Lecture 4

Multivariate Normal Distribution, Copula, and Nonparametric Density Estimation

Readings: Zelterman, 2015 Chapters 5, 6, 7, Izeman, 2008 Chapter 4.1, 4.3, 4.5

DSA 8070 Multivariate Analysis

Whitney Huang
Clemson University

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Agenda

Multivariate Normal Distribution
2) Geometry of the Multivariate Normal Density
(3) Copula

4 Nonparametric Density Estimation

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4.2

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Review: Univariate Normal Distributions
The probability density function of the normal distribution is

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right\}
$$

where μ and σ^{2} are its mean and variance, respectively.

$\left(\frac{x-\mu}{\sigma}\right)^{2}=(x-\mu)\left(\sigma^{2}\right)^{-1}(x-\mu)$ is the squared statistical distance between x and μ in standard deviation units

Multivariate Distribution

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4.4

Multivariate Normal Distributions

If we have a p-dimensional random vector that is distributed according to a multivariate normal distribution with mean vector $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}, \cdots, \mu_{p}\right)^{T}$ and covariance matrix $\boldsymbol{\Sigma}=\left\{\left(\sigma_{i j}\right)\right\}$, the probability density function is

$$
f(\boldsymbol{x})=\frac{1}{2 \pi^{\frac{p}{2}}|\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp \left\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right\} .
$$

Review: Central Limit Theorem (CLT)

The sampling distribution of the mean will become approximately normally distributed as the sample size becomes larger, irrespective of the shape of the population distribution!

Let $X_{1}, X_{2}, \cdots, X_{n} \stackrel{i . i . d .}{\sim} F$ with $\mu=\mathrm{E}\left[X_{i}\right]$ and $\sigma^{2}=$ $\operatorname{Var}\left[X_{i}\right]$. Then $\bar{X}_{n}=\frac{\sum_{i=1}^{n} X_{i}}{n} \xrightarrow{d} \mathrm{~N}\left(\mu, \frac{\sigma^{2}}{n}\right)$ as $n \rightarrow \infty$.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
Multivariate Normal
Distribution
\qquad
\qquad
\qquad
\qquad
\qquad

CLT In Action

- Generate $100(n)$ random numbers from an Exponential distribution (population distribution)
(2) Compute the sample mean of these 100 random numbers
© Repeat this process 120 times

Properties of the Multivariate Normal Distribution

- If $\boldsymbol{X} \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then any subset of \boldsymbol{X} also has a multivariate normal distribution
Example: Each single variable
$X_{i} \sim \mathrm{~N}\left(\mu_{i}, \sigma_{i}^{2}\right), \quad i=1, \cdots, p$
- If $\boldsymbol{X} \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then any linear combination of the variables has a univariate normal distribution

Example: If $Y=\boldsymbol{a}^{T} \boldsymbol{X}$. Then $Y \sim \mathrm{~N}\left(\boldsymbol{a}^{T} \boldsymbol{\mu}, \boldsymbol{a}^{T} \boldsymbol{\Sigma} \boldsymbol{a}\right)$

- Any conditional distribution for a subset of the variables conditional on known values for another subset of variables is a multivariate distribution

Example: $\boldsymbol{X}_{1} \mid \boldsymbol{X}_{2}=\boldsymbol{x}_{2} \sim$
$\mathrm{N}\left(\boldsymbol{\mu}_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(\boldsymbol{x}_{2}-\boldsymbol{\mu}_{2}\right), \Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cholesterol Measurements Example Cont'd

- The mean value for the difference Δ is

$$
\left[\begin{array}{lll}
-1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
259.5 \\
230.8 \\
221.5
\end{array}\right]=-28.7
$$

- The variance for Δ is
$\left[\begin{array}{lll}-1 & 1 & 0\end{array}\right]\left[\begin{array}{ccc}2276 & 1508 & 813 \\ 1508 & 2206 & 1349 \\ 813 & 1349 & 1865\end{array}\right]\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$
$=\left[\begin{array}{lll}-768 & 698 & 536\end{array}\right]\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$
$=1466$
- If we assume these three variables together follows a multivariate normal distribution, then Δ follows a univariate normal distribution
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Bivariate Normal Distribution

Let's fix $\mu_{1}=\mu_{2}=0$ and $\sigma_{1}^{2}=\sigma_{2}^{2}=1$

Let's focus bivariate normal distributions first as we can visualize them to facilitate our understanding. Suppose we have X_{1} and X_{2} jointly follows a bivariate normal distribution:

$$
\binom{X_{1}}{X_{2}} \sim \mathrm{~N}\left[\binom{\mu_{1}}{\mu_{2}},\left(\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right)\right]
$$

Geometry of the
Multivariate
Normal Density
ultivariate
Distribution,
Copula, and
Nonparametric
Density
Estimation
CLEMS
onparametric \qquad
\qquad
\qquad
\qquad
4.11

Notes

\qquad
\qquad
\qquad

Exponent of Multivariate Normal Distribution Recall the multivariate normal density:

$$
f(\boldsymbol{x})=\frac{1}{2 \pi^{\frac{p}{2}}|\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp \left\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right\}
$$

This density function only depends on x through the squared Mahalanobis distance: $(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})$

- For bivariate normal, we get an ellipse whose equation is $(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})=c^{2}$ which gives all $\boldsymbol{x}=\left(x_{1}, x_{2}\right)$ pairs with constant density
- These ellipses are call contours and all are centered around μ
- A constant probability contour equals
$=$ all \boldsymbol{x} such that $(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})=c^{2}$
$=$ surface of ellipsoid centered at μ

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multivariate Normality and Outliers
The variable $d^{2}=(\boldsymbol{X}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{X}-\boldsymbol{\mu})$ has a chi-square distribution with p degrees of freedom, i.e., $d^{2} \sim \chi_{p}^{2}$ if $\boldsymbol{X} \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Rightarrow$ we can exploit this result to check multivariate normality and to detect outliers

- Sort

$\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{T} \boldsymbol{S}^{-1}\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)$ in an increasing order to get sample quantiles
- Calcaute the theoretical quantiles using the chi-square quantiles with $p=\frac{i-0.5}{n}, \quad i=1, \cdots, n$

Plot sample quantile against theoretical quantiles

Multivariate Normal
Distribution, Copula, and Nonparametric Density
Estimation CLEMS

Geometry of the Multivariate
Normal Density
Copula

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4.14

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

An Illustration of Bivariate Gaussian Copula
Left: Normal marginals + Gaussian Copula ($\rho=0.7$) Right: Exponential marginals + Gaussian Copula ($\rho=0.7$)

The copula approach allows us to "build" multivari ate distributions with non-normal marginals

A Financial Application Using Copula
Here we illustrate how to use a copula to model the bivariate joint distribution of S\&P 500 and Nasdaq (log) returns

(1) Transform the data
$\left(x_{1 i}, x_{2 i}\right)_{i=1}^{n}$ to
$\left(u_{1 i}, u_{2 i}\right)_{i=1}^{n}$ and fit a copula model to it
(2) Fit a distribution to
$\left\{x_{1 i}\right\}_{i=1}^{n}$ and $\left\{x_{2 i}\right\}_{i=1}^{n}$, respectively
(3) Combine the fitted copula and margina distributions to form the fitted bivariate distribution

\Rightarrow The copula approach allows for more options for dependence modeling

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Histograms of Old Faithful Data

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Transition from Histogram to Kernel Density
Goal: to estimate the probability density function $f(x)$

- Histogram:
$\hat{f}(x)=\sum_{j=1}^{m} \frac{\# \text { of } x_{i} \in B_{j}}{n h} \mathbb{1}\left(x \in B_{j}\right)$
where B_{j} is the jth bin and h is the binwidth
- Kernel Density:

Multivariate Normal
Distribution,
Conula and Copula and
Nonparametric Nonparametric
Density
Estimation CLEMS

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
where $K(\cdot)$ is the kernel function

Kernel Density Estimates of Old Faithful

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

