Lecture 3

A Short Review of Matrix Algebra

Reading: Zelterman, 2015 Chapter 4; Izenman, 2008 Chapter 3.1-3.2

DSA 8070 Multivariate Analysis

Whitney Huang Clemson University

A Short Review of Matrix Algebra
CLEMS#N
3.1

Agenda

- Motivation
- Basic Matrix Concepts
- Some Useful Matrix Tools/Facts

Notes

Notes

Why Matrix Algebra?

Data:

$$\boldsymbol{X} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \cdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$

Summary Statistics:

$$\bar{X} = \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \\ \vdots \\ \bar{x}_p \end{bmatrix} = \begin{bmatrix} \frac{1}{n} \sum_{i=1}^n x_{i1} \\ \frac{1}{n} \sum_{i=1}^n x_{i2} \\ \vdots \\ \frac{1}{n} \sum_{i=1}^n x_{ip} \end{bmatrix} = \frac{1}{n} \boldsymbol{X}^T \mathbf{1} \text{ is the sample mean }$$

vector,

and
$$m{S} = \begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1p} \\ s_{21} & s_{22} & \cdots & s_{2p} \\ \vdots & \cdots & \cdots & \ddots \\ s_{n1} & s_{n2} & \cdots & s_{nn} \end{bmatrix} = \frac{1}{n-1} m{X}^T (I - \frac{1}{n} \mathbf{1} \mathbf{1}^T) m{X}$$
 is

 $\begin{bmatrix} s_{p1} & s_{p2} & \cdots & s_{pp} \end{bmatrix}$ the sample covariance matrix. Many matrix algebra techniques will be applied to this matrix in multivariate analysis

Basic Matrix Concepts Some Useful

Notes			

Covariance Matrices

Covariance Matrix

$$\boldsymbol{\Sigma} = \underbrace{\begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1p} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \cdots & \sigma_{pp} \end{bmatrix}}_{\boldsymbol{S}, \boldsymbol{S}}, \quad \boldsymbol{S} = \underbrace{\begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1p} \\ s_{21} & s_{22} & \cdots & s_{2p} \\ \vdots & \cdots & \cdots & \vdots \\ s_{p1} & s_{p2} & \cdots & s_{pp} \end{bmatrix}}_{\boldsymbol{S}, \boldsymbol{S}, \boldsymbol{S}}$$

- Since $\sigma_{jk}=\sigma_{kj}$ (likewise $s_{jk}=s_{kj}$) for all $j\neq k\Rightarrow \Sigma$ and S are symmetric
- ullet Σ and S are also non-negative definite

Vectors

 \bullet A column array of p elements is called a vector of dimension p and is written as

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}$$

ullet The transpose of the column vector x is a row vector

$$\boldsymbol{x}^T = \begin{bmatrix} x_1 & x_2 & \cdots & x_p \end{bmatrix}$$

ullet $L_{m{x}}^{-1}m{x}$, where $L_{m{x}}=\sqrt{\sum_{j=1}^p x_j^2}$, is called a unit vector

A Short Review of Matrix Algebra
CLEMS#N
Motivation Basic Matrix Concepts

3.5

Notes

Notes

Ī			
-			
-			

Matrices

• A matrix A is an array of elements a_{ij} with n rows and p columns:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{bmatrix}$$

 \bullet The transpose A^T has p rows and n columns. The j-th row of A^T os the j-th column of A

$$A^T = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1p} & a_{2p} & \cdots & a_{np} \end{bmatrix}$$

	3
(CLEMS N
	Basic Matrix Concepts

Notes			
-			

Identity Matrix and Inverse Matrix

 An identity matrix, denoted by I, is a square matrix with 1's along the diagonal and 0's everywhere else.
 For example

$$I_{3\times3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

ullet Consider two square matrices A and B with the same dimension. If

$$AB = BA = I$$
,

then B is the inverse of A, denoted by A^{-1}

Orthogonal Matrices

ullet A square matrix Q is orthogonal if

$$QQ^T = Q^TQ = I$$

- If Q is orthogonal, its rows and columns have unit length (i.e., $L_{q_j}=1$) and are mutually perpendicular (i.e., $q_j^Tq_k=0$ for any $j\neq k$)
- Example:

$$Q = \frac{1}{3} \begin{bmatrix} 2 & -2 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & -2 \end{bmatrix}$$

Notes

Notes

_			
_			
_			
_			
_			
_			

Eigenvalues and Eigenvectors

• A square matrix A has an eigenvalue λ with corresponding eigenvector $x \neq 0$ if

$$Ax = \lambda x$$

The eigenvalues of A are the solution to $|A - \lambda I| = 0$

- $f \bullet$ A normalized eigenvector is denoted by ${m e}$ with ${m e}^T{m e}=1$
- \bullet A $p\times p$ matrix A has p pairs of eigenvalues and eigenvectors

$$\lambda_1, \boldsymbol{e}_1 \quad \lambda_2, \boldsymbol{e}_2 \quad \cdots \quad \lambda_p, \boldsymbol{e}_p$$

Matrix Algebra
CLEMS#N
Some Useful Matrix Tools/Facts

Notes			

Spectral Decomposition

- Eigenvalues and eigenvectors will play an important role in DSA 8070. For example, principal components are based on the eigenvalues and eigenvectors of sample covariance matrices
- The spectral decomposition of a $p \times p$ symmetric matrix A is $A = \lambda_1 e_1 e_1^T + \lambda_2 e_2 e_2^T + \cdots + \lambda_p e_p e_p^T$. This can be written in the following matrix form:



Notes

Notes

Determinant and Trace

- The trace if a $p \times p$ matrix A is the sum of the diagonal elements, i.e., $\operatorname{trace}(A) = \sum_{i=1}^p a_{ii}$
- $\bullet \ \, \text{The trace of a square, symmetric matrix } A \text{ is the sum of the eigenvalues, i.e.,} \\ \operatorname{trace}(A) = \sum_{i=1}^p a_{ii} = \sum_{i=1}^p \lambda_i$
- The determinant of a square, symmetric matrix A is the product of the eigenvalues, i.e., $|A| = \prod_{i=1}^p \lambda_i$

2 11

Positive Definite Matrix

- For a $p \times p$ symmetric matrix A and a vector $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_p \end{bmatrix}^T$ the quantity $\mathbf{x}^T A \mathbf{x} = \sum_{i=1}^p \sum_{j=1}^p a_{ij} x_i x_j$ is called a quadratic form
- If $x^TAx \ge 0$ for any vector x, both A and the quadratic form are said to be non-negative definite
 - \Rightarrow all the eigenvalues of A are non-negative
- If $x^TAx > 0$ for any vector $x \neq 0$, both A and the quadratic form are said to be positive definite
 - \Rightarrow all the eigenvalues of A are positive

teview of sligebra	Notes		
rix sful			
ols/Facts			

Square-Root Matrices

 \bullet Spectral decomposition of a positive definite matrix A yields

$$A = \sum_{j=1}^{p} \lambda_j \boldsymbol{e}_j \boldsymbol{e}_j^T = P \Lambda P^T,$$

with $\Lambda_{p \times p} = \operatorname{diag}(\lambda_j)$, all $\lambda_j > 0$, and $P_{p \times p} = \begin{bmatrix} e_1 & e_2 & \cdots & e_p \end{bmatrix}$ an orthonormal matrix of eigenvectors. Then

$$A^{-1} = P\Lambda^{-1}P^T = \sum_{j=1}^p \frac{1}{\lambda_j} e_j e_j^T$$

ullet With $\Lambda^{rac{1}{2}}=\mathrm{diag}(\lambda_j^{rac{1}{2}})$, a square-root matrix is

$$A^{rac{1}{2}} = P\Lambda^{rac{1}{2}}P^T = \sum_{j=1}^p \sqrt{\lambda_j}oldsymbol{e}_joldsymbol{e}_j^T$$

Notes

Notes

3 13

Partitioning Random vectors

- If we partition the $p \times 1$ random vector \boldsymbol{X} into two components $\boldsymbol{X}_1, \boldsymbol{X}_2$ of dimensions $q \times 1$ and $(p-q) \times 1$ respectively, then the mean vector and the variance-covariance matrix need to be partitioned accordingly
- Partitioned mean vector:

$$\mathbb{E}[\boldsymbol{X}] = \mathbb{E}\begin{bmatrix} \boldsymbol{X}_1 \\ \boldsymbol{X}_2 \end{bmatrix} = \begin{bmatrix} \mathbb{E}[\boldsymbol{X}_1] \\ \mathbb{E}[\boldsymbol{X}_2] \end{bmatrix} = \begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix}$$

Partitioned covariance matrix:

$$\boldsymbol{\Sigma} = \begin{bmatrix} \operatorname{Var}(\boldsymbol{X}_1) & \operatorname{Cov}(\boldsymbol{X}_1, \boldsymbol{X}_2) \\ \operatorname{Cov}(\boldsymbol{X}_2, \boldsymbol{X}_1) & \operatorname{Var}(\boldsymbol{X}_2) \end{bmatrix} = \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{q} \times \boldsymbol{q} & \boldsymbol{q} \times (p-q) \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \\ (p-q) \times \boldsymbol{q} & (p-q) \times (p-q) \end{bmatrix}$$

Matrix Algebra			
CLEMS			
Some Useful Matrix Tools/Facts			

Summary

In this lecture, we learned about some matrix concepts, facts, and tools that are useful for multivariate data analysis.

In the next lecture, we will learn:

- Multivariate Normal Distribution
- Copula
- Non-parametric Density Estimation

A Short Review of Matrix Algebra
CLEMS N
Some Useful Matrix Tools/Facts

Notes			
-			