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Lecture 14
Multidimensional Scaling
Reading: Izenman Chapter 13
The main reference for these slides is from Dr. Markus
Kalisch’s Lecture Notes at
https://stat.ethz.ch/education/semesters/
ss2012/ams/slides/v4.1.pdf
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Principal Component Analysis and Multidimensional
Scaling

Principal Component Analysis (PCA):

In PCA, one starts with n data points yi ∈ Rp, then
tries to find a low-dimensional projection of these
points, e.g., x1, · · · ,xn ∈ Rr with r < p, in such a
way as to maximize the variance (thus minimizing the
reconstruction error)

Multidimensional Scaling (MDS):

In MDS, instead of being given the data Y = {yi}ni=1,
a matrix of distances or dissimilarities between the
data points, D = {dij}ni,j=1 is provided. The goal of
MDS is to find a set of points in a low-dimensional
Euclidean space Rr, usually r = 2, whose inter-point
distances are as close as possible to the {dij}
distances

Notes
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Notes
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Basic Idea of MDS
Represent a high-dimensional point cloud in a low
(usually 2)-dimensional Euclidean space while
preserving, as closely as possible, the inter-point
distances. Commonly used MDS methods include
classical/metric MDS and non-metric MDS:

Classical/Metric MDS: Use a clever projection

Non-metric MDS: Squeeze data on table

Source: Dr. Markus Kalisch’s Lecture Notes on MDS
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Classical MDS (cMDS)

Goal: Given pairwise distances among points,
recover the position of the points!

Example: Distance between 10 US major cities
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Classical MDS: First Try
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Classical MDS: Flip Axes
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Another Example: Air Pollution in US Cities

Range of manu and popul is much bigger than
range of wind

Need to standardize to give every variable equal
weight
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Air Pollution in US Cities Example
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Classical MDS: Technical Details

Input: D = {dij}ni,j=1, the Euclidean distances
between n objects in p dimensions

Output: X = {xi}ni=1, the “position” of points up to
rotation, reflection, shift

Two steps:

Compute inner products matrix B = XXT from
distance

bij = −1

2
(d2ij − d2i. − d2.j + d2..)

Perform spectral decomposition to compute positions
from B (see next slide)
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Classical MDS: Technical Details
Since B = XXT , we need the “square root” of B

Since B is a symmetric and positive definite n× n
matrix⇒ B can be diagonalized:

B = V ΛV T

Λ is a diagnoal matrix with λ1 ≤ λ2 ≤ · · · ≤ λn on
diagonal

Assuming the rank of B = p, so that the last n− p of
its eigenvalues will be zero⇒ B can be written as

B = V1Λ1V
T
1 ,

where V1 contains the first p eigenvectors and Λ1 the
p non-zero eigenvalues. Take “square root”:

X = V1Λ
− 1

2
1
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Classical MDS: Low-Dimensional Representation
Keep only few (e.g. 2) largest eigenvalues and
corresponding eigenvectors

The resulting X will be the low-dimensional
representation we were looking for

“Goodness of fit” (GOF) if we reduce to r dimensions:

GOF =

∑r
i=1 λi∑n
i=1 λi

Finds “optimal” low-dim representation:

Find x1, · · · ,xn ∈ Rr

to minimize
n∑

i=1

n∑
j=1

(dij − d(xi,xj))
2
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Classical MDS: Pros and Cons

+ Optimal for Euclidean input data

+ Still optimal, if B has non-negative eigenvalues

+ Very fast to compute

- There is no guarantee it will be optimal if B has
negative eigenvalues
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Non-metric MDS: Idea

Sometimes, there is no well-defined metric on
original points

Absolute values are not as meaningful, but the
ranking is important, for example, in ordinal data and
survey data (subjective preferences)

Non-metric MDS finds a low-dimensional
representation, which respects the ranking of
distances
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Non-metric MDS: Theory
δij is the true dissimilarity, dij is the distance of
representation

Minimize STRESS:

S =

∑
i<j (θ(δij)− dij)2∑

i<j d
2
ij

,

where θ(·) is an increasing function

Optimize over both position of points and θ

d̂ij = θ(δij) is called “disparity”

Solved numerically (isotonic regression); Classical
MDS as starting value; very time consuming

Notes

Notes

Notes



Multidimensional
Scaling

Main Idea

Classical
Multidimensional
Scaling

Non-metric
Multidimensional
Scaling

14.16

Non-metric MDS: Pros andn Cons

+: Fulfills a clear objective (minimize STRESS)
without many assumptions

+: Results don’t change with rescaling or monotonic
variable transformation

+: Works even if you only have rank information

-: computation can be slow in “large” problems

-: Usually only local (not global) optimum found

-: Only gets ranks of distances right
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House of Representatives Voting Data

Romesburg (1984) gives a set of data that shows the
number of times 15 congressmen from New Jersey voted
differently in the House of Representatives on 19
environmental bills

Question: Do people in the same party vote alike?
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Kruskal’s Non-metric Multidimensional Scaling in R

Usage

isoMDS(d, y = cmdscale(d, k), k = 2, maxit
= 50, trace = TRUE, tol = 1e-3, p = 2)

Voting Example
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Non-metric MDS: Voting Example
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Summary

Classical MDS:

Finds low-dim projection that respects distances

Optimal for euclidean distances

No clear guarantees for other distances

Fast to compute (can use cmdscale in R)

Non-metric MDS:

Squeezes data points on table

Respects only rankings of distances

(Locally) solves clear objective

Computation can be slow (can use isoMDS from the
R package “MASS”)
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