## Lecture 2

Characterizing and Displaying Multivariate Data

## DSA 8070 Multivariate Analysis

Whitney Huang Clemson University
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Agenda

Descriptive Statistics
(2) Graphs and Visualization

## Notes

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Organization of Data and Notation

- We will use $n$ to denote the number of individuals or units in our sample and use $p$ to denote the number of variables measured on each unit.
- If $p=1$, then we are back in the usual univariate setting.
- $x_{i k}$ is the value of the k -th measurement on the i -th unit. For the $i$-th unit we have measurements

$$
\left(x_{i 1}, x_{i 2}, \cdots, x_{i p}\right)
$$

## Notes

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Organization of Data and Notation

- We often display measurements from a sample of $n$ units in matrix form

$$
X_{n \times p}=\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 p} \\
x_{21} & x_{22} & \cdots & x_{2 p} \\
\vdots & \vdots & & \vdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n p}
\end{array}\right]
$$

is a matrix with $n$ rows (one for each unit) and $p$ columns (one for each measured trait or variable)

Descriptive Statistics: Sample Mean \& Variance

- The sample mean of the k -th variable $(k=1, \cdots, p)$ is computed as

$$
\bar{x}_{k}=\frac{1}{n} \sum_{i=1}^{n} x_{i k}
$$

- The sample variance of the $k$-th variable is usually computed as

$$
s_{k}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i k}-\bar{x}_{k}\right)^{2}
$$

and the sample standard deviation is given by

$$
s_{k}=\sqrt{s_{k}^{2}}
$$

## Descriptive Statistics: Sample Covariance

- We often use $s_{k k}$ to denote the sample variance for the k-th variable. Thus,

$$
s_{k}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i k}-\bar{x}_{k}\right)^{2}=s_{k k}
$$

- The sample covariance between variable k and variable $j$ is computed as

$$
s_{j k}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i j}-\bar{x}_{j}\right)\left(x_{i k}-\bar{x}_{k}\right)
$$

$\square$

- If variables k and j are independent, the population covariance will be exactly zero, but the sample covariance will vary about zero
dat $\left\{\begin{array}{l}\text { rn } \\ \end{array}\right.$
 $\operatorname{cov(dat[,~1],~dat[,~2])~}$


## Notes

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Notes
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
${ }^{25}$
[1] -0.1508848
$\qquad$
$\square$

## Notes

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

©

Descriptive Statistics: Sample Correlation

- The sample correlation between variables $k$ and $j$ is defined as

$$
r_{j k}=\frac{s_{j k}}{\sqrt{s_{j j}} \sqrt{s_{k k}}}
$$

- $r_{j k}$ is between -1 and 1
- $r_{j k}=r_{k j}$


## Sample Correlation

- The sample correlation is equal to the sample covariance if measurements are standardized (i.e., $s_{k k}=s_{j j}=1$ )
- Covariance and correlation measure linear association. Other non-linear dependencies may exist among variables even if $r_{j k}=0$
- The sample correlation $\left(r_{i j}\right)$ will vary about the value of the population correlation $\left(\rho_{i j}\right)$

Notes
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Notes
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Notes

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Matrix Representation of Sample Statistics
Sample statistics of a p-dimnesional multivariate data can be organized as vectors and matrices:

- $\overline{\boldsymbol{x}}=\left[\bar{x}_{1}, \bar{x}_{2}, \cdots, \bar{x}_{p}\right]^{\mathrm{T}}$ is the $p \times 1$ vector of sample means
$\boldsymbol{S}=\left[\begin{array}{cccc}s_{11} & s_{12} & \cdots & s_{1 p} \\ s_{21} & s_{22} & \cdots & s_{2 p} \\ \vdots & \cdots & \cdots & \cdots \\ s_{p 1} & s_{p 2} & \cdots & s_{p p}\end{array}\right]$ is the $p \times p$ symmetric
matrix of variance (on the diagonal) and covariances (the off-diagonal elements)
$\boldsymbol{R}=\left[\begin{array}{cccc}r_{11} & r_{12} & \cdots & r_{1 p} \\ r_{21} & r_{22} & \cdots & r_{2 p} \\ \vdots & \cdots & \cdots & \cdots \\ r_{p 1} & r_{p 2} & \cdots & r_{p p}\end{array}\right]$ is the $p \times p$ symmetric matrix of sample correlations. Diagonal elements are all equal to 1


## Example: Bivariate Data

- Data consist of $n=5$ receipts from a bookstore. On each receipt we observe the total amount of the sale (\$) and the number of books sold ( $p=2$ ). Then

$$
X_{5 \times 2}=\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22} \\
x_{31} & x_{32} \\
x_{41} & x_{42} \\
x_{51} & x_{52}
\end{array}\right]=\left[\begin{array}{ll}
42 & 2 \\
52 & 5 \\
88 & 7 \\
58 & 4 \\
60 & 5
\end{array}\right]
$$

- Sample mean vector is:

$$
\bar{x}=\left[\begin{array}{l}
\bar{x}_{1} \\
\bar{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
60 \\
5
\end{array}\right]
$$

## Example: Bivariate Data

- Sample covariance matrix is

$$
\boldsymbol{S}=\left[\begin{array}{ll}
s_{11} & s_{12} \\
s_{21} & s_{22}
\end{array}\right]=\left[\begin{array}{cc}
294.0 & 19.0 \\
19.0 & 1.5
\end{array}\right]
$$

- Sample correlation matrix is

$$
\boldsymbol{R}=\left[\begin{array}{ll}
r_{11} & r_{12} \\
r_{21} & r_{22}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0.90476 \\
0.90476 & 1
\end{array}\right]
$$

## Notes

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$ 2.10

## Notes

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Notes
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Generalized Variance

- The generalized variance is a scalar value which generalizes variance for multivariate random variables
- The generalized variance is defined as the determinant of the (sample) covariance matrix $S$, $\operatorname{det}(\boldsymbol{S})$
- Example:
$\cdots\{r\}$
data $\{$ ntcars)
vars <- which(names(mtcars) \%in\% c("mpg", "disp", "hp", "drat", "wt"))
car <- mtcars[, vars]; S <- cov(car)
(genVar <- det(S))
[1] 3951786


## Graphs and Visualization

Notes
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Graphs and Visualization

- Graphs convey information about associations between variables and also about unusual observations
- One difficulty with multivariate data is their visualization, in particular when $p>3$.
- At the very least, we can construct pairwise scatter plots of variables
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Notes
$\qquad$

Notes
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Example: Fisher's Iris Data
5 variables (sepal length and width, petal length and width, species (setosa, versicolor, and virginica), 50 flowers from each of 3 species $\Rightarrow p=4, n=50 \times 3=150$


Plotting Iris Data using ggpairs


Notes
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Notes
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Notes
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$



## Summary

In this lecture, we learned

- Summarizing multivariate data numerically
- Summarizing multivariate data graphically

In the next lecture, I will give a short review of Matrix Algebra

CLEMS


Notes
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Notes

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

CLEMS\%N Notes
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

