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Introductory Example: Intelligence Tests [Smith & Stanley

(1983)]

Six tests (general, picture, blocks, maze, reading, vocab) were
given to 112 individuals. The resulting sample correlation

matrix of these tests is as follows:
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Can the correlation between the six tests be explained by
one or two variables describing some general concept of
intelligence?
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Overview

Factor Analysis (FA) assumes the covariance structure among S
a set of variables, X = (X1,, X,,)7, can be described via a

linear combination of unobservable (latent) variables

F=(Fy, F,)7T, called factors.

There are three typical objectives of FA:

@ Data reduction: explain covariance between p variables
using m < p latent factors

@ Data interpretation: find features (i.e., factors) that are
important for explaining covariance = exploratory FA

© Theory testing: determine if hypothesized factor strucuture
fits observed data = confirmatory FA
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FA and PCA

FA and PCA have similar themes, i.e., to explain covariance o
between variables via linear combinations of other variables

However, there are distinctions between the two approaches:

@ FA assumes a statistical model that describes covariation
in observed variables via linear combinations of latent
variables

@ PCA finds uncorrelated linear combinations of observed
variables that explain maximal variance

FA refers to a statistical model, whereas PCA refers to
the eigenvalue decomposition of a covariance (or corre-
lation) matrix
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Factor Model
Let X is a random vector with mean p and covariance ¥. The
factor model postulates that X can be written as a linear
combination of a set of m common factors Fy, Fy, -, Fyy,:

X1 =M1+ EHFl + 612F2 + .- +‘€1mFm +&1
Xo = o +lo1 Fy + Lo Fo + - + U Fiy + €9

Xp=pp +lp1 F1 +lpaFs + -+ Uy Fry + €5

where
@ {/;1}pxm denotes the matrix of factor loadings, that is, £;;,
is the loading (importance) of the j-th variable on the k-th
factor

e (Fy,- F,)" denotes the vector of the latent factor scores,
that is, I}, is the score on the k-th factor

@ (e1,,¢,)" denotes the vector of latent error terms, which
correspond to the random disturbances specific to each
variable
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Factor Model in Matrix Notation

The factor model can be written in a matrix form:
Factor Model Analysis

X=pu+LF +¢,
where
@ L = {/;;}pxm is the factor loading matrix
e F=(F, F,)7T is the factor score vector

@ e=(e1,¢,)7 is the (latent) error vector

Unlike in linear model, we do not observe F, therefore we need
to impose some assumptions to facilitate the model
identification
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Factor Model Assumptions

First, we assume:

E(F) =0, Var(F) = E(FFT) =T Factor Model Analysis
E(e)=0,  Var(e)=E(ee") =W =diag(sy),i=1,-p

Moreover, we assume F and e are independent, so that
Cov(F,e)=0

@ The factors have variance one (i.e., Var(F;) = 1) and
uncorrelated with one another

@ The error vector are uncorrelated with one another with
the specific variance Var(e;) = v;

@ Under the model assumptions, we have

X=p+LF+e=X=LLT+¥
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Variances and Covariances of Factor Models ETREEE
ole
Under the factor model, we have M\I

Var(X;) =02, + 02 + -+ 02+

Factor Model Analysis
COV(XZ*, Xj) = gilgjl + figgjg + -+ Zimgjm

The portion of the variance that is contributed by the m
common factors is the communality:

2_ 2 42 2
hi =0 + g+ + £

m?

and the portion that is not explained by the common factors is
called the uniqueness (or the specific variance):

Var(e;) = 1; = Var(X;) - h;

To be determined: 1) number m of common factors; 2) factor
loadings L; and 3) specific variances ¥
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Choosing the Number of Common Factors

Factor Model Analysis

@ The factor model assumes that the p(p + 1)/2 variances
and covariances of X can be reproduced from the p(m +1)
factor loadings and the variances of the p unique factors

@ Situations in which m, the number of common factors, is
small relative to p is when factor analysis works best. For
example, if p =12 and m = 2, then the (12 x 13)/2 =78
elements of X can be reproduced from 12 x (2+1) = 36
parameters in the factor model

@ However, if m is too small, the p(m + 1) parameters may
not be adequate to describe X
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Estimation in Factor Models

Given m, we consider two methods to estimate the parameters
of a factor model:

Factor Model Analysis

@ Principal Component Method

PCA: Y= AlelelT+/\gegeQT+~--+/\pepez
Factor Model: S=LLT+®

Main idea: Use the first m PCs to form the factor loading
matrix, then use the relationship ¥ = 3 - LLT” to estimate
the specific variances 1; = s7 - X%, A;é%;

@ Maximum Likelihood Estimation: assuming data
X "% N(p,¥ = LLT + ¥), maximizing the log-likelihood
£(p, L, ¥) o<
2 log|LLT + |- 1 S (X, - )T (LLT + %) (X; - )
to obtain the parameter estimates
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A Goodness-of-Fit Test for Factor Model Factor Analysis

We wish to test whether the factor model (with a given m) e ' ’
appropriately describes the covariances among the p variables.
SpeCiﬁCa”y, we test Factor Model Analysis

Ho(my:E=LL" + ¥
versus

H, : X is an unconstrained covariance matrix

o Bartlett-Corrected Likelihood Ratio Test Statistic

LI+ ¥

—2logA=(n-1-(2p+4m+5)/6)log | 3 |

i i 2

@ Reject Hy at level a if —2log A > Xaf1[(p-m)2-p-rm]

Modelling strategy: Start with small value of m and increase
successively until some H,,) is not rejected
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Scale Invariance of Factor Analysis

Suppose Y; = ¢; X; or in matrix notation Y =CX (C'is a
diagonal matrix), e.g., change of measurement units. Then,

Cov(Y) =cxcC”
=C(LL" + W)
= (cn)(cn)” +cwe”
=LLT+®

That is, loadings and uniquenesses are the same if expressed
in new units:

@ Using covariance or correlation gives basically the same
result

@ The common practice is to use a correlation matrix or
scale the input data
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Rotational Invariance of Factor Analysis

Assume RRT =TI and transform F, = RTF, L, = LR, then

Factor Model Analysis
X,=pu+L,F, +e=(LR)(R"F)+e=LF +e=X;
¥, =L.LT+¥=(LR)(LR) +¥=LL" + ¥ =3.

@ Rotating the factors yields exactly the same model

o Consequence: Use rotation that makes interpretation of
loadings easy

@ Varimax rotation is the most popular rotation. Each factor
should have a few large and many small loadings
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Example: Stock Price Data

Data are weekly returns in stock prices for 103 consecutive \
weeks for five companies: JP Morgan, City bank, Wells Fargo, E
Royal Dutch (Shell), and Exxon

@ The first three are banks and the last two are oil
companies

@ The data are first standardized and the sample correlation
matrix is used for the analysis

@ We will fit an m = 2 factor model
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Screen Plot
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Factor Loadings, Specific Variances, and Residual Matrix FectorAnabs

Variable Loadings 1 Loadings 2 Specific variances

JP Morgan 0.732 0.437 0.273

City bank 0.831 0.280 0.230 Stock Price Data
Wells Fargo 0.726 0.374 0.333 o
Royal Dutch 0.605 -0.694 0.153

Exxon 0.563 -0.719 0.166

The residual matrix is & — (LL” + ¥):

0 -0.10 -0.18 -0.03 0.06
0 -0.13 0.01 -0.05
0 0.00 0.01
0 -0.16
0

Question: Are these off-diagonal elements small enough?
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+ method = "mle", scale = T, center = T))

Maximum Likelihood Estimation

Call:
factanal(x = stock, factors = 2, method = "mle", scale = T, center = T) St it Bt
Example
Uniguenesses:
JP Morgan  City bank Wells Fargo Royal Dutch
0.417 9.275 9.542 9.005
Exxon

0.530

Loadings:

Factorl Factor2
JP Morgan @.763
City bank 0.819 0.232
Wells Fargo 0.668 @.108
Royal Dutch ©.113 0.991
Exxon 0.108 0.677

Factorl Factorz
SS loadings 1.725 1.507
Proportion Var 0.345 ©.301
Cumulative Var  @0.345 0.646

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 1.97 on 1 degree of freedom.
The p-value is 0.16
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Factor Loading Plot
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Stock Price Data
Example
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How to interpret these factors?

10.20



Factor Analysis

CLEMS@EN

UNITVERSITY

PCA vs. FA Comparison Revisited
o PCA aims at explaining variances, while FA aims at Stock Price Data
« . - Example
explaining correlations ”

@ PCA is exploratory and without assumptions FA is based
on statistical model with assumptions

o First few PCs will be same regardless of m First few
factors of FA depend on m

@ FA is scale and rotation invariant, while this property does
not hold in PCA
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Summary

Concepts to know

Stock Price Data

@ The form of the general Factor Model and its S
representation in terms of Covariance Matrix

@ Scale and Rotation Invariance of Factor Model

@ Interpretation of Factor Loadings

R functions to know

@ factanal

In the next lecture, we will learn about Canonical Correlation
Analysis
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