uuuuuuuu

Lecture 2

Characterizing and Displaying
Multivariate Data

DSA 8070 Multivariate Analysis

Whitney Huang
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Agenda

@ Descriptive Statistics

Q Graphs and Visualization




Organization of Data and Notation C

Descriptive Statistics

@ We will use n to denote the number of individuals or units
in our sample and use p to denote the number of variables
measured on each unit.

o If p =1, then we are back in the usual univariate setting.

@ z;; is the value of the k-th measurement on the i-th unit.
For the i-th unit we have measurements

(Iﬂ, T2,y $z‘p)
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Organization of Data and Notation C }::MSS"N

Descriptive Statistics

@ We often display measurements from a sample of n units
in matrix form:

T11  T12 T1p

T21  T22 Tap
anp = .

Tpl Tp2 - Tpp

is a matrix with n rows (one for each unit) and p columns
(one for each measured trait or variable).
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Descriptive Statistics: Sample Mean & Variance CLEMS@N

Descriptive Statistics

@ The sample mean of the k-th variable (k = 1,---, p) is
computed as

1 n
Ty == Tik
ni=1

@ The sample variance of the k-th variable is usually
computed as

32=71 Zn:(m'k—fk)z
g n-14""

and the sample standard deviation is given by

Sk =1\/5%
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Descriptive Statistics: Sample Covariance

: C
@ We often use si; to denote the sample variance for the R R
k'th Val’iable. ThUS, Descriptive Statistics

Z(xzk—xk = Sk
T n- 1

@ The sample covariance between variable k and variable j
is computed as

1 & _ _
sjk = —— 2 (@i = %) (wik — T)
=1

o If variables k and j are independent, the population
covariance will be exactly zero, but the sample covariance

will vary about zero

o}

dat <- mvrnorm(n = 50, mu = c(@, @), Sigma = matrix(c(1, 0, @, 1), 2))
cov(dat[, 1], dat[, 2])

[1] -0.1508848 o6



Sample Covariance

Descriptive Statistics

Sk =1.46
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Descriptive Statistics: Sample Correlation CLEMS®N

Descriptive Statistics

@ The sample correlation between variables k and j is
defined as

@ rj; is between -1 and 1

Q 7k =Tk
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Sample Correlation

@ The sample correlation is equal to the sample covariance
if measurements are standardized (i.e., sgr = s;; = 1)

@ Covariance and correlation measure linear association.
Other non-linear dependencies may exist among variables
evenifr;, =0

@ The sample correlation (r;;) will vary about the value of
the population correlation (p;;)

Descriptive Statistics
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Matrix Representation of Sample Statistics

Sample statistics of a p-dimnesional multivariate data can be
organized as vectors and matrices:

® T =[T1,%2,,7,]" is the p x 1 vector of sample means

S11 S12 t Sip

0 §=|%1 "2 " "listhe px p symmetric matrix of

Sp1 Sp2 v Spp
variance (on the diagonal) and covariances (the
off-diagonal elements)

11 T2 ot Tip
e /]" . . .
=17 7 listhe pxp symmetric matrix of

Tpt Tp2 = Tpp
sample correlations. Diagonal elements are all equal to 1

Descriptive Statistics



Example: Bivariate Data CLEMS@N

Descriptive Statistics

o Data consist of n = 5 receipts from a bookstore. On each
receipt we observe the total amount of the sale ($) and the
number of books sold (p = 2). Then

11 X12 42 2
T21 X922 52 5
Xsxo = |31 w32[=[88 7
T41 T42 58 4
T51 X2 60 5

@ Sample mean vector is:



Example: Bivariate Data CLEMS®N

U N1 E R Ty

Descriptive Statistics

@ Sample covariance matrix is

S - S11 S12| _ 294.0 19.0
“ls2r s22| | 190 15

@ Sample correlation matrix is

R_ T11 T12 _ 1 090476
“lrar roa| 0.90476 1



Generalized Variance

Descriptive Statistics

@ The generalized variance is a scalar value which
generalizes variance for multivariate random variables

@ The generalized variance is defined as the determinant of
the (sample) covariance matrix S, det(.S)

o Example:

g
data(mtcarsﬂ

vars <- which(names(mtcars) %in% c("mpg", "disp", "hp", "drat", "wt"))
car <- mtcars[, vars]; S <- cov(car)
(genVar <- det(S))

[1] 3951786



Graphs and Visualization




Graphs and Visualization C EMSS“'N

Graphs and
Visualization

@ Graphs convey information about associations between
variables and also about unusual observations

@ One difficulty with multivariate data is their visualization, in
particular when p > 3.

@ At the very least, we can construct pairwise scatter plots of
variables



Example: Fisher’s Iris Data

5 variables (sepal length and width, petal length and width,
species (setosa, versicolor, and virginica), 50 flowers from
each of 3 species = p=4,n=50x3 =150
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Plotting Iris Data using ggpairs

CLEMS@®N

UNTVERSITY
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3D Scatter Plot CLEMS®@N

UNTVERSITY
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SR

U N1 E R Ty

mpg cyl disp hp drat wt gsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
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Visualizing Summary Statistics CLEMS®N

UNTVERSITY

Descriptive Statistics

Graphs and
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Summary

In this lecture, we learned

@ Summarizing multivariate data numerically

@ Summarizing multivariate data graphically

In the next lecture, | will give a short review of Matrix Algebra

Graphs and
Visualization
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