Qu.: 35.00 3rd Qu.:59.30 3rd Qu.: 462.0 3rd Qu.: 717.0
Max. :110.00  Max. :75.50  Max. :3344.0  Max. :3369.0
wind precip predays
Min. 1 6.000 Min. : 7.05 Min. : 36.0
1st Qu.: 8.700 1st Qu.:30.96 1st Qu.:103.0
Median : 9.300 Median :38.74 Median :115.0
Mean : 9.444  Mean :36.77  Mean  :113.9
3rd Qu.:10.600 3rd Qu.:43.11 3rd Qu.:128.0
Max. :12.700  Max. :59.80  Max. :166.0
@ Range of manu and popul is much bigger than
range of wind
@ Need to standardize to give every variable equal
weight
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Air Pollution in US Cities Example e
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Classical MDS: Technical Details Multidimensional

Scaling

. . CLEMS@N

o Input: D = {d;;}7;_,, the Euclidean distances —
between n objects in p dimensions

o Output: X = {x;} ,, the “position” of points up to
rotation, reflection, shift
@ Two steps:

o Compute inner products matrix B = X X from
distance

Loy o n
bij = =5 (df; — di. — 7 + d2)

o Perform spectral decomposition to compute positions
from B (see next slide)

1410

Classical MDS: Technical Details T
o Since B = X X7, we need the “square root” of B CLEMS®N

Classical

@ Since B is a symmetric and positive definite n x n
matrix = B can be diagonalized: A e

B=vAVT

A is a diagnoal matrix with \; < Xy <--- < A, 0n
diagonal

@ Assuming the rank of B = p, so that the last n — p of
its eigenvalues will be zero = B can be written as

B =ViMV,

where V; contains the first p eigenvectors and A; the
p non-zero eigenvalues. Take “square root”:
1

X =ViA}?
Classical MDS: Low-Dimensional Representation T
o Keep only few (e.g. 2) largest eigenvalues and CLEMS®N

corresponding eigenvectors

Classical
Multidimensional

Scaling

@ The resulting X will be the low-dimensional
representation we were looking for

@ “Goodness of fit" (GOF) if we reduce to r dimensions:

Py
GOF = z;fl *
im1 N

o Finds “optimal” low-dim representation:
Find zy,--- ,z, € R"

n n
to minimize >~ " (di; — d(i, x;))?

i=1 j=1
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Classical MDS: Pros and Cons Multidimensional

Scaling

CLEMS®N
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(]

Optimal for Euclidean input data

]

Still optimal, if B has non-negative eigenvalues

@ + Very fast to compute

@ - There is no guarantee it will be optimal if B has

negative eigenvalues
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Non-metric MDS: Idea Multidimensional
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@ Sometimes, there is no well-defined metric on
original points

Non-metric
Multidlir
Scaling

@ Absolute values are not as meaningful, but the

ranking is important, for example, in ordinal data and
survey data (subjective preferences)

@ Non-metric MDS finds a low-dimensional

representation, which respects the ranking of
distances

1414

Non-metric MDS: Theory Multidimensional

Scaling
@ ¢;; is the true dissimilarity, d;; is the distance of CLEMS#N Notes

representation

@ Minimize STRESS:

2
qu i

where 6(-) is an increasing function

@ Optimize over both position of points and 6

o d;j = 6(5;;) is called “disparity”

@ Solved numerically (isotonic regression); Classical

MDS as starting value; very time consuming

1415



Non-metric MDS: Pros andn Cons

o +: Fulfills a clear objective (minimize STRESS)

without many assumptions

o +: Results don’t change with rescaling or monotonic
variable transformation

@ +: Works even if you only have rank information

@ -: computation can be slow in “large” problems

(4]

(7]

House of Representatives Voting Data

Romesburg (1984) gives a set of data that shows the
number of times 15 congressmen from New Jersey voted
differently in the House of Representatives on 19

environmental bills

> voting[1:6, 1:6]

: Only gets ranks of distances right

: Usually only local (not global) optimum found

Hunt (R) Sandman(R) Howard(D) Thompson(D) Freylinghuysen(R) Forsythe(R

Hunt (R) [
Sandman (R) 8
Howard (D) 15
Thompson (D) 15
Freylinghuysen (R) 10
Forsythe (R) 9

8
)
17
12
13
13

15
17
0
9
16
12

15
12
9
0
14
12

10
13
16
14
)
8

9
13
12
12

8

[

Question: Do people in the same party vote alike?

Kruskal’s Non-metric Multidimensional Scaling in R

Usage

isoMDS (d, y = cmdscale(d,
= 50, trace = TRUE,

Voting Example

library (MASS)

voting_mds <- isoMDS(voting,

str(voting_mds)

par(las = 1, mar = c(2,
plot(voting_mds$points,

xlab = "", ylab = ""
text(voting_mds$points,

2, 0.5,

type =
)
labels

cex = 0.7, col = col)

k

2)

0.5))

n

k),
tol = le-3,

, xlim = c(-12, 8),

rownames (voting_mds$points),

Multidimensional
Scaling
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8 4 Sanaman(R)

‘Thompson(D)

Patten(D)

Huni(R) Roe(D)

Rinaldo(Rielioski(D)

Minish(D)
Daniets(0) Rodino(D)
Howard(D)

Widnall(R)

Forsythe(R)

-4 Freylinghuysen(R)

-6 Maraziti(R)

-10 -5 0 5
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Multidimensional

Summary Scaling

o Classical MDS: CLEMS@N

Notes

o Finds low-dim projection that respects distances

o Optimal for euclidean distances

o No clear guarantees for other distances

o Fast to compute (can use cmdscale in R)

@ Non-metric MDS:

Squeezes data points on table

(]

o Respects only rankings of distances

o (Locally) solves clear objective

[

Computation can be slow (can use isoMDS from the
R package “MASS”)
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