Lecture 11

Canonical Correlation Analysis

Reading: Johnson & Wichern 2007, Chapter 10; Zelterman Chapter 13.2; Izenman Chapter 7.3

DSA 8070 Multivariate Analysis

Canonical Correlation Analysis

Background

Canonical Variates & Canonical Correlations

Sales Data Example

Whitney Huang Clemson University Agenda

Canonical Correlation Analysis

Background

Canonical Variates & Canonical Correlations

Sales Data Example

2 Canonical Variates & Canonical Correlations

Overview

Canonical correlation analysis (CCA, Hotelling, 1936) is a method for exploring the relationships between two sets of multivariate variables $\boldsymbol{X} = (X_1, X_2, \cdots, X_p)^T$ and $\boldsymbol{Y} = (Y_1, Y_2, \cdots, Y_q)^T$

RELATIONS BETWEEN TWO SETS OF VARIATES*.

By HAROLD HOTELLING, Columbia University.

CONTENTS.

SECT.	,	PAGE
1.	The Correlation of Vectors. The Most Predictable Criterion and th	Ð
	Tetrad Difference	. 321
2.	Theorems on Determinants and Matrices	. 325
3.	Canonical Variates and Canonical Correlations. Applications to Algebr	а
	and Geometry	. 326
4.	Vector Correlation and Alienation Coefficients	. 332
5.	Standard Errors	. 336
6.	Examples, and an Iterative Method of Solution	. 342
7.	The Vector Correlation as a Product of Correlations or of Cosines	. 349
8.	An Exact Sampling Distribution of q	. 352
9.	Moments of q. The Distribution for Large Samples	. 354
10.	The Distribution for Small Samples. Form of the Frequency Curve	. 359
11.	Tests for Complete Independence	. 362
12.	Alternants of a Plane and of a Sample	. 365
13.	The Bivariate Distribution for Complete Independence $(s=t=2, n=4)$. 369
14.	Theorem on Circularly Distributed Variates	. 371
15.	Generalization of Section 13 for Samples of Any Size	. 372
16.	Further Problems	. 375

1. The Correlation of Vectors. The Most Predictable Criterion and the Tetrad Difference. Concepts of correlation and regression may be applied not only to ordinary one-dimensional variates but also to variates of two or more dimensions.

Background

Canonical Variates & Canonical Correlations

Relating Two Random Vectors

Examples:

- X = (X₁, X₂) represents two reading test scores, and
 Y = (Y₁, Y₂) represents two arithmetic test scores
- X is a vector of variables associated with **environmental health**: species diversity, total biomass, and environmental productivity, while Y represents concentrations of heavy metals, pesticides, and dioxin, which measure **environmental toxins**

Goal: CCA relates two sets of variables X and Y by finding linear combinations of variables that maximally correlated

Motivation: relates X and Y using a small number of linear combinations for ease of interpretation

Canonical Correlation Analysis

Background

Canonical Variates & Canonical Correlations

Linear Combinations of Two Sets of Variables

Recall we have $X = (X_1, X_2, \dots, X_p)^T$ and $Y = (Y_1, Y_2, \dots, Y_q)^T$. Without loss of generality, let's assume $p \le q$.

Similar to PCA, we define a set of linear combinations

$$\begin{split} U_1 &= a_{11}X_1 + a_{12}X_2 + \dots + a_{1p}X_p \\ U_2 &= a_{21}X_1 + a_{22}X_2 + \dots + a_{2p}X_p \\ &\vdots &= \dots \\ U_p &= a_{p1}X_1 + a_{p2}X_2 + \dots + a_{pp}X_p \end{split}$$

and

$$\begin{split} V_1 &= b_{11}Y_1 + b_{12}Y_2 + \dots + b_{1q}Y_q \\ V_2 &= b_{21}Y_1 + b_{22}Y_2 + \dots + b_{2q}Y_q \\ \vdots &= \dots \\ V_p &= b_{p1}Y_1 + b_{p2}Y_2 + \dots + b_{pq}Y_q \end{split}$$

We want to find linear combinations that maximize the correlation of (U_i, V_i) , $i = 1, \dots, p$

Backgroun

Canonical Variates & Canonical Correlations

Defining Canonical Variates

We call (U_i, V_i) be the i^{th} canonical variate pair. One can compute the variance of U_i with the following expression:

$$\operatorname{Var}(U_i) = \sum_{k=1}^p \sum_{\ell=1}^p a_{ik} a_{i\ell} \operatorname{Cov}(X_k, X_\ell), \quad i = 1, \cdots, p.$$

Similarly, we compute the variance of V_j with the following expression:

$$\operatorname{Var}(V_j) = \sum_{k=1}^q \sum_{\ell=1}^q b_{jk} b_{j\ell} \operatorname{Cov}(Y_k, Y_\ell), j = 1, \cdots, q.$$

The covariance between U_i and V_j is:

$$\operatorname{Cov}(U_i, V_j) = \sum_{k=1}^p \sum_{\ell=1}^q a_{ik} b_{j\ell} \operatorname{Cov}(X_k, Y_\ell).$$

The canonical correlation for the i^{th} canonical variate pair is simply the correlation between U_i and V_i :

$$\rho_i^* = \frac{\operatorname{Cov}(U_i, V_i)}{\sqrt{\operatorname{Var}(U_i)\operatorname{Var}(V_i)}}$$

Background

Canonical Variates & Canonical Correlations

Finding Canonical Variates

Let us look at each of the p canonical variates pair one by one.

First canonical variable pair (U_1, V_1) : The coefficients $a_{11}, a_{12}, \dots, a_{1p}$ and $b_{11}, b_{12}, \dots, b_{1q}$ are chosen to maximize the canonical correlation ρ_1^* . As in PCA, this is subject to the constraint that $Var(U_1) = Var(V_1) = 1$

Second canonical variable pair (U_2, V_2) : Similarly we want to find $a_{21}, a_{22}, \dots, a_{2p}$ and $b_{21}, b_{22}, \dots, b_{2q}$ that maximize ρ_2^* under the following constraints:

 $Var(U_2) = Var(V_2) = 1,$ $Cov(U_1, U_2) = Cov(V_1, V_2) = 0,$ $Cov(U_1, V_2) = Cov(U_2, V_1) = 0.$

This procedure is repeated for each pair of canonical variates

Background

Canonical Variates & Canonical Correlations

Finding Canonical Variates Cont'd

Let $Var(X) = \Sigma_X$ and $Var(Y) = \Sigma_Y$ and let $Z^T = (X^T, Y^T)$. Then the covariance matrix of Z is

$$\begin{bmatrix} \operatorname{Var}(\boldsymbol{X}) & \operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Y}) \\ \operatorname{Cov}(\boldsymbol{Y}, \boldsymbol{X}) & \operatorname{Var}(\boldsymbol{Y}) \end{bmatrix} = \begin{bmatrix} \underbrace{\boldsymbol{\Sigma}_{\boldsymbol{X}}}_{p \times p} & \underbrace{\boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{Y}}}_{p \times q} \\ \underbrace{\boldsymbol{\Sigma}_{\boldsymbol{Y}\boldsymbol{X}}}_{q \times p} & \underbrace{\boldsymbol{\Sigma}_{\boldsymbol{Y}}}_{q \times q} \end{bmatrix}$$

The *i*th pair of canonical variates is given by

$$U_i = \underbrace{\boldsymbol{u}_i^T \boldsymbol{\Sigma}_X^{-1/2}}_{\boldsymbol{a}_i^T} \boldsymbol{X} \text{ and } V_i = \underbrace{\boldsymbol{v}_i^T \boldsymbol{\Sigma}_Y^{-1/2}}_{\boldsymbol{b}_i^T} \boldsymbol{Y},$$

where

- u_i is the i^{th} eigenvector of $\Sigma_X^{-1/2} \Sigma_{XY} \Sigma_Y^{-1} \Sigma_{YX} \Sigma_X^{-1/2}$
- v_i is the i^{th} eigenvector of $\Sigma_Y^{-1/2} \Sigma_{YX} \Sigma_X^{-1} \Sigma_{XY} \Sigma_Y^{-1/2}$

• The *i*th canonical correlation is given by, $Cor(U_i, V_i) = \rho_i^*$, where ρ_i^{*2} is the *i*th eigenvalue of $\Sigma_X^{-1/2} \Sigma_{XY} \Sigma_Y^{-1} \Sigma_{YX} \Sigma_X^{-1/2}$

Backgroun

Canonical Variates & Canonical Correlations

Likelihood Ratio Test: Is CCA Worthwhile?

Note that if $\Sigma_{XY} = 0$, then $Cov(U, V) = a^T \Sigma_{XY} b = 0$ for all a and $b \Rightarrow$ all canonical correlations must be zero and there is no point in pursuing CCA.

For large *n*, we reject $H_0: \Sigma_{XY} = 0$ in favor of $H_1: \Sigma_{XY} \neq 0$ if

$$-2\log(\Lambda) = n\log\left(\frac{|\hat{\boldsymbol{\Sigma}}_{\boldsymbol{X}}||\hat{\boldsymbol{\Sigma}}_{\boldsymbol{Y}}|}{|\hat{\boldsymbol{\Sigma}}|}\right) = -n\sum_{j=1}^{p}\log(1-\hat{\rho}_{j}^{*2})$$

is larger than $\chi^2_{pg}(\alpha)$

For an improvement to the χ^2 approximation, Bartlett suggested using the following test statistic:

$$-2\log(\Lambda) = -[n-1-\frac{1}{2}(p+q+1)]\sum_{j=1}^{p}\log(1-\hat{\rho}_{j}^{*2})$$

Backgroun

Canonical Variates & Canonical Correlations

Example: Sales Data [Source: PSU STAT 505]

The example data comes from a firm that surveyed a random sample of n = 50 of its employees in an attempt to determine which factors influence sales performance. Two collections of variables were measured:

- Sales Performance: Sales Growth, Sales Profitability, New Account Sales
 ⇒ p = 3
- Intelligence Test Scores: Creativity, Mechanical Reasoning, Abstract Reasoning, Mathematics ⇒ q = 4

We are going to carry out a canonical correlation analysis using $\ensuremath{\mathbb{R}}$

Background

Canonical Variates & Canonical Correlations

Likelihood Ratio Test: Is CCA Worthwhile?

Let's first determine if there is any relationship between the two sets of variables at all.

```
rho <- cc(sales, intelligence)$cor
n <- dim(sales)[1]
p <- length(sales); q <- length(intelligence)
## Calculate p-values using the F-approximations
library(CCP)
p.asym(rho, n, p, q, tstat = "Wilks")</pre>
```

H_0	Approximate F value	p-value
$\rho_1^* = \rho_2^* = \rho_3^* = 0$	87.39	~ 0
$\rho_{2}^{*} = \rho_{3}^{*} = 0$	18.53	8.25×10^{-14}
$\rho_3^* = 0$	3.88	0.028

All three canonical variate pairs are significantly correlated and dependent on one another. This suggests that we may summarize all three pairs.

Backgroun

Canonical Variates & Canonical Correlations

Estimates of Canonical Correlation

Since we rejected the hypotheses of independence, the next step is to obtain estimates of canonical correlation

```
cc1 <- cc(sales, intelligence)
cc1$cor</pre>
```

i	Canonical Correlation (ρ_i^*)	ρ_i^{*2}
1	0.9945	0.9890
2	0.8781	0.7711
3	0.3836	0.1472

98.9% of the variation in U_1 is explained by the variation in V_1 , 77.11% of the variation in U_2 is explained by V_2 , only 14.72% of the variation in U_3 is explained by V_3

Background

Canonical Variates & Canonical Correlations

Obtain the Canonical Coefficients

	U_1	U_2	U_3
Growth	0.0624	-0.1741	-0.3772
Profit	0.0209	0.2422	0.1035
New	0.0783	-0.2383	0.3834

The first canonical variable for sales is

 $U_1 = 0.0624X_{growth} + 0.0209X_{profit} + 0.0783X_{new}$

	V_1	V_2	V_3
Creativity	0.0697	-0.1924	0.2466
Mechanical	0.0307	0.2016	-0.1419
Abstract	0.08956	-0.4958	-0.2802
Math	0.0628	0.0683	-0.0113

The first canonical variable for test scores is

 $V_1 = 0.0697 Y_{create} + 0.0307 Y_{mech} + 0.0896 Y_{abstract} + 0.0628 Y_{math}$

Background

Canonical Variates & Canonical Correlations

Correlations Between Each Variable and The Corresponding Canonical Variate

Correlations Between X's and U's

	U_1	U_2	U_3
Growth	0.9799	0.0006	-0.1996
Profit	0.9464	0.3229	0.0075
New	0.9519	-0.1863	0.2434

Correlations Between Y's and V's

	V_1	V_2	V_3
Creativity	0.6383	-0.2157	0.6514
Mechanical	0.7212	0.2376	-0.0677
Abstract	0.6472	-0.5013	-0.5742
Math	0.9441	0.1975	-0.0942

Canonical Correlation Analysis

Background

Canonical Variates & Canonical Correlations

Correlations Between Each Set of Variables and The Opposite Group of Canonical Variates

	V_1	V_2	V_3
Growth	0.9745	0.0006	-0.0766
Profit	0.9412	0.2835	0.0029
New	0.9466	-0.1636	0.0934

Correlations Between Y's and U's

	U_1	U_2	U_3
Creativity	0.6348	-0.1894	0.2499
Mechanical	0.7172	0.2086	-0.0260
Abstract	0.6437	-0.4402	-0.2203
Math	0.9389	0.1735	-0.0361

Background

Canonical Variates & Canonical Correlations

Summary

Concepts to know:

- The main idea of canonical correlation analysis (CCA)
- How to compute the canonical variates from the data
- How to determine the number of significant canonical variate pairs
- How to use the results of CCA to describe the relationships between two sets of variables

R functions to know

- cc from the CCA library
- p.asym from the CCP library

In the next lecture, we will learn about Classification

Background

Canonical Variates & Canonical Correlations