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Agenda

1 Confidence Intervals/Region for Population Means

2 Hypothesis Testing for Mean Vector

3 Multivariate Paired Hotelling’s T-Square
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5.3

Overview

In this week we consider estimation and inference on
population mean vector

We will explore the following questions:

What is the sampling distribution of X̄n?

How to construct confidence intervals/region for
population means

How to conduct hypothesis testing for population
means

Notes

Notes

Notes



Inferences about
a Mean Vector

Confidence
Intervals/Region
for Population
Means

Hypothesis Testing
for Mean Vector

Multivariate Paired
Hotelling’s
T-Square

5.4

Review: Sampling Distribution of Univariate Sample
Mean X̄n

Suppose X1, X2, · · · , Xn is a random sample from a
univariate population distibution with mean E(X) = µ and
variance Var(X) = σ2. The sample mean X̄n is a function
of random sample and therefore has a distribution

X̄n
·∼ N(µ, σ

2

n ) when the sample size n is
“sufficiently” large⇒ This is the central limit theorem
(CLT)

The result above is exact if the population follows a
normal distribution, i.e., X ∼ N(µ, σ2)

The standard error
√

Var(X̄n) = σ√
n

provides a
measure estimation precision. In practice, we use
s√
n

instead where s is the sample standard deviation
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5.5

Sampling Distribution of Multivariate Sample Mean
Vector X̄n

Suppose X1,X2, · · · ,Xn is a random sample from a
multivariate population distibution with mean vector
E(X) = µ and covariance matrix = Σ.

X̄n
·∼ N(µ, 1nΣ) when the sample size n is

“sufficiently” large⇒ This is the multivariate version
of CLT

The result above is exact if the population follows a
normal distribution, i.e., X ∼ N(µ,Σ)

Again, the estimation precision improves with a
larger sample size. Like the univariate case we
would need to replace Σ by its estimate S, the
sample covariacne matrix
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5.6

Review: Interval Estimation of Univariate Population
Mean µ

The general format of a confidence interval (CI) estimate
of a population mean is

Sample mean ± multiplier × standard error of mean.

For variable X, a CI estimate of its population mean µ is

X̄n ± tn−1(
α

2
)
s√
n
,

Here the multiplier value is a function of the confidence
level, α, the sample size n

Notes

Notes

Notes
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5.7

Constructing Confidence Intervals for Mean Vector
We will still use the general recipe

Sample mean ± multiplier × standard error of mean.

The multiplier value also depends the strategy used for
dealing with the multiple inference issue

One at a Time CIs: a CI for µj is computed as

x̄j ± tn−1(α/2)
sj√
n
, j = 1, · · · , p

Bonferroni Method: a CI for µj is computed as

x̄j ± tn−1(α/2p)
sj√
n
, j = 1, · · · , p

Simultaneous CIs: a CI for µj is computed as

x̄j ±

√
(n− 1)p

n− p
Fp,n−p(α)

sj√
n
, j = 1, · · · , p
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5.8

Example: Mineral Content Measurements [source: Penn
Stat Univ. STAT 505]

This example uses the dataset that includes mineral
content measurements at two different arm bone
locations for n = 64 women. We’ll determine confidence
intervals for the two different population means. Sample
means and standard deviations for the two variables are:

Variable Sample size Mean Std Dev
domradius (X1) n = 64 x̄1 = 0.8438 s1 = 0.1140
domhumerus (X2) n = 64 x̄2 = 1.7927 s2 = 0.2835

Let’s apply the three methods we learned to construct
95% CIs
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5.9

Mineral Content Measurements Example Cont’d
One at a Time CIs: x̄j ± tn−1(α/2)

sj√
n
, j = 1, · · · , p.

Therefore 95% CIs for µ1 and µ2 are:

µ1 : 0.8438± 1.998︸ ︷︷ ︸
t63(0.025)

×0.1140√
64

= [0.815, 0.872]

µ2 : 1.7927± 1.998× 0.2835√
64

= [1.722, 1.864]

Bonferroni Method:
x̄j ± tn−1(α/2p) sj√n , j = 1, · · · , p.

µ1 : 0.8438± 2.296︸ ︷︷ ︸
t63(0.0125)

×0.1140√
64

= [0.811, 0.877]

µ2 : 1.7927± 2.296× 0.2835√
64

= [1.711, 1.874]

Simultaneous CIs:
x̄j ±

√
(n−1)p
n−p Fp,n−p(α)

sj√
n
, j = 1, · · · , p

µ1 : 0.8438± 2.528× 0.1140√
64

= [0.808, 0.880]

µ2 : 1.7927± 2.528× 0.2835√
64

= [1.703, 1.882]

Notes

Notes

Notes
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5.10

95 % CIs Based on Three Methods
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5.11

Confidence Ellipsoid
A confidence ellipsoid for µ is the set of µ satisfying

n(X̄n − µ)TS−1(X̄ − µ) ≤ (n− 1)p

n− p
Fp,n−p(α)

x1

x 2

+
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5.12

Hypothesis Testing for Mean

Recall: for univariate data, t statistic

t =
X̄n − µ0
s/
√
n
⇒ t2 =

(
X̄n − µ0

)2
s2/n

= n
(
X̄n − µ0

) (
s2
)−1 (

X̄n − µ0
)

Under H0 : µ = µ0

t ∼ tn−1, t2 ∼ F1,n−1

Extending to multivariate by analogy:

T 2 = n
(
X̄n − µ0

)T
S−1

(
X̄n − µ0

)
Under H0 : µ = µ0

(n− p)
(n− 1)p

T 2 ∼ Fp,n−p

Note: T 2 here is the so-called Hotelling’s T-Square

Notes

Notes

Notes
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5.13

Hypothesis Testing for Mean Vector µ
1 State the null

H0 : µ = µ0

and the alternative

Ha : µ 6= µ0

2 Compute the test statistic

F =
n− p

(n− 1)p
n
(
X̄n − µ0

)T
S−1

(
X̄n − µ0

)
3 Compute the P-value. Under H0 : F ∼ Fp,n−p

4 Draw a conclusion: We do (or do not) have enough
statistical evidence to conclude µ 6= µ0 at α
significant level
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5.14

Example: Women’s Dietary Intake [source: Penn Stat
Univ. STAT 505]

The recommended intake and a sample mean for all
women between 25 and 50 years old are given below:

Variable Recommended Intake (µ0) Sample Mean (x̄n)

Calcium 1000 mg 624.0 mg
Iron 15 mg 11.1 mg

Protein 60 g 65.8 g
Vitamin A 800 µg 839.6 µg
Vitamin C 75 mg 78.9 mg

Here we would like to test, at α = 0.01 level, if the µ = µ0
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5.15

Women’s Dietary Intake Example Analysis
1 State the null

H0 : µ = µ0

and the alternative

Ha : µ 6= µ0

2 Compute the test statistic

F =
n− p

(n− 1)p
n (x̄n − µ0)

T S−1 (x̄n − µ0) = 349.80

3 Compute the P-value. Under H0 : F ∼ Fp,n−p ⇒
p-value
= Pr(Fp,n−p > 349.80) = 3× 10−191 < α = 0.01

4 Draw a conclusion: We do have enough statistical
evidence to conclude µ 6= µ0 at α significant level

Notes

Notes

Notes
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5.16

Profile Plots
1 Standardize each of the observations by dividing

their hypothesized means

2 Plot either simultaneous or Bonferroni CIs for the
population mean of these standardized variables

*

*

*
* *
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5.17

Spouse Survey Data Example
A sample (n = 30) of husband and wife pairs are asked to
respond to each of the following questions:

1 What is the level of passionate love you feel for your
partner?

2 What is the level of passionate love your partner
feels for you?

3 What is the level of companionate love you feel for
your partner?

4 What is the level of companionate love your partner
feels for you?

Responses were recorded on a typical five-point scale: 1)
None at all 2) Very little 3) Some 4) A great deal 5)
Tremendous amount.
We will try to address the following question: Do the
husbands respond to the questions in the same way as
their wives?
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5.18

Multivariate Paired Hotelling’s T-Square
Let XF and XM be the responses to these 4 questions
for females and males, respectively. Here the quantities
of interest are E(D) = µD, the average differences
across all husband and wife pairs.

1 State the null H0 : µD = 0 and the alternative
hypotheses Ha : µD 6= 0

2 Compute the test statistic

F =
n− p

(n− 1)p
nD̄T

nS
−1
D D̄n

3 Compute the P-value. Under H0 : F ∼ Fp,n−p

4 Draw a conclusion: We do (or do not) have enough
statistical evidence to conclude µD 6= 0 at α
significant level

Notes

Notes

Notes
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5.19

Spouse Survey Data Example Analysis
1 State the null

H0 : µD = 0

and the alternative

Ha : µD 6= 0

2 Compute the test statistic

F =
n− p

(n− 1)p
nD̄T

nS
−1
D D̄n = 2.942

3 Compute the P-value. Under H0 : F ∼ Fp,n−p ⇒
p-value = Pr(Fp,n−p >) = 0.0394 < α = 0.05

4 Draw a conclusion: We do have enough statistical
evidence to conclude µD 6= 0 at 0.05 significant level
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5.20

Summary

In this lecture, we learned about:

Confidence Intervals/Regions for Mean Vector

Hypothesis Testing for Mean Vector

Multivariate Version of Paired Tests

In the next lecture, we will learn about comparisons of
several mean vectors

Notes

Notes

Notes
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