
Principle
Component

Analysis

Background

Finding Principal
Components

Principal
Components
Analysis in
Practice

9.1

Lecture 9
Principle Component Analysis
Reading: Zelterman Chapter 8.1-8.4; Izenman Chapter
7.1-7.2

DSA 8070 Multivariate Analysis
October 17-October 21, 2022

Whitney Huang
Clemson University

Principle
Component

Analysis

Background

Finding Principal
Components

Principal
Components
Analysis in
Practice

9.2

Agenda

1 Background

2 Finding Principal Components

3 Principal Components Analysis in Practice
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9.3

History

Karl Pearson (1901): a
procedure for finding
lines and planes which
best fit a set of points in
p-dimensional space

Harold Hotelling (1933):
to find a smaller
“fundamental set of
independent variables”
that determines the
values of the original set
of p variables

Notes

Notes

Notes
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9.4

Basic Idea

Reduce the dimensionality of a data set in which there is
a large number (i.e., p is “large”) of inter-related variables
while retaining as much as possible the variation in the
original set of variables

The reduction is achieved by transforming the
original variables to a new set of variables, “principal
components”, that are uncorrelated

These principal components are ordered such that
the first few retains most of the variation present in
the data

Goals/Objectives

Reduction and summary

Study the structure of covariance/correlation matrix
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9.5

Some Applications

Interpretation (by studying the structure of
covariance/correlation matrix)

Select a sub-set of the original variables, that are
uncorrelated to each other, to be used in other
multivariate procedures (e.g., multiple regression,
classification)

Detect outliers or clusters of multivariate
observations
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9.6

Multivariate Data
We display a multivariate data that contains n units on p
variables using a matrix

X =


X1,1 X2,1 · · · Xp,1

X1,2 X2,2 · · · Xp,2
... · · · . . .

...
X1,n X2,n · · · Xp,n


Summary Statistics

Mean Vector: X̄ = (X̄1, X̄2, · · · , X̄p)
T , where

X̄j =
∑n

i=1Xj,i

n , j = 1, · · · , p

Covariance Matrix: Σ = {σij}pi,j=1, where
σii = Var(Xi), i = 1, · · · , p and
σij = Cov(Xi, Xj), i 6= j

Next, we are going to discuss how to find principal
components

Notes

Notes

Notes
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9.7

Finding Principal Components
Principal Components (PCs) are uncorrelated linear
combinations X̃1, X̃2, · · · , X̃p determined sequentially,
as follows:

1 The first PC is the linear combination
X̃1 = cT1 X =

∑p
i=1 c1iXi that maximize Var(X̃1)

subject to cT1 c1 = 1

2 The second PC is the linear combination
X̃2 = cT2 X =

∑p
i=1 c2iXi that maximize Var(X̃2)

subject to cT2 c2 = 1 and cT2 c1 = 0

...

3 The pth PC is the linear combination
X̃p = cTpX =

∑p
i=1 cpiXi that maximize Var(X̃p)

subject to cTp cp = 1 and cTp ck = 0, ∀k < p
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9.8

Finding Principal Components by Decomposing
Covariance Matrix

Let Σ, the covariance matrix of X, have
eigenvalue-eigenvector pairs (λi, ei)

p
i=1 with

λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 Then, the kth principal
component is given by

X̃k = eTkX = ek1X1 + ek2X2 + · · · ekpXp

⇒ we can perform a single matrix operation to get
the coefficients to form all the PCs!

Then,

Var(X̃i) = λi, i = 1, · · · , p

Moreover Var(X̃1) ≥ Var(X̃2) ≥ · · · ≥ Var(X̃p) ≥ 0

Cov(X̃j , X̃k) = 0, ∀j 6= k

⇒ different PCs are uncorrelated with each other
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9.9

PCA and Proportion of Variance Explained
It can be shown that

p∑
i=1

Var(X̃i) = λ1 + λ2 + · · ·+ λp =

p∑
i=1

Var(Xi)

The proportion of the total variance associated with
the kth principal component is given by

λk
λ1 + λ2 + · · ·+ λp

If a large proportion of the total population variance
(say 80% or 90%) is explained by the first k PCs,
then we can restrict attention to the first k PCs
without much loss of information⇒ we achieve
dimension reduction by considering k < p
uncorrelated components rather than the original p
correlated variables

Notes

Notes

Notes
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9.10

Toy Example 1
Suppose we have X = (X1, X2)

T where X1 ∼ N(0, 4),
X2 ∼ N(0, 1) are independent

Total variation = Var(X1) + Var(X2) = 5

X1 axis explains 80% of total variation

X2 axis explains the remaining 20% of total variation
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9.11

Toy Example 2
Suppose we have X = (X1, X2)

T where X1 ∼ N(0, 4),
X2 ∼ N(0, 1) and Cor(X1, X2) = 0.8

Total variation
= Var(X1) + Var(X2) = Var(X̃1) + Var(X̃2) = 5

X̃1 = .9175X1 + .3975X2 explains 93.9% of total
variation

X̃2 = .3975X1 − .9176X2 explains the remaining
6.1% of total variation
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9.12

PCs of Standardized versus Original Variables
If we use standardized variables, i.e.,
Zj =

Xj−µj√
σjj

j = 1, · · · , p (“z-scores”). Then we are going
to work with the correlation matrix instead of the
covariance matrix of (X1, · · · , Xp)

T

We can obtain PCs of standardized variables by
applying spectral decomposition of the correlation
matrix

However, the PCs (and the proportion of variance
explained) are, in general, different than those from
original variables

If units of p variables are comparable, covariance
PCA may be more informative, if units of p variables
are incomparable, correlation PCA may be more
appropriate

Notes

Notes

Notes
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9.13

Example: Men’s 100k Road Race
The data consists of the times (in minutes) to complete
successive 10k segments (p = 10) of the race. There are
80 racers in total (n = 80)
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9.14

Eigenvalues of Σ̂

Eigenvalue Proportion Cumulative
PC1 735.77 0.75 0.75
PC2 98.47 0.10 0.85
PC3 53.27 0.05 0.90
PC4 37.30 0.04 0.94
PC5 26.04 0.03 0.97
PC6 17.25 0.02 0.98
PC7 8.03 0.01 0.99
PC8 4.25 0.00 1.00
PC9 2.40 0.00 1.00

PC10 1.29 0.00 1.00

Much of the total variance can be explained by the first
three PCs
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9.15

How Many Components to Retain?

A scree plot displays the variance explained by each
component
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Men’s 100k Road Race Component Weights

Comp.1 Comp.2 Comp.3
0-10 time 0.13 0.21 0.36
10-20 time 0.15 0.25 0.42
20-30 time 0.20 0.31 0.34
30-40 time 0.24 0.33 0.20
40-50 time 0.31 0.30 -0.13
50-60 time 0.42 0.21 -0.22
60-70 time 0.34 -0.05 -0.19
70-80 time 0.41 -0.01 -0.54
80-90 time 0.40 -0.27 0.15
90-100 time 0.39 -0.69 0.35

What these numbers mean?
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9.17

Visualizing the Weights to Gain Insight
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9.18

Looking for Patterns
Mature runners: Age < 40 (M); Senior runners: Age
>= 40 (S)
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9.19

Relating to Original Data: Profile Plot
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9.20

Correlation PCA versus Covariance PCA
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9.21

Example: Monthly Sea Surface Temperatures
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9.22

Sea Surface Temperatures and Anomalies

The “data” are gridded at a 2◦ by 2◦ resolution from
124◦E − 70◦W and 30◦S − 30◦N . The dimension of
this SST data set is
2303 (number of grid points in space)×
552 (monthly time series from 1970 Jan. to 2015 Dec.)

Sea-surface temperature anomalies are the
temperature differences from the climatology (i.e.
long-term monthly mean temperatures)

We will demonstrate the use of Empirical Orthogonal
Function (EOF) analysis to uncover the
low-dimensional structure of this spatio-temporal
data set
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9.23

The Emipirical Orthogonal Function (EOF)
Decomposition

Empirical orthogonal functions (EOFs) are the
geophysicist’s terminology for the eigenvectors in the
eigen-decomposition of an empirical covariance matrix. In
its discrete formulation, EOF analysis is simply Principal
Component Analysis (PCA). EOFs are usually used

To find principal spatial structures

To reduce the dimension (spatially or temporally) in
large spatio-temporal datasets
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9.24

Screen Plot for EOFs
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9.25

Perform EOF Decomposition and Plot the First Three
Modes

EOF1: The
classic ENSO
pattern

EOF2: A
modulation of the
center

EOF3: Messing
with the coast of
SA and the
Northern Pacific.
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9.26

1998 Jan El Niño Event

Data EOF 1

EOF 1 and 2 EOF 1, 2 and 3
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