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Canonical

OverVIeW Correlation Analysis
Canonical correlation analysis (CCA, Hotelling, 1936) is a CLEMS@N
method for exploring the relationships between two sets of
multivariate variables X = (X1, X2, X,,)* and
Y = (Ylayév"'ayq)T

Background

RELATIONS BETWEEN TWO SETS OF VARIATES*.
By HAROLD HOTELLING, Columbia University.
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1. The Correlation of Vectors. The Most Predictable Criterion and the Tetrad
Difference. Concepts of correlation and regression may be applied not only to
ordinary one-dimensional variates but also to variates of two or more dimensions.



Examples:

0 X = (X4, X,) represents two reading test scores, and
Y = (Y1,Y>) represents two arithmetic test scores

@ X is a vector of variables associated with environmental
health: species diversity, total biomass, and
environmental productivity, while Y represents
concentrations of heavy metals, pesticides, and dioxin,
which measure environmental toxins

Goal: CCA relates two sets of variables X and Y by finding
linear combinations of variables that maximally correlated

Motivation: relates X and Y using a small number of linear
combinations for ease of interpretation



Linear Combinations of Two Sets of Variables

Recall we have X = (X1, Xa,-+, X,)T and Y = (Y3, Ya, -+,

Without loss of generality, let's assume p < g.

Similar to PCA, we define a set of linear combinations

U1 = CL11X1 + a12X2 + -+ alep

UQ = (Z21X1 + a22X2 + e+ angp
Up = ap X1 +apaXo+ -+ ap, X,
and
V1 = b11Y1 + b12}/2 + e+ blq}/q
+ quYq

Vo = b21Y1 +booYs + -+

V;; = bp1Y1 + bPQ}/Q + e+ bqu:]

We want to find linear combinations that maximize the
correlation of (U;,V;), i=1,p
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Defining Canonical Variates
We call (U;, V;) be the i*" canonical variate pair. One can
compute the variance of U; with the following expression:

p P
Var(U;) = Z Z aikaieCov(Xg, Xp), i=1,--,p.
k=1/¢=1

Similarly, we compute the variance of V; with the following
expression:

9 4q
Var(V]) = Z Z bjkijCOV(YkaYé)yj = 17"'aq'
k=1¢=1
The covariance between U; and V; is:
P 4a
Cov(U;,V;) = Z Z a;bjrCov(Xy, Yy).
k=1¢=1

The canonical correlation for the i*" canonical variate pair is
simply the correlation between U; and V;:

* _ COV(Ui7‘/i)

Pi= \/ Var(U;)Var(V;)
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Let us look at each of the p canonical variates pair one by one.

Canonical Variates &
Canonical Correlations

First canonical variable pair (U, V;): The coefficients

ai1, 012, -, a1p and by, big, -+, biq are chosen to maximize the
canonical correlation pj. As in PCA, this is subject to the
constraint that Var(U;) = Var(14) =1

Second canonical variable pair (U, V5): Similarly we want to
find a1, @22, ", G2p and bgl, b227 (RN bgq that maximize p; under
the following constraints:

Var(Us) = Var(12) =1,
Cov(U;,Us) = Cov(Vy,Vs) =0,
Cov (Ui, V3) = Cov(Us, V1) = 0.

This procedure is repeated for each pair of canonical variates



Finding Canonical Variates Cont'd Corretation Analysis
Let Var(X) =X x and Var(Y) = Xy and let Z7 = (XT,Y7T).

. : : CLEMS@N
Then the covariance matrix of Z is .
Z:)( 2:}(Y' Canonical Variates &
—— N—— Canonical Correlations
Var(X) Cov(X,Y)| | pxp xq
COV(Y,X) Var(Y) - EYX EY
—— [
gxp gxq

The i*" pair of canonical variates is given by

_ Ts-1/2 _ Ts-1/2
U=u; X" Xand V; =v; X,7Y,

~— N—
al bT
k2 K2

where
o u, is the i*" eigenvector of 3/°Sxy £y Sy x T/
o v, is the i'" eigenvector of 53/°Sy x 53! S xy 53/

@ The i*" canonical correlation is given by, Cor(U;, V;) = p},
where p;? is the ' eigenvalue of

2P Exy Sy Sy x 25/



Likelihood Ratio Test: Is CCA Worthwhile? T

CLEMS@N
Note that if ©xy =0, then Cov(U,V)=a’Sxyb=0forala =~
and b = all canonical correlations must be zero and there is no
point in pursuing CCA. Canonical Coreatons

For large n, we reject Hy : ¥ xy =0 in favor of Hy : ¥ xy # 0 if

Iflx|flyl)

p
z =-n S log(1l - p*?
i 2 g(1-p5%)

—2log(A) = nlog(
7=1

is larger than x2, («)

For an improvement to the x? approximation, Bartlett
suggested using the following test statistic:

~2log(A) = ~[n—1- %(p+q +1)] f)llog(l - 0;%)



Example: Sales Data [Source: PSU STAT 505] Corretation Analysis

The example data comes from a firm that surveyed a random
sample of n = 50 of its employees in an attempt to determine
which factors influence sales performance. Two collections of
variables were measured: Sefles et B

@ Sales Performance: Sales Growth, Sales
Profitability, New Account Sales
=p=3

o Intelligence Test Scores: Creativity, Mechanical
Reasoning, Abstract Reasoning, Mathematics
=q=4

We are going to carry out a canonical correlation analysis
using R

11.10



Likelihood Ratio Test: Is CCA Worthwhile? Corretation Anstysis
. o . . . CLEMS@N
Let’s first determine if there is any relationship between the two ST
sets of variables at all.

rho <- cc(sales, intelligence)$cor

n <- d'im(sa'l.es)[l] Sales Data Example
p <- length(sales); g <- length(intelligence)

## Calculate p-values using the F-approximations

library (CCP)

p.asym(rho, n, p, g, tstat = "Wilks")

H, | Approximate F' value p-value
pP1=p5=p3=0 87.39 ~0
ps=p5=0 18.53 8.25 x 10714
p5=0 3.88 0.028

All three canonical variate pairs are significantly correlated and
dependent on one another. This suggests that we may
summarize all three pairs.

1.1



Estimates of Canonical Correlation (anomeal

Correlation Analysis

Since we rejected the hypotheses of independence, the next
step is to obtain estimates of canonical correlation

Sales Data Example

ccl <- cc(sales, intelligence)

ccl$cor
i | Canonical Correlation () 32
1 0.9945 0.9890
2 0.8781 0.7711
3 0.3836 0.1472

98.9% of the variation in U; is explained by the variation in V7,
77.11% of the variation in U, is explained by V5, only 14.72% of
the variation in Us is explained by V3

11.12



Obtain the Canonical Coefficients (anomeal

Correlation Analysis

U, Us Us m
Growth 0.0624 -0.1741 -0.3772
Profit 0.0209 0.2422 0.1035
New 0.0783 -0.2383 0.3834

Sales Data Example

The first canonical variable for sales is

Uy =0.0624X growtn + 0.0209X 615t + 0.0783 X e

Vi Vo V3
Creativity 0.0697 -0.1924 0.2466
Mechanical 0.0307 0.2016 -0.1419
Abstract 0.08956 -0.4958 -0.2802
Math 0.0628 0.0683 -0.0113

The first canonical variable for test scores is

V1 =0.0697Yreqte + 0.0307Ymech + 0.0896Y pstract + 0.0628Y 5 0tn

11.13
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Correlations Between X’s and U’s

Uy Us U3 Sales Data Example
Growth 0.9799 0.0006 -0.1996
Profit 0.9464 0.3229 0.0075
New 0.9519 -0.1863 0.2434

Correlations Between Y’s and V’s

V1 Vo V3

Creativity 0.6383 -0.2157 0.6514
Mechanical 0.7212 0.2376 -0.0677
Abstract 0.6472 -0.5013 -0.5742
Math 0.9441 0.1975 -0.0942

11.14



Correlations Between Each Set of Variables and The T
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Correlations Between X’s and V’s

1% Vs Vs Sales Data Example
Growth 0.9745 0.0006 -0.0766
Profit 0.9412 0.2835 0.0029
New 0.9466 -0.1636 0.0934

Correlations Between Y’s and U’s

Uy Us Us

Creativity 0.6348 -0.1894  0.2499
Mechanical 0.7172 0.2086 -0.0260
Abstract 0.6437 -0.4402 -0.2203
Math 0.9389 0.1735 -0.0361

11.15



Canonical

Summary Correlation Analysis

CLEMS@N
Concepts to know: SRy
@ The main idea of canonical correlation analysis (CCA)
Sales Data Example

@ How to compute the canonical variates from the data

@ How to determine the number of significant canonical
variate pairs

@ How to use the results of CCA to describe the
relationships between two sets of variables

R functions to know

@ cc from the cca library
@ p.asym from the ccP library

In the next lecture, we will learn about Classification

11.16
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