Lecture 3 A Short Review of Matrix Algebra

Reading: Zelterman, 2015 Chapter 4; Izenman, 2008 Chapter 3.1-3.2

DSA 8070 Multivariate Analysis

Whitney Huang Clemson University A Short Review of Matrix Algebra

Motivation

Basic Matrix Concepts

Agenda

A Short Review of Matrix Algebra

Motivatio

Basic Matrix Concepts

Some Useful Matrix Tools/Facts

Why Matrix Algebra?

Data:

$$\boldsymbol{X} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \cdots & \cdots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$

Summary Statistics:

$$\bar{X} = \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \\ \vdots \\ \bar{x}_p \end{bmatrix} = \begin{bmatrix} \frac{1}{n} \sum_{i=1}^n x_{i1} \\ \frac{1}{n} \sum_{i=1}^n x_{i2} \\ \vdots \\ \frac{1}{n} \sum_{i=1}^n x_{ip} \end{bmatrix} = \frac{1}{n} \boldsymbol{X}^T \mathbf{1} \text{ is the sample mean vector,}$$

and
$$S = \begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1p} \\ s_{21} & s_{22} & \cdots & s_{2p} \\ \vdots & \cdots & \cdots & \cdots \\ s_{p1} & s_{p2} & \cdots & s_{pp} \end{bmatrix} = \frac{1}{n-1} \mathbf{X}^T (I - \frac{1}{n} \mathbf{1} \mathbf{1}^T) \mathbf{X}$$
 is the sample covariance matrix. Many matrix algebra techniques will

be applied to this matrix in multivariate analysis

Motivation

Basic Matrix Concepts

Covariance Matrices

Covariance Matrix

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1p} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \cdots & \sigma_{pp} \end{bmatrix}, \quad \boldsymbol{S} = \begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1p} \\ s_{21} & s_{22} & \cdots & s_{2p} \\ \vdots & \cdots & \cdots & \cdots \\ s_{p1} & s_{p2} & \cdots & s_{pp} \end{bmatrix}$$
population covariance matrix
sample covariance matrix

• Since $\sigma_{jk} = \sigma_{kj}$ (likewise $s_{jk} = s_{kj}$) for all $j \neq k \Rightarrow \Sigma$ and S are symmetric

• Σ and S are also non-negative definite

Motivation

Basic Matrix Concepts

Vectors

• A column array of *p* elements is called a vector of dimension *p* and is written as

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}$$

• The transpose of the column vector x is a row vector

$$\boldsymbol{x}^T = \begin{bmatrix} x_1 & x_2 & \cdots & x_p \end{bmatrix}$$

•
$$L_{\boldsymbol{x}}^{-1}\boldsymbol{x}$$
, where $L_{\boldsymbol{x}}$ = $\sqrt{\sum_{j=1}^{p} x_{j}^{2}}$, is called a unit vector

Motivation

Basic Matrix Concepts

Matrices

• A matrix *A* is an array of elements *a*_{*ij*} with *n* rows and *p* columns:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{bmatrix}$$

• The transpose A^T has p rows and n columns. The j-th row of A^T os the j-th column of A

$$A^{T} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1p} & a_{2p} & \cdots & a_{np} \end{bmatrix}$$

Motivation

Basic Matrix Concepts

Identity Matrix and Inverse Matrix

• An identity matrix, denoted by *I*, is a square matrix with 1's along the diagonal and 0's everywhere else. For example

$$I_{3\times3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• Consider two square matrices *A* and *B* with the same dimension. If

$$AB = BA = I,$$

then *B* is the inverse of *A*, denoted by A^{-1}

Motivation

Basic Matrix Concepts

Orthogonal Matrices

• A square matrix Q is orthogonal if

$$QQ^T = Q^TQ = I$$

• If Q is orthogonal, its rows and columns have unit length (i.e., $L_{q_j} = 1$) and are mutually perpendicular (i.e., $q_j^T q_k = 0$ for any $j \neq k$)

• Example:

$$Q = \frac{1}{3} \begin{bmatrix} 2 & -2 & 1\\ 1 & 2 & 2\\ 2 & 1 & -2 \end{bmatrix}$$

Motivatior

Basic Matrix Concepts

Eigenvalues and Eigenvectors

 A square matrix A has an eigenvalue λ with corresponding eigenvector x ≠ 0 if

 $A\boldsymbol{x} = \lambda \boldsymbol{x}.$

The eigenvalues of A are the solution to $|A - \lambda I| = 0$

- A normalized eigenvector is denoted by e with $e^T e = 1$
- A p × p matrix A has p pairs of eigenvalues and eigenvectors

$$\lambda_1, \boldsymbol{e}_1 \quad \lambda_2, \boldsymbol{e}_2 \quad \cdots \quad \lambda_p, \boldsymbol{e}_p$$

Motivation

Basic Matrix Concepts

Spectral Decomposition

- Eigenvalues and eigenvectors will play an important role in DSA 8070. For example, principal components are based on the eigenvalues and eigenvectors of sample covariance matrices
- The spectral decomposition of a p × p symmetric matrix A is A = λ₁e₁e₁^T + λ₂e₂e₂^T + ··· + λ_pe_pe_p^T. This can be written in the following matrix form:

$$\underbrace{\begin{bmatrix} \boldsymbol{e}_1 & \boldsymbol{e}_2 & \cdots & \boldsymbol{e}_p \end{bmatrix}}_{\boldsymbol{P}} \underbrace{\begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_p \end{bmatrix}}_{\boldsymbol{\Lambda}} \underbrace{\begin{bmatrix} \boldsymbol{e}_1 & \boldsymbol{e}_2 & \cdots & \boldsymbol{e}_p \end{bmatrix}^T}_{\boldsymbol{P}^T}$$

A Short Review of Matrix Algebra

Motivation

Basic Matrix Concepts

Determinant and Trace

- The trace if a $p \times p$ matrix A is the sum of the diagonal elements, i.e., trace $(A) = \sum_{i=1}^{p} a_{ii}$
- The trace of a square, symmetric matrix A is the sum of the eigenvalues, i.e., trace(A) = Σ^p_{i=1} a_{ii} = Σ^p_{i=1} λ_i
- The determinant of a square, symmetric matrix A is the product of the eigenvalues, i.e., $|A| = \prod_{i=1}^{p} \lambda_i$

Motivation

Basic Matrix Concepts

Positive Definite Matrix

- For a $p \times p$ symmetric matrix A and a vector $\boldsymbol{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_p \end{bmatrix}^T$ the quantity $\boldsymbol{x}^T A \boldsymbol{x} = \sum_{i=1}^p \sum_{j=1}^p a_{ij} x_i x_j$ is called a quadratic form
- If x^TAx ≥ 0 for any vector x, both A and the quadratic form are said to be non-negative definite
 - \Rightarrow all the eigenvalues of A are non-negative
- If x^TAx > 0 for any vector x ≠ 0, both A and the quadratic form are said to be positive definite

 \Rightarrow all the eigenvalues of A are positive

Motivatior

Basic Matrix Concepts

Square-Root Matrices

• Spectral decomposition of a positive definite matrix *A* yields

$$A = \sum_{j=1}^{p} \lambda_j \boldsymbol{e}_j \boldsymbol{e}_j^T = P \Lambda P^T.$$

with $\Lambda_{p \times p} = \text{diag}(\lambda_j)$, all $\lambda_j > 0$, and $P_{p \times p} = \begin{bmatrix} e_1 & e_2 & \cdots & e_p \end{bmatrix}$ an orthonormal matrix of eigenvectors. Then

$$A^{-1} = P\Lambda^{-1}P^T = \sum_{j=1}^p \frac{1}{\lambda_j} \boldsymbol{e}_j \boldsymbol{e}_j^T$$

• With $\Lambda^{\frac{1}{2}} = \operatorname{diag}(\lambda_j^{\frac{1}{2}})$, a square-root matrix is

$$A^{\frac{1}{2}} = P\Lambda^{\frac{1}{2}}P^T = \sum_{j=1}^p \sqrt{\lambda_j} \boldsymbol{e}_j \boldsymbol{e}_j^T$$

Motivatior

Basic Matrix Concepts

Partitioning Random vectors

- If we partition the $p \times 1$ random vector X into two components X_1, X_2 of dimensions $q \times 1$ and $(p-q) \times 1$ respectively, then the mean vector and the variance-covariance matrix need to be partitioned accordingly
- Partitioned mean vector:

$$\mathbb{E}[\boldsymbol{X}] = \mathbb{E}\begin{bmatrix}\boldsymbol{X}_1\\\boldsymbol{X}_2\end{bmatrix} = \begin{bmatrix}\mathbb{E}[\boldsymbol{X}_1]\\\mathbb{E}[\boldsymbol{X}_2]\end{bmatrix} = \begin{bmatrix}\boldsymbol{\mu}_1\\\boldsymbol{\mu}_2\end{bmatrix}$$

Partitioned covariance matrix:

$$\boldsymbol{\Sigma} = \begin{bmatrix} \operatorname{Var}(\boldsymbol{X}_1) & \operatorname{Cov}(\boldsymbol{X}_1, \boldsymbol{X}_2) \\ \operatorname{Cov}(\boldsymbol{X}_2, \boldsymbol{X}_1) & \operatorname{Var}(\boldsymbol{X}_2) \end{bmatrix} = \begin{bmatrix} \underbrace{\boldsymbol{\Sigma}_{11}}_{q \times q} & \underbrace{\boldsymbol{\Sigma}_{12}}_{q \times (p-q)} \\ \underbrace{\boldsymbol{\Sigma}_{21}}_{(p-q) \times q} & \underbrace{\boldsymbol{\Sigma}_{22}}_{(p-q) \times (p-q)} \end{bmatrix}$$

Motivation

Basic Matrix Concepts

Summary

In this lecture, we learned about some matrix concepts, facts, and tools that are useful for multivariate data analysis.

In the next lecture, we will learn:

- Multivariate Normal Distribution
- Copula
- Non-parametric Density Estimation

A Short Review of Matrix Algebra

Motivation

Basic Matrix Concepts