Lecture 5 Inferences about a Mean Vector Readings: Zelterman, 2015, Chapters 6, 7

DSA 8070 Multivariate Analysis

Inferences about a Mean Vector

Confidence ntervals/Region for Population Means

Hypothesis Testing for Mean Vector

Aultivariate Paired Hotelling's T-Square

Whitney Huang Clemson University

Agenda

Inferences about a Mean Vector

Confidence ntervals/Region for Population Means

Hypothesis Testing for Mean Vector

Aultivariate Paired Hotelling's T-Square

Confidence Intervals/Region for Population Means

Overview

In this week we consider estimation and inference on population mean vector

We will explore the following questions:

- What is the sampling distribution of \bar{X}_n ?
- How to construct confidence intervals/region for population means
- How to conduct hypothesis testing for population means

Confidence ntervals/Region for Population Means

Hypothesis Testing for Mean Vector

Review: Sampling Distribution of Univariate Sample Mean \bar{X}_n

Suppose X_1, X_2, \dots, X_n is a random sample from a univariate population distibution with mean $\mathbb{E}(X) = \mu$ and variance $\mathbb{V}_{\mathbb{QP}}(X) = \sigma^2$. The sample mean \overline{X}_n is a function of random sample and therefore has a distribution

- *X
 _n* ∼ N(μ, ^{σ²}/_n) when the sample size n is "sufficiently" large ⇒ This is the central limit theorem (CLT)
- The result above is exact if the population follows a normal distribution, i.e., $X \sim N(\mu, \sigma^2)$
- The standard error $\sqrt{\mathbb{V}_{\mathbb{O}\Gamma}(\bar{X}_n)} = \frac{\sigma}{\sqrt{n}}$ provides a measure estimation precision. In practice, we use $\frac{s}{\sqrt{n}}$ instead where s is the sample standard deviation

Inferences about a Mean Vector

Confidence Intervals/Region for Population Means

Hypothesis Testing for Mean Vector

Sampling Distribution of Multivariate Sample Mean Vector $ar{X}_n$

Suppose X_1, X_2, \dots, X_n is a random sample from a multivariate population distibution with mean vector $\mathbb{E}(X) = \mu$ and covariance matrix = Σ .

- *X
 _n* ∼ N(μ, ¹/_nΣ) when the sample size n is "sufficiently" large ⇒ This is the multivariate version of CLT
- The result above is exact if the population follows a normal distribution, i.e., $X \sim N(\mu, \Sigma)$
- Again, the estimation precision improves with a larger sample size. Like the univariate case we would need to replace Σ by its estimate S, the sample covariacne matrix

Confidence ntervals/Region for Population Means

Hypothesis Testing for Mean Vector

Review: Interval Estimation of Univariate Population Mean μ

The general format of a confidence interval (CI) estimate of a population mean is

Sample mean \pm multiplier \times standard error of mean.

For variable X, a CI estimate of its population mean μ is

$$\bar{X}_n \pm t_{n-1} \left(\frac{\alpha}{2}\right) \frac{s}{\sqrt{n}}$$

Here the multiplier value is a function of the confidence level, $\alpha,$ the sample size n

Confidence ntervals/Region for Population Means

Hypothesis Testing for Mean Vector

Constructing Confidence Intervals for Mean Vector We will still use the general recipe

Sample mean \pm multiplier \times standard error of mean.

The multiplier value also depends the strategy used for dealing with the multiple inference issue

• One at a Time CIs: a CI for μ_j is computed as

$$\bar{x}_j \pm t_{n-1}(\alpha/2)\frac{s_j}{\sqrt{n}}, \quad j = 1, \cdots, p$$

• Bonferroni Method: a CI for μ_j is computed as

$$\bar{x}_j \pm t_{n-1}(\alpha/2p)\frac{s_j}{\sqrt{n}}, \quad j=1,\dots,p$$

• Simultaneous CIs: a CI for μ_j is computed as

$$\bar{x}_j \pm \sqrt{\frac{(n-1)p}{n-p}} F_{p,n-p}(\alpha) \frac{s_j}{\sqrt{n}}, \quad j = 1, \cdots, p$$

Inferences about a Mean Vector

Confidence Intervals/Region for Population Means

Hypothesis Testing for Mean Vector

Example: Mineral Content Measurements [source: Penn Stat Univ. STAT 505]

This example uses the dataset that includes mineral content measurements at two different arm bone locations for n = 64 women. We'll determine confidence intervals for the two different population means. Sample means and standard deviations for the two variables are:

Inferences about a Mean Vector

Confidence ntervals/Region for Population Means

Hypothesis Testing for Mean Vector

Aultivariate Paired Iotelling's T-Square

Variable	Sample size	Mean	Std Dev
domradius (X_1)	<i>n</i> = 64	$\bar{x}_1 = 0.8438$	$s_1 = 0.1140$
domhumerus (X_2)	n = 64	$\bar{x}_2 = 1.7927$	$s_2 = 0.2835$

Let's apply the three methods we learned to construct 95% CIs

Mineral Content Measurements Example Cont'd

• One at a Time Cls: $\bar{x}_j \pm t_{n-1}(\alpha/2)\frac{s_j}{\sqrt{n}}$, $j = 1, \dots, p$. Therefore 95% Cls for μ_1 and μ_2 are:

$$\mu_1: \quad 0.8438 \pm \underbrace{1.998}_{t_{63}(0.025)} \times \underbrace{\frac{0.1140}{\sqrt{64}}}_{t_{63}(0.025)} = \quad \begin{bmatrix} 0.815, 0.872 \end{bmatrix}$$

$$\mu_2: \quad 1.7927 \pm 1.998 \times \underbrace{\frac{0.2835}{\sqrt{64}}}_{\sqrt{64}} = \quad \begin{bmatrix} 1.722, 1.864 \end{bmatrix}$$

• Bonferroni Method:
$$\bar{x}_j \pm t_{n-1} (\alpha/2p) \frac{s_j}{\sqrt{n}}, \quad j = 1, \dots, p.$$

$$\begin{array}{lll} \mu_1: & 0.8438 \pm \underbrace{2.296}_{t_{63}(0.0125)} \times \underbrace{0.1140}_{\sqrt{64}} = & \left[0.811, 0.877 \right] \\ \mu_2: & 1.7927 \pm 2.296 \times \underbrace{0.2835}_{\sqrt{64}} = & \left[1.711, 1.874 \right] \end{array}$$

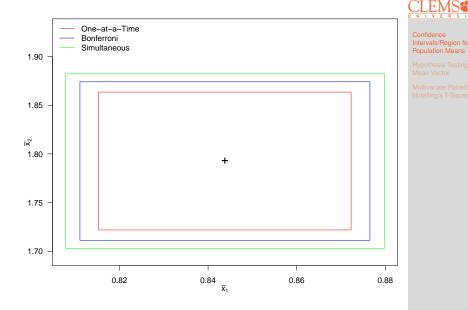
• Simultaneous CIs:
$$\bar{x}_j \pm \sqrt{\frac{(n-1)p}{n-p}} F_{p,n-p}(\alpha) \frac{s_j}{\sqrt{n}}, \quad j = 1, \dots, p$$

$$\begin{array}{lll} \mu_1: & 0.8438 \pm 2.528 \times \frac{0.1140}{\sqrt{64}} = & \left[0.808, 0.880 \right] \\ \mu_2: & 1.7927 \pm 2.528 \times \frac{0.2835}{\sqrt{64}} = & \left[1.703, 1.882 \right] \end{array}$$

Confidence Intervals/Region for Population Means

Hypothesis Testing for Mean Vector

95 % CIs Based on Three Methods



Inferences about a

Mean Vector

Confidence Ellipsoid

A confidence ellipsoid for μ is the set of μ satisfying

$$n(\bar{\boldsymbol{X}}_n - \boldsymbol{\mu})^T \boldsymbol{S}^{-1}(\bar{\boldsymbol{X}} - \boldsymbol{\mu}) \leq \frac{(n-1)p}{n-p} F_{p,n-p}(\alpha)$$



Confidence ntervals/Region for Population Means

Hypothesis Testing for Mean Vector

Hypothesis Testing for Mean

Recall: for univariate data, t statistic

$$t = \frac{\bar{X}_n - \mu_0}{s/\sqrt{n}} \Rightarrow t^2 = \frac{\left(\bar{X}_n - \mu_0\right)^2}{s^2/n} = n\left(\bar{X}_n - \mu_0\right) \left(s^2\right)^{-1} \left(\bar{X}_n - \mu_0\right)$$

Under $H_0: \mu = \mu_0$

$$t \sim t_{n-1}, \quad t^2 \sim F_{1,n-1}$$

Extending to multivariate by analogy:

$$T^{2} = n \left(\bar{\boldsymbol{X}}_{n} - \boldsymbol{\mu}_{0} \right)^{T} \boldsymbol{S}^{-1} \left(\bar{\boldsymbol{X}}_{n} - \boldsymbol{\mu}_{0} \right)$$

Under $H_0: \mu = \mu_0$

$$\frac{(n-p)}{(n-1)p}T^2 \sim F_{p,n-p}$$

Note: T^2 here is the so-called Hotelling's T-Square

Confidence ntervals/Region for Population Means

Hypothesis Testing for Mean Vector

Hypothesis Testing for Mean Vector μ

State the null

$$H_0:oldsymbol{\mu}$$
 = $oldsymbol{\mu}_0$

and the alternative

$$H_a: \boldsymbol{\mu} \neq \boldsymbol{\mu}_0$$

Compute the test statistic

$$F = \frac{n-p}{(n-1)p} n \left(\bar{\boldsymbol{X}}_n - \boldsymbol{\mu}_0 \right)^T \boldsymbol{S}^{-1} \left(\bar{\boldsymbol{X}}_n - \boldsymbol{\mu}_0 \right)$$

Outputs the P-value. Under $H_0: F \sim F_{p,n-p}$

Draw a conclusion: We do (or do not) have enough statistical evidence to conclude μ ≠ μ₀ at α significant level

Confidence ntervals/Region for Population Means

Hypothesis Testing for Mean Vector

Example: Women's Dietary Intake [source: Penn Stat Univ. STAT 505]

The recommended intake and a sample mean for all women between 25 and 50 years old are given below:

Variable	Recommended Intake (μ_0)	Sample Mean $(ar{m{x}}_n)$	
Calcium	1000 <i>mg</i>	624.0 mg	
Iron	15 <i>mg</i>	11.1 <i>mg</i>	
Protein	60 g	65.8 g	
Vitamin A	800 μg	839.6 µg	
Vitamin C	75 <i>mg</i>	78.9 mg	

Here we would like to test, at $\alpha = 0.01$ level, if the $\mu = \mu_0$

Confidence Intervals/Region for Population Means

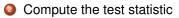
Hypothesis Testing for Mean Vector

Women's Dietary Intake Example Analysis

$$H_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0$$

and the alternative

$$H_a: \mu \neq \mu_0$$



$$F = \frac{n-p}{(n-1)p} n \left(\bar{x}_n - \mu_0 \right)^T S^{-1} \left(\bar{x}_n - \mu_0 \right) = 349.80$$

Occupute the P-value. Under $H_0: F \sim F_{p,n-p} \Rightarrow$ p-value = $\Pr(F_{p,n-p} > 349.80) = 3 \times 10^{-191} < \alpha = 0.01$

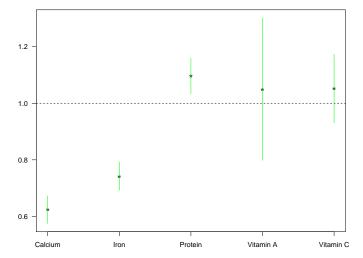
Draw a conclusion: We do have enough statistical evidence to conclude μ ≠ μ₀ at α significant level

Confidence ntervals/Region for Population Means

Hypothesis Testing for Mean Vector

Profile Plots

- Standardize each of the observations by dividing their hypothesized means
- Plot either simultaneous or Bonferroni CIs for the population mean of these standardized variables



Inferences about a Mean Vector

Confidence Intervals/Region for Population Means

Hypothesis Testing for Mean Vector

Spouse Survey Data Example

A sample (n = 30) of husband and wife pairs are asked to respond to each of the following questions:

- What is the level of passionate love you feel for your partner?
- What is the level of passionate love your partner feels for you?
- What is the level of companionate love you feel for your partner?
- What is the level of companionate love your partner feels for you?

Responses were recorded on a typical five-point scale: 1) None at all 2) Very little 3) Some 4) A great deal 5) Tremendous amount.

We will try to address the following question: Do the husbands respond to the questions in the same way as their wives?

Confidence Intervals/Region for Population Means

Hypothesis Testing for Mean Vector

Multivariate Paired Hotelling's T-Square

Let X_F and X_M be the responses to these 4 questions for females and males, respectively. Here the quantities of interest are $\mathbb{E}(D) = \mu_D$, the average differences across all husband and wife pairs.

State the null H₀ : μ_D = 0 and the alternative hypotheses H_a : μ_D ≠ 0

Compute the test statistic

$$F = \frac{n-p}{(n-1)p} n \bar{\boldsymbol{D}}_n^T \boldsymbol{S}_{\boldsymbol{D}}^{-1} \bar{\boldsymbol{D}}_n$$

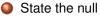
Outputs Set Set Upper Set upper Set upper Set and Set upper Set

Draw a conclusion: We do (or do not) have enough statistical evidence to conclude μ_D ≠ 0 at α significant level Inferences about a Mean Vector

Confidence ntervals/Region for Population Means

Hypothesis Testing for Mean Vector

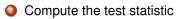
Spouse Survey Data Example Analysis



$$H_0: \boldsymbol{\mu}_D = \mathbf{0}$$

and the alternative

$$H_a: \boldsymbol{\mu}_D \neq \mathbf{0}$$



$$F = \frac{n-p}{(n-1)p} n \bar{D}_n^T S_D^{-1} \bar{D}_n = 2.942$$

Occupute the P-value. Under $H_0: F \sim F_{p,n-p} \Rightarrow$ p-value = $\mathbb{Pr}(F_{p,n-p} >) = 0.0394 < \alpha = 0.05$

Oraw a conclusion: We do have enough statistical evidence to conclude μ_D ≠ 0 at 0.05 significant level

Confidence ntervals/Region for Population Means

Hypothesis Testing for Mean Vector

Summary

In this lecture, we learned about:

- Confidence Intervals/Regions for Mean Vector
- Hypothesis Testing for Mean Vector
- Multivariate Version of Paired Tests

In the next lecture, we will learn about comparisons of several mean vectors

Confidence ntervals/Region for Population Means

Hypothesis Testing for Mean Vector