Lecture 9

Principle Component Analysis
Reading: Zelterman Chapter 8.1-8.4; Izenman Chapter 7.1-7.2

DSA 8070 Multivariate Analysis

October 17-October 21, 2022

Whitney Huang Clemson University

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Agenda
(1) Background
2) Finding Principal Components

Principal Components Analysis in Practice

	Principle Component Analysis
	CLEMSers
	Background
	Finding Principal Components
	Principa Components Analysis in Practice Practice

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Reduce the dimensionality of a data set in which there is a large number (i.e., p is "large") of inter-related variables while retaining as much as possible the variation in the original set of variables

- The reduction is achieved by transforming the original variables to a new set of variables, "principal components", that are uncorrelated
- These principal components are ordered such that the first few retains most of the variation present in the data
- Goals/Objectives
- Reduction and summary
- Study the structure of covariance/correlation matrix

Some Applications

- Interpretation (by studying the structure of covariance/correlation matrix)
- Select a sub-set of the original variables, that are uncorrelated to each other, to be used in other multivariate procedures (e.g., multiple regression, classification)
- Detect outliers or clusters of multivariate observations

Principle Analysis CLEMSers Background

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
9.5

Multivariate Data

We display a multivariate data that contains n units on p variables using a matrix

$$
\boldsymbol{X}=\left(\begin{array}{cccc}
X_{1,1} & X_{2,1} & \cdots & X_{p, 1} \\
X_{1,2} & X_{2,2} & \cdots & X_{p, 2} \\
\vdots & \cdots & \ddots & \vdots \\
X_{1, n} & X_{2, n} & \cdots & X_{p, n}
\end{array}\right)
$$

Summary Statistics

- Mean Vector: $\overline{\boldsymbol{X}}=\left(\bar{X}_{1}, \bar{X}_{2}, \cdots, \bar{X}_{p}\right)^{T}$, where $\bar{X}_{j}=\frac{\sum_{i=1}^{n} X_{j, i}}{n}, \quad j=1, \cdots, p$
- Covariance Matrix: $\Sigma=\left\{\sigma_{i j}\right\}_{i, j=1}^{p}$, where
$\sigma_{i i}=\operatorname{Var}\left(X_{i}\right), i=1, \cdots, p$ and
$\sigma_{i j}=\operatorname{Cov}\left(X_{i}, X_{j}\right), i \neq j$
Next, we are going to discuss how to find principa components

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Finding Principal Components
Principal Components (PCs) are uncorrelated linear combinations $\tilde{X}_{1}, \tilde{X}_{2}, \cdots, \tilde{X}_{p}$ determined sequentially, as follows:

- The first PC is the linear combination
$\tilde{X}_{1}=\boldsymbol{c}_{1}^{T} \boldsymbol{X}=\sum_{i=1}^{p} c_{1 i} X_{i}$ that maximize $\operatorname{Var}\left(\tilde{X}_{1}\right)$ subject to $\boldsymbol{c}_{1}^{T} \boldsymbol{c}_{1}=1$
(2) The second PC is the linear combination $\tilde{X}_{2}=\boldsymbol{c}_{2}^{T} \boldsymbol{X}=\sum_{i=1}^{p} c_{2 i} X_{i}$ that maximize $\operatorname{Var}\left(\tilde{X}_{2}\right)$ subject to $\boldsymbol{c}_{2}^{T} \boldsymbol{c}_{2}=1$ and $\boldsymbol{c}_{2}^{T} \boldsymbol{c}_{1}=0$
(3) The $p_{t h} \mathrm{PC}$ is the linear combination
$\tilde{X}_{p}=\boldsymbol{c}_{p}^{T} \boldsymbol{X}=\sum_{i=1}^{p} c_{p i} X_{i}$ that maximize $\operatorname{Var}\left(\tilde{X}_{p}\right)$ subject to $\boldsymbol{c}_{p}^{T} \boldsymbol{c}_{p}=1$ and $\boldsymbol{c}_{p}^{T} \boldsymbol{c}_{k}=0, \forall k<p$

Finding Principal Components by Decomposing Covariance Matrix

- Let Σ, the covariance matrix of \boldsymbol{X}, have eigenvalue-eigenvector pairs $\left(\lambda_{i}, \boldsymbol{e}_{i}\right)_{i=1}^{p}$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{p} \geq 0$ Then, the $k_{t h}$ principal component is given by

$$
\tilde{X}_{k}=\boldsymbol{e}_{k}^{T} \boldsymbol{X}=e_{k 1} X_{1}+e_{k 2} X_{2}+\cdots e_{k p} X_{p}
$$

\Rightarrow we can perform a single matrix operation to get the coefficients to form all the PCs!

- Then,

$$
\begin{gathered}
\operatorname{Var}\left(\tilde{X}_{i}\right)=\lambda_{i}, \quad i=1, \cdots, p \\
\text { Moreover } \operatorname{Var}\left(\tilde{X}_{1}\right) \geq \operatorname{Var}\left(\tilde{X}_{2}\right) \geq \cdots \geq \operatorname{Var}\left(\tilde{X}_{p}\right) \geq 0 \\
\operatorname{Cov}\left(\tilde{X}_{j}, \tilde{X}_{k}\right)=0, \quad \forall j \neq k
\end{gathered}
$$

\Rightarrow different PCs are uncorrelated with each other

PCA and Proportion of Variance Explained

- It can be shown that

$$
\sum_{i=1}^{p} \operatorname{Var}\left(\tilde{X}_{i}\right)=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{p}=\sum_{i=1}^{p} \operatorname{Var}\left(X_{i}\right)
$$

- The proportion of the total variance associated with the $k_{t h}$ principal component is given by

$$
\frac{\lambda_{k}}{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{p}}
$$

- If a large proportion of the total population variance (say 80% or 90%) is explained by the first k PCs, then we can restrict attention to the first k PCs without much loss of information \Rightarrow we achieve dimension reduction by considering $k<p$ uncorrelated components rather than the original p correlated variables

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Toy Example 1
Suppose we have $\boldsymbol{X}=\left(X_{1}, X_{2}\right)^{T}$ where $X_{1} \sim \mathrm{~N}(0,4)$, $X_{2} \sim \mathrm{~N}(0,1)$ are independent

- Total variation $=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)=5$
- X_{1} axis explains 80% of total variation
- X_{2} axis explains the remaining 20% of total variation

Toy Example 2

Suppose we have $\boldsymbol{X}=\left(X_{1}, X_{2}\right)^{T}$ where $X_{1} \sim \mathrm{~N}(0,4)$,
$X_{2} \sim \mathrm{~N}(0,1)$ and $\operatorname{Cor}\left(X_{1}, X_{2}\right)=0.8$

- Total variation
$=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)=\operatorname{Var}\left(\tilde{X}_{1}\right)+\operatorname{Var}\left(\tilde{X}_{2}\right)=5$
- $\tilde{X}_{1}=.9175 X_{1}+.3975 X_{2}$ explains 93.9% of total variation
- $\tilde{X}_{2}=.3975 X_{1}-.9176 X_{2}$ explains the remaining 6.1% of total variation

PCs of Standardized versus Original Variables
If we use standardized variables, i.e.,
$Z_{j}=\frac{X_{j}-\mu_{j}}{\sqrt{\sigma_{j j}}} j=1, \cdots, p$ ("z-scores"). Then we are going to work with the correlation matrix instead of the covariance matrix of $\left(X_{1}, \cdots, X_{p}\right)^{\mathrm{T}}$

- We can obtain PCs of standardized variables by applying spectral decomposition of the correlation matrix
- However, the PCs (and the proportion of variance explained) are, in general, different than those from original variables
- If units of p variables are comparable, covariance PCA may be more informative, if units of p variables are incomparable, correlation PCA may be more appropriate

Principle Component
Analysis CLEM MSes!

Finding Principal
Components

Notes

\qquad
9.11

Notes

\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: Men's 100k Road Race
The data consists of the times (in minutes) to complete successive 10k segments $(p=10)$ of the race. There are 80 racers in total $(n=80)$

Eigenvalues of $\hat{\Sigma}$

	Eigenvalue	Proportion	Cumulative
PC1	735.77	0.75	0.75
PC2	98.47	0.10	0.85
PC3	53.27	0.05	0.90
PC4	37.30	0.04	0.94
PC5	26.04	0.03	0.97
PC6	17.25	0.02	0.98
PC7	8.03	0.01	0.99
PC8	4.25	0.00	1.00
PC9	2.40	0.00	1.00
PC10	1.29	0.00	1.00

Much of the total variance can be explained by the first three PCs

How Many Components to Retain?
A scree plot displays the variance explained by each component

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Men's 100k Road Race Component Weights

	Comp.1	Comp.2	Comp.3
0-10 time	0.13	0.21	0.36
10-20 time	0.15	0.25	0.42
20-30 time	0.20	0.31	0.34
30-40 time	0.24	0.33	0.20
40-50 time	0.31	0.30	-0.13
50-60 time	0.42	0.21	-0.22
60-70 time	0.34	-0.05	-0.19
70-80 time	0.41	-0.01	-0.54
80-90 time	0.40	-0.27	0.15
90-100 time	0.39	-0.69	0.35

What these numbers mean?

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Looking for Patterns
Mature runners: Age $<40(\mathrm{M})$; Senior runners: Age
$>=40$ (S)

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Correlation PCA versus Covariance PCA

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sea Surface Temperatures and Anomalies

- The "data" are gridded at a 2° by 2° resolution from $124^{\circ} \mathrm{E}-70^{\circ} \mathrm{W}$ and $30^{\circ} \mathrm{S}-30^{\circ} \mathrm{N}$. The dimension of this SST data set is
2303 (number of grid points in space) \times
552 (monthly time series from 1970 Jan. to 2015 Dec.)
- Sea-surface temperature anomalies are the temperature differences from the climatology (i.e. long-term monthly mean temperatures)
- We will demonstrate the use of Empirical Orthogonal Function (EOF) analysis to uncover the low-dimensional structure of this spatio-temporal data set

The Emipirical Orthogonal Function (EOF) Decomposition

Empirical orthogonal functions (EOFs) are the geophysicist's terminology for the eigenvectors in the eigen-decomposition of an empirical covariance matrix. In its discrete formulation, EOF analysis is simply Principal Component Analysis (PCA). EOFs are usually used

- To find principal spatial structures
- To reduce the dimension (spatially or temporally) in large spatio-temporal datasets

Principle Analysis
CLEMS*\%

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Principal
omponents Analysis in Practice

Notes

\qquad

Notes

Perform EOF Decomposition and Plot the First Three Modes

EOF1: The classic ENSO pattern

EOF2: A
modulation of the center

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

