# Lecture 6 Comparisons of Several Mean Vectors 

Readings: Johnson \& Wichern 2007, Chapter 6.3-6.5
DSA 8070 Multivariate Analysis


Whitney Huang Clemson University

## Agenda

(1) Comparisons of Two Mean Vectors
(2) Multivariate Analysis of Variance

## Motivating Example: Swiss Bank Notes (Source: PSU stat 505)

Suppose there are two distinct populations for 1000 franc Swiss Bank Notes:

- The first population is the population of Genuine Bank Notes
- The second population is the population of Counterfeit Bank Notes

For both populations the following measurements were taken:

- Length of the note
(2) Width of the Left-Hand side of the note
(3) Width of the Right-Hand side of the note
( Width of the Bottom Margin
© Width of the Top Margin
© Diagonal Length of Printed Area
We want to determine if counterfeit notes can be distinguished from the genuine Swiss bank notes


## Review: Two Sample t-Test

Suppose we have data from a single variable from population 1: $X_{11}, X_{12}, \cdots, X_{1 n_{1}}$ and population 2: $X_{21}, X_{22}, \cdots, X_{2 n_{2}}$. Here we would like to draw inference about their population means $\mu_{1}$ and $\mu_{2}$.

## Assumptions:

- Homoscedasticity: The data from both populations have common variance $\sigma^{2}$
- Independence: The subjects from both populations are independently sampled $\Rightarrow\left\{X_{1 i}\right\}_{i=1}^{n_{1}}$ and $\left\{X_{2 j}\right\}_{j=1}^{n_{2}}$ are independent to each other
- Normality: The data from both populations are normally distributed (not that crucial for "large" sample )

Here we are going to consider testing $H_{0}: \mu_{1}=\mu_{2}$ against $H_{a}: \mu_{1} \neq \mu_{2}$

## Review: Two Sample t-Test

We define the sample means for each population using the following expression:

$$
\bar{x}_{1}=\frac{\sum_{j=1}^{n_{1}} x_{1 j}}{n_{1}}, \quad \bar{x}_{2}=\frac{\sum_{j=1}^{n_{2}} x_{2 j}}{n_{2}}
$$

We denote the sample variance

$$
s_{1}^{2}=\frac{\sum_{j=1}^{n_{1}}\left(x_{1 j}-\bar{x}_{1}\right)^{2}}{n_{1}-1}, \quad s_{2}^{2}=\frac{\sum_{j=1}^{n_{2}}\left(x_{2 j}-\bar{x}_{2}\right)^{2}}{n_{2}-1}
$$

Under the homoscedasticity assumption, we can "pool" two samples to get the pooled sample variance

$$
s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}
$$

Test statistic

$$
t=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{s_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \stackrel{H_{0}}{\sim} t_{n_{1}+n_{2}-2}
$$

We can use this result to construct confidence intervals and to perform hypothesis tests

The Two Sample Problem: The Multivariate Case
Now we would like to use two independent samples $\left\{\boldsymbol{X}_{11}, \cdots \boldsymbol{X}_{12}, \cdots \boldsymbol{X}_{1 n_{1}}\right\}$ and $\left\{\boldsymbol{X}_{21}, \cdots \boldsymbol{X}_{22}, \cdots \boldsymbol{X}_{2 n_{2}}\right\}$, where

$$
\boldsymbol{X}_{i j}=\left[\begin{array}{c}
X_{i j 1} \\
X_{i j 2} \\
\vdots \\
X_{i j p}
\end{array}\right]
$$

to infer the relationship between $\mu_{1}$ and $\mu_{2}$, where

$$
\boldsymbol{\mu}_{i}=\left[\begin{array}{c}
\mu_{i 1} \\
\mu_{i 2} \\
\vdots \\
\mu_{i p}
\end{array}\right]
$$

## Assumptions

- Both populations have common covariance matrix, i.e., $\Sigma_{1}=\Sigma_{2}$
- Independence: The subjects from both populations are independently sampled
- Normality: Both populations are normally distributed


## The Multivariate Two-Sample Problem

Here we are testing
$H_{0}:\left[\begin{array}{c}\mu_{11} \\ \mu_{12} \\ \vdots \\ \mu_{1 p}\end{array}\right]=\left[\begin{array}{c}\mu_{21} \\ \mu_{22} \\ \vdots \\ \mu_{2 p}\end{array}\right], \quad H_{a}: \mu_{1 k} \neq \mu_{2 k}$ for at least one $k \in\{1,2, \cdots, p\}$
Under the common covariance assumption we have

$$
\boldsymbol{S}_{p}=\frac{\left(n_{1}-1\right) \boldsymbol{S}_{1}+\left(n_{2}-1\right) \boldsymbol{S}_{2}}{n_{1}+n_{2}-2},
$$

where

$$
\boldsymbol{S}_{i}=\frac{1}{n_{i}-1} \sum_{j=1}^{n_{i}}\left(\boldsymbol{x}_{i j}-\overline{\boldsymbol{x}}_{i}\right)\left(\boldsymbol{x}_{i j}-\overline{\boldsymbol{x}}_{i}\right)^{T}, \quad i=1,2
$$

## The Two-Sample Hotelling's T-Square Test Statistic

The two-sample $t$ test is equivalent to

$$
t^{2}=\left(\bar{x}_{1}-\bar{x}_{2}\right)^{T}\left[s_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)\right]^{-1}\left(\bar{x}_{1}-\bar{x}_{2}\right) .
$$

Under $H_{0}, t^{2} \sim F_{1, n_{1}+n_{2}-2}$. We can use this result to perform a hypothesis test

We can extend this to the multivariate situation:

$$
T^{2}=\left(\overline{\boldsymbol{x}}_{1}-\overline{\boldsymbol{x}}_{2}\right)^{T}\left[\boldsymbol{S}_{p}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)\right]^{-1}\left(\overline{\boldsymbol{x}}_{1}-\overline{\boldsymbol{x}}_{2}\right)
$$

Under $H_{0}$, we have

$$
F=\frac{n_{1}+n_{2}-p-1}{p\left(n_{1}+n_{2}-2\right)} T^{2} \sim F_{p, n_{1}+n_{2}-p-1}
$$

We can use this result to perform inferences for multivariate cases

## Two-Sample Test for Swiss Bank Notes

```
> (xbar1 <- colMeans(dat[real, -1]))
    V2 V3 V4 V5 V6
V7
    V2 V3 V4 V5 V6 V7
214.823 130.300 130.193 10.530}1011.133 139.450
> Sigma1 <- cov(dat[real, -1])
> Sigma2 <- cov(dat[fake, -1])
> n1 <- length(real); n2 <- length(fake); p <- dim(dat[, -1])[2]
> Sp <- ((n1 - 1) * Sigma1 + (n2 - 1) *Sigma2) / (n1 + n2 - 2)
> # Test statistic
> T.squared <- as.numeric(t(xbar1 - xbar2) %*% solve(Sp * (1 / n1 + 1
    / n2)) %*% (xbar1 - xbar2))
> Fobs <- T.squared * ((n1 + n2 - p - 1) / ((n1 + n2 - 2) * p))
> # p-value
> pf(Fobs, p, n1 + n2 - p -1, lower.tail = F)
[1] 3.378887e-105
```

```
214.969 129.943 129.720 8.305 10.168 141.517
```

```
214.969 129.943 129.720 8.305 10.168 141.517
```

```
> (xbar2 <- colMeans(dat[fake, -1]))
```

```
> (xbar2 <- colMeans(dat[fake, -1]))
```


## Conclusion

The counterfeit notes can be distinguished from the genuine notes on at least one of the measurements $\Rightarrow$ which ones?

## Simultaneous Confidence Intervals

$$
\bar{x}_{1 k}-\bar{x}_{2 k} \pm \sqrt{\frac{p\left(n_{1}+n_{2}-2\right)}{n_{1}+n_{2}-p-1} F_{p, n_{1}+n_{2}-p-1, \alpha}} \sqrt{\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right) s_{k, p}^{2}}
$$

where $s_{k, p}^{2}$ is the pooled variance for the variable $k$

| Variable | $95 \% \mathrm{Cl}$ |
| :--- | :--- |
| Length of the note | $(-0.04,0.34)$ |
| Width of the Left-Hand note | $(-0.52,-0.20)$ |
| Width of the Right-Hand note | $(-0.64,-0.30)$ |
| Width of the Bottom Margin | $(-2.70,-1.75)$ |
| Width of the Top Margin | $(-1.30,-0.63)$ |
| Diagonal Length of Printed Area | $(1.81,2.33)$ |

## Checking Model Assumptions

## Assumptions:

- Homoscedasticity: The data from both populations have common covariance matrix $\Sigma$

Will return to this in next slide

- Independence:

This assumption may be violated if we have clustered, time-series, or spatial data

- Normality:

Multivariate QQplot, univariate histograms, bivariate scatter plots

## Testing for Equality of Mean Vectors when $\Sigma_{1} \neq \boldsymbol{\Sigma}_{2}$

- Bartlett's test can be used to test if $\boldsymbol{\Sigma}_{1}=\boldsymbol{\Sigma}_{2}$ but this test is sensitive to departures from normality
- As as crude rule of thumb: if $s_{1, k}^{2}>4 s_{2, k}^{2}$ or $s_{2, k}^{2}>4 s_{1, k}^{2}$ for some $k \in\{1,2, \cdots, p\}$, then it is likely that $\boldsymbol{\Sigma}_{1} \neq \boldsymbol{\Sigma}_{2}$
- Life gets difficult if we cannot assume that $\boldsymbol{\Sigma}_{1}=\boldsymbol{\Sigma}_{2}$ However, if both $n_{1}$ and $n_{2}$ are "large", we can use the following approximation to conduct inferences:

$$
T^{2}=\left(\overline{\boldsymbol{X}}_{1}-\overline{\boldsymbol{X}}_{2}\right)^{T}\left[\frac{1}{n_{1}} \boldsymbol{S}_{1}+\frac{1}{n_{2}} \boldsymbol{S}_{2}\right]^{-1}\left(\overline{\boldsymbol{X}}_{1}-\overline{\boldsymbol{X}}_{2}\right) \stackrel{H_{0}}{\sim} \chi_{p}^{2}
$$

## Comparing More Than Two Populations: Romano-British Pottery Example (source: PSU stat 505)

- Pottery shards are collected from four sites in the British Isles:
- Llanedyrn (L)
- Caldicot (C)
- Isle Thorns (I)
- Ashley Rails (A)
- The concentrations of five different chemicals were be used
- Aluminum ( $A l$ )
- Iron (Fe)
- Magnesium ( Mg )
- Calcium (Ca)
- Sodium ( Na )
- Objective: to determine whether the chemical content of the pottery depends on the site where the pottery was obtained


## Review: (Univariate) Analysis of Variance (ANOVA)

- $H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{g}$
$H_{a}$ : At least one mean is different

| Source | df | SS | MS | F statistic |
| :--- | :--- | :--- | :--- | :--- |
| Treatment $g-1$ | SSTr | MSTr $=\frac{\text { SSTr }}{g-1}$ | $F=\frac{\text { MSTr }}{\text { MSE }}$ |  |
| Error | $N-g$ | SSE | MSE $=\frac{\text { SSE }}{N-g}$ |  |
| Total | $N-1$ | SSTo |  |  |

- Test Statistic: $F^{*}=\frac{\text { MSTr }}{\text { MSE }}$. Under $H_{0}, F^{*} \sim F_{d f_{1}=g-1, d f_{2}=N-g}$
- Assumptions:
- The distribution of each group is normal with equal variance (i.e. $\sigma_{1}^{2}=\sigma_{2}^{2}=\cdots=\sigma_{g}^{2}$ )
- Responses for a given group are independent to each other


## One-way Multivariate Analysis of Variance (One-way MANOVA)

| Subject | Group | 1 | 2 | $\boldsymbol{g}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\boldsymbol{Y}_{11}=\left[\begin{array}{c}Y_{111} \\ Y_{112} \\ \vdots \\ Y_{11 p}\end{array}\right]$ | $\boldsymbol{Y}_{21}=\left[\begin{array}{c}Y_{211} \\ Y_{212} \\ \vdots \\ Y_{21 p}\end{array}\right]$ | $\cdots$ | $\boldsymbol{Y}_{g 1}=\left[\begin{array}{c}Y_{g 11} \\ Y_{g 12} \\ \vdots \\ Y_{g 1 p}\end{array}\right]$ |
| 2 | $\boldsymbol{Y}_{21}=\left[\begin{array}{c}Y_{121} \\ Y_{122} \\ \vdots \\ Y_{12 p}\end{array}\right]$ | $\boldsymbol{Y}_{22}=\left[\begin{array}{c}Y_{221} \\ Y_{222} \\ \vdots \\ Y_{22 p}\end{array}\right]$ | $\cdots$ | $\boldsymbol{Y}_{g 2}=\left[\begin{array}{c}Y_{g 21} \\ Y_{g 22} \\ \vdots \\ Y_{g 2 p}\end{array}\right]$ |
| $\vdots$ | $\boldsymbol{Y}_{1 n_{i}}=\left[\begin{array}{c}Y_{1 n_{i} 1} \\ Y_{1 n_{i} 2} \\ \vdots \\ Y_{1 n_{i} p}\end{array}\right]$ | $\boldsymbol{Y}_{2 n_{i}}=\left[\begin{array}{c}Y_{2 n_{i} 1} \\ Y_{2 n_{i} 2} \\ \vdots \\ Y_{2 n_{i} p}\end{array}\right]$ | $\cdots$ | $\boldsymbol{Y}_{g n_{i}}=\left[\begin{array}{c}Y_{g n_{i} 1} \\ Y_{g n_{i} 2} \\ \vdots \\ Y_{g n_{i} p}\end{array}\right]$ |

- Notation: $\boldsymbol{Y}_{i j}$ is the vector of variables for subject $j$ in group $i$; $n_{i}$ is the sample size in group $i$;
$N=n_{1}+n_{2}+\cdots+n_{g}$ the total sample size
- Assumptions: 1) common covariance matrix $\Sigma$; 2) Independence; 3) Normality


## Test Statistics for MANOVA

- We are interested in testing the null hypothesis that the group mean vectors are all equal

$$
H_{0}: \boldsymbol{\mu}_{1}=\boldsymbol{\mu}_{2}=\cdots=\boldsymbol{\mu}_{g} .
$$

The alternative hypothesis:
$H_{a}: \mu_{i k} \neq \mu_{j k}$ for at least one $i \neq j$ and at least one variable $k$

- Mean vectors:
- Sample Mean Vector: $\overline{\boldsymbol{y}}_{i .}=\frac{1}{n_{i}} \boldsymbol{Y}_{i j}, \quad i=1, \cdots, g$
- Grand Mean Vector: $\overline{\boldsymbol{y}}_{. .}=\frac{1}{N} \sum_{i=1}^{g} \sum_{j=1}^{n_{i}} \boldsymbol{Y}_{i j}$
- Total Sum of Squares:

$$
\boldsymbol{T}=\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(\boldsymbol{Y}_{i j}-\bar{y}_{. .}\right)\left(\boldsymbol{Y}_{i j}-\bar{y}_{. .}\right)^{T}
$$

## MANOVA Decomposition and MANOVA Table

$$
\begin{aligned}
\boldsymbol{T} & =\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(\boldsymbol{Y}_{i j}-\boldsymbol{y}_{. .}\right)\left(\boldsymbol{Y}_{i j}-\overline{\boldsymbol{y}}\right)^{T} \\
& =\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left[\left(\boldsymbol{Y}_{i j}-\overline{\boldsymbol{y}}_{i .}\right)+\left(\overline{\boldsymbol{y}}_{i .}-\overline{\boldsymbol{y}}_{. .}\right)\right]\left[\left(\boldsymbol{Y}_{i j}-\overline{\boldsymbol{y}}_{i .}\right)+\left(\overline{\boldsymbol{y}}_{i .}-\overline{\boldsymbol{y}}_{. .}\right)\right]^{T} \\
& =\underbrace{\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(\boldsymbol{Y}_{i j}-\overline{\boldsymbol{y}}_{i .}\right)\left(\boldsymbol{Y}_{i j}-\overline{\boldsymbol{y}}_{i .}\right)^{T}}_{\boldsymbol{E}}+\underbrace{\sum_{i=1}^{g} n_{i}\left(\overline{\boldsymbol{y}}_{i .}-\overline{\boldsymbol{y}}_{. .}\right)\left(\overline{\boldsymbol{y}}_{i .}-\overline{\boldsymbol{y}}_{. .}\right)^{T}}_{\boldsymbol{H}}
\end{aligned}
$$

MANOVA Table

| Source | df | SS |
| :--- | :--- | :--- |
| Treatment | $g-1 \quad$ | $\boldsymbol{H}$ |
| Error | $N-g \boldsymbol{E}$ |  |
| Total | $N-1$ | $\boldsymbol{T}$ |

Reject $H_{0}: \boldsymbol{\mu}_{1}=\boldsymbol{\mu}_{2}=\cdots=\boldsymbol{\mu}_{g}$ if the matrix $\boldsymbol{H}$ is "large" relative to the matrix $\boldsymbol{E}$

## Test Statistics for MANOVA

There are several different test statistics for conducting the hypothesis test:

- Wilks Lambda

$$
\Lambda^{*}=\frac{|\boldsymbol{E}|}{|\boldsymbol{H}+\boldsymbol{E}|}
$$

Reject $H_{0}$ if $\Lambda^{*}$ is "small"

- Hotelling-Lawley Trace

$$
T_{0}^{2}=\operatorname{trace}\left(\boldsymbol{H} \boldsymbol{E}^{-1}\right)
$$

Reject $H_{0}$ if $T_{0}^{2}$ is "large"

- Pillai Trace

$$
V=\operatorname{trace}\left(\boldsymbol{H}(\boldsymbol{H}+\boldsymbol{E})^{-1}\right)
$$

Reject $H_{0}$ if $V$ is "large"

## Romano-British Pottery Example

> dat <- read.table("pottery.txt", header = F)
> out <- manova(cbind(V2, V3, V4, V5, V6) ~ V1, data = dat)
> summary(out, test = "Wilks")
Df Wilks approx F num Df den $\mathrm{Df} \operatorname{Pr}(>F)$
V1 $30.012301 \quad 13.088 \quad 1550.0911 .84 \mathrm{e}-122^{* * *}$
Residuals 22
Signif. codes: 0 '***' 0.001 '**' 0.01 '*’ 0.05 '. 0.1 ' 1
> summary(out)
Df Pillai approx F num Df den Df $\operatorname{Pr}(>F)$
$\begin{array}{lllllll}\text { V1 } & 3 & 1.5539 & 4.2984 & 15 & 60 & 2.413 e-05^{* * *}\end{array}$
Residuals 22
Signif. codes: 0 ‘***’ 0.001 ‘**' 0.01 '*’ 0.05 '.’ 0.1 ' , 1
$\Rightarrow$ at least one of the chemicals differs among the sites

## Summary

In this lecture, we learned about:

- Hypothesis Testing for Two Mean Vectors
- MANOVA

In the next lecture, we will learn about Multivariate Linear Regression

