Lecture 3

A Short Review of Matrix Algebra
Reading: Zelterman, 2015 Chapter 4; Izenman, 2008 Chapter 3.1-3.2

DSA 8070 Multivariate Analysis

Agenda

(2) Basic Matrix Concepts

(3) Some Useful Matrix Tools/Facts

Why Matrix Algebra?

Data:

$$
\boldsymbol{X}=\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 p} \\
x_{21} & x_{22} & \cdots & x_{2 p} \\
\vdots & \cdots & \cdots & \vdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n p}
\end{array}\right]
$$

Summary Statistics:

$\bar{X}=\left[\begin{array}{c}\bar{x}_{1} \\ \bar{x}_{2} \\ \vdots \\ \bar{x}_{p}\end{array}\right]=\left[\begin{array}{c}\frac{1}{n} \sum_{i=1}^{n} x_{i 1} \\ \frac{1}{n} \sum_{i=1}^{n} x_{i 2} \\ \vdots \\ \frac{1}{n} \sum_{i=1}^{n} x_{i p}\end{array}\right]=\frac{1}{n} \boldsymbol{X}^{T} \mathbf{1}$ is the sample mean vector,
and $\boldsymbol{S}=\left[\begin{array}{cccc}s_{11} & s_{12} & \cdots & s_{1 p} \\ s_{21} & s_{22} & \cdots & s_{2 p} \\ \vdots & \cdots & \cdots & \cdots \\ s_{p 1} & s_{p 2} & \cdots & s_{p p}\end{array}\right]=\frac{1}{n-1} \boldsymbol{X}^{T}\left(I-\frac{1}{n} \mathbf{1 1} 1^{T}\right) \boldsymbol{X}$ is the
sample covariance matrix. Many matrix algebra techniques will be applied to this matrix in multivariate analysis

Covariance Matrices

- Covariance Matrix

$$
\boldsymbol{\Sigma}=\underbrace{\left[\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & \cdots & \sigma_{1 p} \\
\sigma_{21} & \sigma_{22} & \cdots & \sigma_{2 p} \\
\vdots & \vdots & \vdots & \vdots \\
\sigma_{p 1} & \sigma_{p 2} & \cdots & \sigma_{p p}
\end{array}\right]}_{\text {population covariance matrix }}, \quad \boldsymbol{S}=\underbrace{\left[\begin{array}{cccc}
s_{11} & s_{12} & \cdots & s_{1 p} \\
s_{21} & s_{22} & \cdots & s_{2 p} \\
\vdots & \cdots & \cdots & \cdots \\
s_{p 1} & s_{p 2} & \cdots & s_{p p}
\end{array}\right]}_{\text {sample covariance matrix }}
$$

- Since $\sigma_{j k}=\sigma_{k j}$ (likewise $s_{j k}=s_{k j}$) for all $j \neq k \Rightarrow \boldsymbol{\Sigma}$ and \boldsymbol{S} are symmetric
- Σ and S are also non-negative definite

Vectors

- A column array of p elements is called a vector of dimension p and is written as

$$
\boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{p}
\end{array}\right]
$$

- The transpose of the column vector x is a row vector

$$
\boldsymbol{x}^{T}=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{p}
\end{array}\right]
$$

- $L_{\boldsymbol{x}}^{-1} \boldsymbol{x}$, where $L_{\boldsymbol{x}}=\sqrt{\sum_{j=1}^{p} x_{j}^{2}}$, is called a unit vector
- A matrix A is an array of elements $a_{i j}$ with n rows and p columns:

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 p} \\
a_{21} & a_{22} & \cdots & a_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n p}
\end{array}\right]
$$

- The transpose A^{T} has p rows and n columns. The j-th row of A^{T} os the j-th column of A

$$
A^{T}=\left[\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{n 1} \\
a_{12} & a_{22} & \cdots & a_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 p} & a_{2 p} & \cdots & a_{n p}
\end{array}\right]
$$

Identity Matrix and Inverse Matrix

- An identity matrix, denoted by I, is a square matrix with 1 's along the diagonal and 0's everywhere else. For example

$$
I_{3 \times 3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Consider two square matrices A and B with the same dimension. If

$$
A B=B A=I,
$$

then B is the inverse of A, denoted by A^{-1}

Orthogonal Matrices

- A square matrix Q is orthogonal if

$$
Q Q^{T}=Q^{T} Q=I
$$

- If Q is orthogonal, its rows and columns have unit length (i.e., $L_{\boldsymbol{q}_{j}}=1$) and are mutually perpendicular (i.e., $\boldsymbol{q}_{j}^{T} \boldsymbol{q}_{k}=0$ for any $j \neq k$)
- Example:

$$
Q=\frac{1}{3}\left[\begin{array}{ccc}
2 & -2 & 1 \\
1 & 2 & 2 \\
2 & 1 & -2
\end{array}\right]
$$

Eigenvalues and Eigenvectors

- A square matrix A has an eigenvalue λ with corresponding eigenvector $\boldsymbol{x} \neq 0$ if

$$
A \boldsymbol{x}=\lambda \boldsymbol{x} .
$$

The eigenvalues of A are the solution to $|A-\lambda I|=0$

- A normalized eigenvector is denoted by e with $\boldsymbol{e}^{T} \boldsymbol{e}=1$
- A $p \times p$ matrix A has p pairs of eigenvalues and eigenvectors

$$
\begin{array}{llll}
\lambda_{1}, \boldsymbol{e}_{1} & \lambda_{2}, \boldsymbol{e}_{2} & \cdots & \lambda_{p}, \boldsymbol{e}_{p}
\end{array}
$$

Spectral Decomposition

- Eigenvalues and eigenvectors will play an important role in DSA 8070. For example, principal components are based on the eigenvalues and eigenvectors of sample covariance matrices
- The spectral decomposition of a $p \times p$ symmetric matrix A is $A=\lambda_{1} \boldsymbol{e}_{1} \boldsymbol{e}_{1}^{T}+\lambda_{2} \boldsymbol{e}_{2} \boldsymbol{e}_{2}^{T}+\cdots+\lambda_{p} \boldsymbol{e}_{p} \boldsymbol{e}_{p}^{T}$. This can be written in the following matrix form:

$$
\underbrace{\left[\begin{array}{llll}
\boldsymbol{e}_{1} & \boldsymbol{e}_{2} & \cdots & \boldsymbol{e}_{p}
\end{array}\right]}_{P} \underbrace{\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{p}
\end{array}\right]}_{\Lambda} \underbrace{\left[\begin{array}{llll}
\boldsymbol{e}_{1} & \boldsymbol{e}_{2} & \cdots & \boldsymbol{e}_{p}
\end{array}\right]^{T}}_{P^{T}}
$$

- The trace if a $p \times p$ matrix A is the sum of the diagonal elements, i.e., $\operatorname{trace}(A)=\sum_{i=1}^{p} a_{i i}$
- The trace of a square, symmetric matrix A is the sum of the eigenvalues, i.e., $\operatorname{trace}(A)=\sum_{i=1}^{p} a_{i i}=\sum_{i=1}^{p} \lambda_{i}$
- The determinant of a square, symmetric matrix A is the product of the eigenvalues, i.e., $|A|=\prod_{i=1}^{p} \lambda_{i}$

Positive Definite Matrix

- For a $p \times p$ symmetric matrix A and a vector
$\boldsymbol{x}=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{p}\end{array}\right]^{T}$ the quantity
$\boldsymbol{x}^{T} A \boldsymbol{x}=\sum_{i=1}^{p} \sum_{j=1}^{p} a_{i j} x_{i} x_{j}$ is called a quadratic form
- If $\boldsymbol{x}^{T} A \boldsymbol{x} \geq 0$ for any vector \boldsymbol{x}, both A and the quadratic form are said to be non-negative definite
\Rightarrow all the eigenvalues of A are non-negative
- If $\boldsymbol{x}^{T} A \boldsymbol{x}>0$ for any vector $\boldsymbol{x} \neq \mathbf{0}$, both A and the quadratic form are said to be positive definite
\Rightarrow all the eigenvalues of A are positive

Square-Root Matrices

- Spectral decomposition of a positive definite matrix A yields

$$
A=\sum_{j=1}^{p} \lambda_{j} \boldsymbol{e}_{j} \boldsymbol{e}_{j}^{T}=P \Lambda P^{T}
$$

with $\Lambda_{p \times p}=\operatorname{diag}\left(\lambda_{j}\right)$, all $\lambda_{j}>0$, and
$P_{p \times p}=\left[\begin{array}{llll}\boldsymbol{e}_{1} & \boldsymbol{e}_{2} & \cdots & \boldsymbol{e}_{p}\end{array}\right]$ an orthonormal matrix of eigenvectors. Then

$$
A^{-1}=P \Lambda^{-1} P^{T}=\sum_{j=1}^{p} \frac{1}{\lambda_{j}} \boldsymbol{e}_{j} \boldsymbol{e}_{j}^{T}
$$

- With $\Lambda^{\frac{1}{2}}=\operatorname{diag}\left(\lambda_{j}^{\frac{1}{2}}\right)$, a square-root matrix is

$$
A^{\frac{1}{2}}=P \Lambda^{\frac{1}{2}} P^{T}=\sum_{j=1}^{p} \sqrt{\lambda_{j}} \boldsymbol{e}_{j} \boldsymbol{e}_{j}^{T}
$$

Partitioning Random vectors

- If we partition the $p \times 1$ random vector \boldsymbol{X} into two components $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}$ of dimensions $q \times 1$ and $(p-q) \times 1$ respectively, then the mean vector and the variance-covariance matrix need to be partitioned accordingly
- Partitioned mean vector:

$$
\mathbb{E}[\boldsymbol{X}]=\mathbb{E}\left[\begin{array}{l}
\boldsymbol{X}_{1} \\
\boldsymbol{X}_{2}
\end{array}\right]=\left[\begin{array}{l}
\mathbb{E}\left[\boldsymbol{X}_{1}\right] \\
\mathbb{E}\left[\boldsymbol{X}_{2}\right]
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right]
$$

- Partitioned covariance matrix:

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
\operatorname{Var}\left(\boldsymbol{X}_{1}\right) & \operatorname{Cov}\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}\right) \\
\operatorname{Cov}\left(\boldsymbol{X}_{2}, \boldsymbol{X}_{1}\right) & \operatorname{Var}\left(\boldsymbol{X}_{2}\right)
\end{array}\right]=\left[\begin{array}{cc}
\underbrace{\boldsymbol{\Sigma}_{11}}_{q \times q} & \underbrace{\boldsymbol{\Sigma}_{12}} \\
\underbrace{\boldsymbol{\Sigma}_{21}}_{(p-q) \times q} & \underbrace{\boldsymbol{\Sigma}_{22}}_{(p-q) \times(p-q)}
\end{array}\right]
$$

Summary

In this lecture, we learned about some matrix concepts, facts, and tools that are useful for multivariate data analysis.

In the next lecture, we will learn:

- Multivariate Normal Distribution
- Copula
- Non-parametric Density Estimation

