Lecture 9

Principle Component Analysis

Reading: Zelterman Chapter 8.1-8.4; Izenman Chapter 7.1-7.2

DSA 8070 Multivariate Analysis October 17-October 21, 2022

Notes

Whitney Huang Clemson University

Notes

Notes

History

- Karl Pearson (1901): a procedure for finding lines and planes which best fit a set of points in *p*-dimensional space
- Harold Hotelling (1933): to find a smaller "fundamental set of independent variables" that determines the values of the original set of p variables

rily by mental set or . er than the r's, w . are such If 71, 75, (i = 1, 2, .

Basic Idea

Reduce the dimensionality of a data set in which there is a large number (i.e., p is "large") of inter-related variables while retaining as much as possible the variation in the original set of variables

- The reduction is achieved by transforming the original variables to a new set of variables, "principal components", that are uncorrelated
- These principal components are ordered such that the first few retains most of the variation present in the data
- Goals/Objectives
 - Reduction and summary
 - Study the structure of covariance/correlation matrix

Notes

Notes

- Interpretation (by studying the structure of covariance/correlation matrix)
- Select a sub-set of the original variables, that are uncorrelated to each other, to be used in other multivariate procedures (e.g., multiple regression, classification)
- Detect outliers or clusters of multivariate observations

Analysis			
ackground			

Multivariate Data

We display a multivariate data that contains \boldsymbol{n} units on \boldsymbol{p} variables using a matrix

$$\boldsymbol{X} = \begin{pmatrix} X_{1,1} & X_{2,1} & \cdots & X_{p,1} \\ X_{1,2} & X_{2,2} & \cdots & X_{p,2} \\ \vdots & \cdots & \ddots & \vdots \\ X_{1,n} & X_{2,n} & \cdots & X_{p,n} \end{pmatrix}$$

Summary Statistics

- Mean Vector: $\bar{X} = (\bar{X}_1, \bar{X}_2, \cdots, \bar{X}_p)^T$, where $\bar{X}_j = \frac{\sum_{i=1}^n X_{j,i}}{n}$, $j = 1, \cdots, p$
- Covariance Matrix: $\Sigma = \{\sigma_{ij}\}_{i,j=1}^{p}$, where $\sigma_{ii} = \operatorname{Var}(X_i), i = 1, \cdots, p$ and $\sigma_{ij} = \operatorname{Cov}(X_i, X_j), i \neq j$

Next, we are going to discuss how to find **principal** components

Principle Component Analysis

Finding Principal Components

Principal Components (PCs) are uncorrelated linear combinations $\tilde{X}_1, \tilde{X}_2, \cdots, \tilde{X}_p$ determined sequentially, as follows:

- The first PC is the linear combination $\tilde{X}_1 = c_1^T X = \sum_{i=1}^p c_{1i} X_i$ that maximize $Var(\tilde{X}_1)$ subject to $c_1^T c_1 = 1$
- One second PC is the linear combination $\tilde{X}_2 = \boldsymbol{c}_2^T \boldsymbol{X} = \sum_{i=1}^p c_{2i} X_i$ that maximize $\operatorname{Var}(\tilde{X}_2)$ subject to $c_2^T c_2 = 1$ and $c_2^T c_1 = 0$

÷

O The p_{th} PC is the linear combination
$$\begin{split} & \tilde{X}_p = \boldsymbol{c}_p^T \boldsymbol{X} = \boldsymbol{\Sigma}_{i=1}^p c_{pi} \boldsymbol{X}_i \text{ that maximize } \operatorname{Var}(\tilde{X}_p) \\ & \text{subject to } \boldsymbol{c}_p^T \boldsymbol{c}_p = 1 \text{ and } \boldsymbol{c}_p^T \boldsymbol{c}_k = 0, \forall k$$

Finding Principal Components by Decomposing Covariance Matrix

• Let Σ , the covariance matrix of X, have eigenvalue-eigenvector pairs $(\lambda_i, e_i)_{i=1}^p$ with $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p \geq 0$ Then, the k_{th} principal component is given by

 $\tilde{X}_k = \boldsymbol{e}_k^T \boldsymbol{X} = e_{k1} X_1 + e_{k2} X_2 + \cdots + e_{kp} X_p$

 \Rightarrow we can perform a single matrix operation to get the coefficients to form all the PCs!

• Then,

 $\operatorname{Var}(\tilde{X}_i) = \lambda_i, \quad i = 1, \cdots, p$ Moreover $\operatorname{Var}(\tilde{X}_1) \geq \operatorname{Var}(\tilde{X}_2) \geq \cdots \geq \operatorname{Var}(\tilde{X}_p) \geq 0$

 $\operatorname{Cov}(\tilde{X}_j, \tilde{X}_k) = 0, \quad \forall j \neq k$

⇒ different PCs are uncorrelated with each other

Notes

Notes

PCA and Proportion of Variance Explained It can be shown that

• The proportion of the total variance associated with the $\dot{k_{th}}$ principal component is given by

$$\frac{\lambda_k}{\lambda_1 + \lambda_2 + \dots + \lambda_p}$$

• If a large proportion of the total population variance (say 80% or 90%) is explained by the first k PCs, then we can restrict attention to the first k PCs without much loss of information \Rightarrow we achieve dimension reduction by considering k < puncorrelated components rather than the original pcorrelated variables

Toy Example 1

Suppose we have $X = (X_1, X_2)^T$ where $X_1 \sim N(0, 4)$, $X_2 \sim N(0, 1)$ are independent

- Total variation = $Var(X_1) + Var(X_2) = 5$
- X₁ axis explains 80% of total variation
- X₂ axis explains the remaining 20% of total variation

Notes

Image: Second second

Toy Example 2

Suppose we have $\mathbf{X} = (X_1, X_2)^T$ where $X_1 \sim N(0, 4)$, $X_2 \sim N(0, 1)$ and $\operatorname{Cor}(X_1, X_2) = 0.8$

- Total variation
- $= \operatorname{Var}(X_1) + \operatorname{Var}(X_2) = \operatorname{Var}(\tilde{X}_1) + \operatorname{Var}(\tilde{X}_2) = 5$
- $\tilde{X}_1 = .9175X_1 + .3975X_2$ explains 93.9% of total variation
- $\tilde{X}_2 = .3975X_1 .9176X_2$ explains the remaining 6.1% of total variation

Notes

Component

Notes

PCs of Standardized versus Original Variables If we use standardized variables, i.e.,

 $Z_j = \frac{X_j - \mu_j}{\sqrt{\sigma_{jj}}} j = 1, \cdots, p$ ("z-scores"). Then we are going to work with the correlation matrix instead of the covariance matrix of $(X_1, \cdots, X_p)^{\mathrm{T}}$

- We can obtain PCs of standardized variables by applying spectral decomposition of the correlation matrix
- However, the PCs (and the proportion of variance explained) are, in general, different than those from original variables
- If units of *p* variables are comparable, covariance PCA may be more informative, if units of *p* variables are incomparable, correlation PCA may be more appropriate

. .

Example: Men's 100k Road Race

The data consists of the times (in minutes) to complete successive 10k segments (p=10) of the race. There are 80 racers in total (n=80)

Notes

kground ding Principal nponents dypis in ctice

Eigenvalues of $\hat{\Sigma}$

	Eigenvalue	Proportion	Cumulative
PC1	735.77	0.75	0.75
PC2	98.47	0.10	0.85
PC3	53.27	0.05	0.90
PC4	37.30	0.04	0.94
PC5	26.04	0.03	0.97
PC6	17.25	0.02	0.98
PC7	8.03	0.01	0.99
PC8	4.25	0.00	1.00
PC9	2.40	0.00	1.00
PC10	1.29	0.00	1.00

Much of the total variance can be explained by the first three PCs

Analysis
Principal Components Analysis in Practice

Principle

Notes

How Many Components to Retain?

A scree plot displays the variance explained by each component

Men's 100k Road Race Component Weights

	Comp.1	Comp.2	Comp.3
0-10 time	0.13	0.21	0.36
10-20 time	0.15	0.25	0.42
20-30 time	0.20	0.31	0.34
30-40 time	0.24	0.33	0.20
40-50 time	0.31	0.30	-0.13
50-60 time	0.42	0.21	-0.22
60-70 time	0.34	-0.05	-0.19
70-80 time	0.41	-0.01	-0.54
80-90 time	0.40	-0.27	0.15
90-100 time	0.39	-0.69	0.35

What these numbers mean?

Notes

Notes

Looking for Patterns

Mature runners: Age < 40 (M); Senior runners: Age >= 40 (S)

Relating to Original Data: Profile Plot

Notes

Notes

Example: Monthly Sea Surface Temperatures

Sea Surface Temperatures and Anomalies

- The "data" are gridded at a 2° by 2° resolution from $124^{\circ}E 70^{\circ}W$ and $30^{\circ}S 30^{\circ}N$. The dimension of this SST data set is 2303 (number of grid points in space) × 552 (monthly time series from 1970 Jan. to 2015 Dec.)
- Sea-surface temperature anomalies are the temperature differences from the climatology (i.e. long-term monthly mean temperatures)
- We will demonstrate the use of Empirical Orthogonal Function (EOF) analysis to uncover the low-dimensional structure of this spatio-temporal data set

Principle Component Analysis
Principal Components Analysis in Practice

Notes

The Emipirical Orthogonal Function (EOF) Decomposition

Empirical orthogonal functions (EOFs) are the geophysicist's terminology for the eigenvectors in the eigen-decomposition of an empirical covariance matrix. In its discrete formulation, EOF analysis is simply Principal Component Analysis (PCA). EOFs are usually used

- To find principal spatial structures
- To reduce the dimension (spatially or temporally) in large spatio-temporal datasets

Notes

Notes

Screen Plot for EOFs

Perform EOF Decomposition and Plot the First Three Modes

EOF1: The classic ENSO pattern

EOF2: A modulation of the center

EOF3: Messing with the coast of SA and the Northern Pacific.

Notes

1998 Jan El Niño Event

Endopression of the second sec

Notes