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10.3

Introductory Example: Intelligence Tests [Smith & Stanley
(1983)]

Six tests (general, picture, blocks, maze, reading, vocab) were
given to 112 individuals. The resulting sample correlation
matrix of these tests is as follows:

Can the correlation between the six tests be explained by
one or two variables describing some general concept of
intelligence?
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10.4

Overview

Factor Analysis (FA) assumes the covariance structure among
a set of variables, X = (X1,⋯,Xp)T , can be described via a
linear combination of unobservable (latent) variables
F = (F1,⋯, Fm)T , called factors.

There are three typical objectives of FA:

1 Data reduction: explain covariance between p variables
using m < p latent factors

2 Data interpretation: find features (i.e., factors) that are
important for explaining covariance⇒ exploratory FA

3 Theory testing: determine if hypothesized factor strucuture
fits observed data⇒ confirmatory FA
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10.5

FA and PCA

FA and PCA have similar themes, i.e., to explain covariance
between variables via linear combinations of other variables

However, there are distinctions between the two approaches:

FA assumes a statistical model that describes covariation
in observed variables via linear combinations of latent
variables

PCA finds uncorrelated linear combinations of observed
variables that explain maximal variance

FA refers to a statistical model, whereas PCA refers to
the eigenvalue decomposition of a covariance (or corre-
lation) matrix
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10.6

Factor Model
Let X is a random vector with mean µ and covariance Σ. The
factor model postulates that X can be written as a linear
combination of a set of m common factors F1, F2,⋯, Fm:

X1 = µ1 + `11F1 + `12F2 +⋯ + `1mFm + ε1
X2 = µ2 + `21F1 + `22F2 +⋯ + `2mFm + ε2
⋮ ⋮ ⋮
Xp = µp + `p1F1 + `p2F2 +⋯ + `pmFm + εp

where
{`jk}p×m denotes the matrix of factor loadings, that is, `jk
is the loading (importance) of the j-th variable on the k-th
factor

(F1,⋯, Fm)T denotes the vector of the latent factor scores,
that is, Fk is the score on the k-th factor

(ε1,⋯, εp)T denotes the vector of latent error terms, which
correspond to the random disturbances specific to each
variable
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10.7

Factor Model in Matrix Notation

The factor model can be written in a matrix form:

X = µ +LF + ε,

where

L = {`jk}p×m is the factor loading matrix

F = (F1,⋯, Fm)T is the factor score vector

ε = (ε1,⋯, εp)T is the (latent) error vector

Unlike in linear model, we do not observe F , therefore we need
to impose some assumptions to facilitate the model
identification
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10.8

Factor Model Assumptions

First, we assume:

E(F ) = 0, Var(F ) = E(FF T ) = I
E(ε) = 0, Var(ε) = E(εεT ) = Ψ = diag(ψi), i = 1,⋯, p

Moreover, we assume F and ε are independent, so that
Cov(F ,ε) = 0

The factors have variance one (i.e., Var(Fi) = 1) and
uncorrelated with one another

The error vector are uncorrelated with one another with
the specific variance Var(εi) = ψi

Under the model assumptions, we have

X = µ +LF + ε⇔Σ = LLT +Ψ
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10.9

Variances and Covariances of Factor Models
Under the factor model, we have

Var(Xi) = `2i1 + `2i2 +⋯ + `2im + ψi

Cov(Xi,Xj) = `i1`j1 + `i2`j2 +⋯ + `im`jm

The portion of the variance that is contributed by the m
common factors is the communality:

h2i = `2i1 + `2i2 +⋯ + `2im,

and the portion that is not explained by the common factors is
called the uniqueness (or the specific variance):

Var(εi) = ψi = Var(Xi) − h2i

To be determined: 1) number m of common factors; 2) factor
loadings L; and 3) specific variances Ψ
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10.10

Choosing the Number of Common Factors

The factor model assumes that the p(p + 1)/2 variances
and covariances of X can be reproduced from the p(m+1)
factor loadings and the variances of the p unique factors

Situations in which m, the number of common factors, is
small relative to p is when factor analysis works best. For
example, if p = 12 and m = 2, then the (12 × 13)/2 = 78
elements of Σ can be reproduced from 12 × (2 + 1) = 36
parameters in the factor model

However, if m is too small, the p(m + 1) parameters may
not be adequate to describe Σ
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10.11

Estimation in Factor Models

Given m, we consider two methods to estimate the parameters
of a factor model:

Principal Component Method

PCA ∶ Σ = λ1e1eT1 + λ2e2eT2 +⋯ + λpepeTp
Factor Model: Σ = LLT +Ψ

Main idea: Use the first m PCs to form the factor loading
matrix, then use the relationship Ψ = Σ −LLT to estimate
the specific variances ψ̂i = s2i −∑m

j=1 λj ê
2
ji

Maximum Likelihood Estimation: assuming data
X

i.i.d.∼ N(µ,Σ = LLT +Ψ), maximizing the log-likelihood
`(µ,L,Ψ)∝
−n

2
log ∣LLT +Ψ∣ − 1

2 ∑
n
i=1(Xi −µ)T (LLT +Ψ)−1(Xi −µ)

to obtain the parameter estimates
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10.12

A Goodness-of-Fit Test for Factor Model

We wish to test whether the factor model (with a given m)
appropriately describes the covariances among the p variables.
Specifically, we test

H0(m) ∶ Σ = LLT +Ψ

versus

H1 ∶ Σ is an unconstrained covariance matrix

Bartlett-Corrected Likelihood Ratio Test Statistic

−2 log Λ = (n − 1 − (2p + 4m + 5)/6) log
∣L̂L̂T + Ψ̂∣
∣Σ̂∣

Reject H0 at level α if −2 log Λ > χ2
df= 1

2 [(p−m)2−p−m]

Modelling strategy: Start with small value of m and increase
successively until some H0(m) is not rejected
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10.13

Scale Invariance of Factor Analysis

Suppose Yi = ciXi or in matrix notation Y = CX (C is a
diagonal matrix), e.g., change of measurement units. Then,

Cov(Y ) = CΣCT

= C(LLT +Ψ)
= (CL)(CL)T +CΨCT

= L̃L̃T + Ψ̃

That is, loadings and uniquenesses are the same if expressed
in new units:

Using covariance or correlation gives basically the same
result

The common practice is to use a correlation matrix or
scale the input data
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10.14

Rotational Invariance of Factor Analysis

Assume RRT = I and transform F∗ = RTF , L∗ = LR, then

X∗ = µ +L∗F∗ + ε = (LR)(RTF ) + ε = LF + ε =X;

Σ∗ = L∗LT
∗ +Ψ = (LR)(LR)T +Ψ = LLT +Ψ = Σ.

Rotating the factors yields exactly the same model

Consequence: Use rotation that makes interpretation of
loadings easy

Varimax rotation is the most popular rotation. Each factor
should have a few large and many small loadings
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10.15

Example: Stock Price Data

Data are weekly returns in stock prices for 103 consecutive
weeks for five companies: JP Morgan, City bank, Wells Fargo,
Royal Dutch (Shell), and Exxon

The first three are banks and the last two are oil
companies

The data are first standardized and the sample correlation
matrix is used for the analysis

We will fit an m = 2 factor model
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10.16

Scatter Plot Matrix of the Standardized Data
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10.17

Screen Plot
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10.18

Factor Loadings, Specific Variances, and Residual Matrix

Variable Loadings 1 Loadings 2 Specific variances
JP Morgan 0.732 0.437 0.273
City bank 0.831 0.280 0.230
Wells Fargo 0.726 0.374 0.333
Royal Dutch 0.605 -0.694 0.153
Exxon 0.563 -0.719 0.166

The residual matrix is Σ − (L̃L̃T + Ψ̃):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −0.10 −0.18 −0.03 0.06
0 −0.13 0.01 −0.05

0 0.00 0.01
0 −0.16

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Question: Are these off-diagonal elements small enough?
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10.19

Maximum Likelihood Estimation
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10.20

Factor Loading Plot
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How to interpret these factors?
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10.21

PCA vs. FA Comparison Revisited

PCA aims at explaining variances, while FA aims at
explaining correlations

PCA is exploratory and without assumptions FA is based
on statistical model with assumptions

First few PCs will be same regardless of m First few
factors of FA depend on m

FA is scale and rotation invariant, while this property does
not hold in PCA
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10.22

Summary

Concepts to know

The form of the general Factor Model and its
representation in terms of Covariance Matrix

Scale and Rotation Invariance of Factor Model

Interpretation of Factor Loadings

R functions to know

factanal

In the next lecture, we will learn about Canonical Correlation
Analysis
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