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Agenda

1 Descriptive Statistics

2 Graphs and Visualization
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2.3

Organization of Data and Notation

We will use n to denote the number of individuals or units
in our sample and use p to denote the number of variables
measured on each unit.

If p = 1, then we are back in the usual univariate setting.

xik is the value of the k-th measurement on the i-th unit.
For the i-th unit we have measurements

(xi1, xi2,⋯, xip)
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2.4

Organization of Data and Notation

We often display measurements from a sample of n units
in matrix form:

Xn×p =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x11 x12 ⋯ x1p
x21 x22 ⋯ x2p
⋮ ⋮ ⋮

xn1 xn2 ⋯ xnp

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

is a matrix with n rows (one for each unit) and p columns
(one for each measured trait or variable).
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2.5

Descriptive Statistics: Sample Mean & Variance

The sample mean of the k-th variable (k = 1,⋯, p) is
computed as

x̄k =
1

n

n

∑
i=1

xik

The sample variance of the k-th variable is usually
computed as

s2k =
1

n − 1

n

∑
i=1

(xik − x̄k)
2

and the sample standard deviation is given by

sk =
√

s2k
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2.6

Descriptive Statistics: Sample Covariance
We often use skk to denote the sample variance for the
k-th variable. Thus,

s2k =
1

n − 1

n

∑
i=1

(xik − x̄k)
2
= skk

The sample covariance between variable k and variable j
is computed as

sjk =
1

n − 1

n

∑
i=1

(xij − x̄j)(xik − x̄k)

If variables k and j are independent, the population
covariance will be exactly zero, but the sample covariance
will vary about zero
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2.7

Sample Covariance
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2.8

Descriptive Statistics: Sample Correlation

The sample correlation between variables k and j is
defined as

rjk =
sjk

√
sjj

√
skk

rjk is between −1 and 1

rjk = rkj



Descriptive Statistics

Graphs and
Visualization

2.9

Sample Correlation

The sample correlation is equal to the sample covariance
if measurements are standardized (i.e., skk = sjj = 1)

Covariance and correlation measure linear association.
Other non-linear dependencies may exist among variables
even if rjk = 0

The sample correlation (rij) will vary about the value of
the population correlation (ρij)
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2.10

Matrix Representation of Sample Statistics

Sample statistics of a p-dimnesional multivariate data can be
organized as vectors and matrices:

x̄ = [x̄1, x̄2,⋯, x̄p]
T is the p × 1 vector of sample means

S =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s11 s12 ⋯ s1p
s21 s22 ⋯ s2p
⋮ ⋯ ⋯ ⋯

sp1 sp2 ⋯ spp

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

is the p × p symmetric matrix of

variance (on the diagonal) and covariances (the
off-diagonal elements)

R =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r11 r12 ⋯ r1p
r21 r22 ⋯ r2p
⋮ ⋯ ⋯ ⋯

rp1 rp2 ⋯ rpp

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

is the p × p symmetric matrix of

sample correlations. Diagonal elements are all equal to 1
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2.11

Example: Bivariate Data

Data consist of n = 5 receipts from a bookstore. On each
receipt we observe the total amount of the sale ($) and the
number of books sold (p = 2). Then

X5×2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x11 x12
x21 x22
x31 x32
x41 x42
x51 x52

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

42 2
52 5
88 7
58 4
60 5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Sample mean vector is:

x̄ = [
x̄1
x̄2

] = [
60
5
]
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2.12

Example: Bivariate Data

Sample covariance matrix is

S = [
s11 s12
s21 s22

] = [
294.0 19.0
19.0 1.5

]

Sample correlation matrix is

R = [
r11 r12
r21 r22

] = [
1 0.90476

0.90476 1
]
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2.13

Generalized Variance

The generalized variance is a scalar value which
generalizes variance for multivariate random variables

The generalized variance is defined as the determinant of
the (sample) covariance matrix S, det(S)

Example:
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2.14

Graphs and Visualization
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2.15

Graphs and Visualization

Graphs convey information about associations between
variables and also about unusual observations

One difficulty with multivariate data is their visualization, in
particular when p > 3.

At the very least, we can construct pairwise scatter plots of
variables
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2.16

Example: Fisher’s Iris Data

5 variables (sepal length and width, petal length and width,
species (setosa, versicolor, and virginica), 50 flowers from
each of 3 species⇒ p = 4, n = 50 × 3 = 150
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2.17

Plotting Iris Data using ggpairs

Corr: −0.118

    setosa: 0.743***

versicolor: 0.526***

 virginica: 0.457***

Corr: 0.872***

    setosa: 0.267.  

versicolor: 0.754***

 virginica: 0.864***

Corr: −0.428***

    setosa: 0.178   

versicolor: 0.561***

 virginica: 0.401** 

Corr: 0.818***

    setosa: 0.278.  

versicolor: 0.546***

 virginica: 0.281*  

Corr: −0.366***

    setosa: 0.233   

versicolor: 0.664***

 virginica: 0.538***

Corr: 0.963***

    setosa: 0.332*  

versicolor: 0.787***

 virginica: 0.322*  
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2.18

3D Scatter Plot
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2.19

Chernoff Faces
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2.20

Visualizing Summary Statistics
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2.21

Summary

In this lecture, we learned

Summarizing multivariate data numerically

Summarizing multivariate data graphically

In the next lecture, I will give a short review of Matrix Algebra


	Descriptive Statistics
	Graphs and Visualization

