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@ Karl Pearson (1901): a S
procedure for finding
lines and planes which
best fit a set of points in

p-dimensional space

Background

o Harold Hotelling (1933):
to find a smaller
“fundamental set of
independent variables”
that determines the
values of the original set
of p variables
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Basic Idea D,
Analysis
Reduce the dimensionality of a data set in which there is | ) (g
a large number (i.e., p is “large”) of inter-related variables
while retaining as much as possible the variation in the Background

original set of variables

@ The reduction is achieved by transforming the
original variables to a new set of variables, “principal
components”, that are uncorrelated

@ These principal components are ordered such that
the first few retains most of the variation present in
the data

@ Goals/Objectives
o Reduction and summary

o Study the structure of covariance/correlation matrix

Some Applications e,

Analysis

CLEMS®N

o Interpretation (by studying the structure of Sk
covariance/correlation matrix)
@ Select a sub-set of the original variables, that are
uncorrelated to each other, to be used in other
multivariate procedures (e.g., multiple regression,
classification)
@ Detect outliers or clusters of multivariate
observations
Multivariate Data AN
We display a multivariate data that contains » units on p Analysis
variables using a matrix CLEMS@N
X1 Xop -0 Xpi
X2 Xop -+ Xpo Finding Principa
X = . . i Components
Xlﬁn XZ,n e Xp,n

Summary Statistics
@ Mean Vector: X = (X1, Xs,---,X,)T, where
- X .
Xj=s==t20 0 =1, ,p

o Covariance Matrix: & = {0y;}7,_;, where
oy = Var(X;),i=1,---,pand
oij = Cov(X;, X;), i # j

Next, we are going to discuss how to find principal
components
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Finding Principal Components
Principal Components (PCs) are uncorrelated linear
combinations X, X5, --- , X, determined sequentially,
as follows:
@ The first PC is the linear combination
Xl = CTX = Zf:l c1; X; that maximize le(Xl)
subjectto cf'e; =1

Q The second PC is the linear combination }
Xo =l X =37 | c0;X; that maximize Var(X5)
subjectto clea = 1and c¢le; =0

Q The p,, PC is the linear combination }
X, = ¢l X =31 ¢ X; that maximize Var(X,,)
subjectto ¢’'c, = 1and c¢fe, =0, vk < p

Finding Principal Components by Decomposing
Covariance Matrix
o Let X, the covariance matrix of X, have
eigenvalue-eigenvector pairs (\;, e;)?_; with
AL > Ag > -+ > ), > 0Then, the ky, principal
component is given by

X}C = e{X = €k1X1 + €k2X2 + - 'kaXp

= we can perform a single matrix operation to get
the coefficients to form all the PCs!

@ Then,

Var(X;) =X, i=1,--,p
Moreover Var(X;) > Var(Xs) > --- > Var(X,) >0

Cov(X;, Xy) =0, Vi#k

= different PCs are uncorrelated with each other

PCA and Proportion of Variance Explained
@ [t can be shown that

P P
ZVar(X,i) =M+X+- 4+ A= ZVar(Xi)
i=1

i=1

@ The proportion of the total variance associated with
the k, principal component is given by
Ak

o If a large proportion of the total population variance
(say 80% or 90%) is explained by the first k PCs,
then we can restrict attention to the first £ PCs
without much loss of information = we achieve
dimension reduction by considering k < p
uncorrelated components rather than the original p
correlated variables
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Toy Example 1
Suppose we have X = (X1, X»)” where X; ~ N(0,4),
Xy ~ N(0,1) are independent
o Total variation = Var(X;) + Var(X2) =5

@ X, axis explains 80% of total variation

@ X, axis explains the remaining 20% of total variation

Toy Example 2
Suppose we have X = (X7, X5)T where X; ~ N(0,4),
Xo ~ N(O7 1) and COI‘()(l7 XQ) =0.8
o Total variation
= Var(X)) + Var(X3) = Var(X;) + Var(Xy) = 5

o X, = .9175X] + .3975X, explains 93.9% of total
variation

0 X, =.3975X; — .9176X explains the remaining
6.1% of total variation

PCs of Standardized versus Original Variables
If we use standardized variables, i.e.,

Z; =X j— 1 ... p(“z-scores”). Then we are going

) Ve : o
to work with the correlation matrix instead of the
covariance matrix of (X1,---,X,)"

@ We can obtain PCs of standardized variables by
applying spectral decomposition of the correlation
matrix

@ However, the PCs (and the proportion of variance
explained) are, in general, different than those from
original variables

o If units of p variables are comparable, covariance

PCA may be more informative, if units of p variables

are incomparable, correlation PCA may be more
appropriate
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Example: Men’s 100k Road Race

The data consists of the times (in minutes) to complete
successive 10k segments (p = 10) of the race. There are

80 racers in total (n = 80)

0-10 time

10-20 time

50-60 time

58828

90-100 time
Eigenvalues of X

Eigenvalue Proportion Cumulative

PCA 735.77 0.75 0.75
PC2 98.47 0.10 0.85
PC3 53.27 0.05 0.90
PC4 37.30 0.04 0.94
PC5 26.04 0.03 0.97
PC6 17.25 0.02 0.98
PC7 8.03 0.01 0.99
PC8 4.25 0.00 1.00
PC9 2.40 0.00 1.00
PC10 1.29 0.00 1.00

Much of the total variance can be explained by the first

three PCs

How Many Components to Retain?

A scree plot displays the variance explained by each

component
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Men’s 100k Road Race Component Weights

Comp.1 Comp.2 Comp.3
0-10 time 0.13 0.21 0.36
10-20 time 0.15 0.25 0.42
20-30 time 0.20 0.31 0.34
30-40 time 0.24 0.33 0.20
40-50 time 0.31 0.30 -0.13
50-60 time 0.42 0.21 -0.22
60-70 time 0.34 -0.05 -0.19
70-80 time 0.41 -0.01 -0.54
80-90 time 0.40 -0.27 0.15
90-100 time 0.39 -0.69 0.35
What these numbers mean?
Visualizing the Weights to Gain Insight
PCA of Covariance Matrix
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First component: overall speed

Second component: contrast long and short races

Looking for Patterns
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PC1: Overall speed
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Relating to Original Data: Profile Plot i
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Sea Surface Temperatures and Anomalies enclpie

Component

Analysis Notes

T EMSgEN
o The “data” are gridded at a 2° by 2° resolution from CLEMOBIN

124°FE — 70°W and 30°S — 30°N. The dimension of
this SST data set is

2303 (number of grid points in space) x
552 (monthly time series from 1970 Jan. to 2015 Dec.)

@ Sea-surface temperature anomalies are the
temperature differences from the climatology (i.e.

long-term monthly mean temperatures)

@ We will demonstrate the use of Empirical Orthogonal
Function (EOF) analysis to uncover the

low-dimensional structure of this spatio-temporal

data set
The Emipirical Orthogonal Function (EOF) Cg;"pj)‘g':m
iti nalysi Notes
Decomposition Analysis

CLEMS®N

Empirical orthogonal functions (EOFs) are the
geophysicist’s terminology for the eigenvectors in the

eigen-decomposition of an empirical covariance matrix. In
its discrete formulation, EOF analysis is simply Principal

Component Analysis (PCA). EOFs are usually used

@ To find principal spatial structures

@ To reduce the dimension (spatially or temporally) in
large spatio-temporal datasets

Screen Plot for EOFs Principle

Component
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Perform EOF Decomposition and Plot the First Three
Modes

EOF1: The
classic ENSO
pattern

EOF2: A
modulation of the
center

EOF3: Messing
with the coast of
SA and the
Northern Pacific.

1998 Jan EIl Nino Event
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