Lecture 7
 Multivariate Linear Regression

Readings: Johnson \& Wichern 2007, Chapter 7; DSA 8020 Lectures 1-4 [Link]; Zelterman, 2015, Chapter 9

DSA 8070 Multivariate Analysis

Agenda

Model and
Assumptions
Parameter Estimation
(1) Model and Assumptions

2 Parameter Estimation
(3) Inference and Prediction

Example: Motor Trend Car Road Tests

> head(mtcars)

Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1

Suppose we would like to study the (linear) relationship between mpg, disp, hp, wt (responses) and cyl, am, carb (predictors)

Review: Linear Regression Model

The multiple linear regression model has the form:

$$
y_{i}=\beta_{0}+\sum_{j=1}^{p} \beta_{j} x_{i j}+\varepsilon_{i}, \quad i=1, \cdots, n
$$

where

- y_{i} is the response for the i-th observation
- $x_{i j}$ is the j-th predictor for the i-th observation
- β_{0} and β_{j} 's are the regression intercept and slopes for the response, respectively
- ε_{i} is the error term for the response of the i-th observation

The Multivariate Linear Regression Model: Scalar Form

The multivariate (multiple) linear regression model has the form:

$$
y_{i k}=\beta_{0 k}+\sum_{j=1}^{p} \beta_{j k} x_{i j}+\varepsilon_{i k}, \quad i=1, \cdots, n, \quad k=1, \cdots, d
$$

where

- $y_{i k}$ is the k-th response for the i-th observation
- $x_{i j}$ is the j-th predictor for the i-th observation
- $\beta_{0 k}$ and $\beta_{j k}$'s are the regression intercept and slopes for k-th response, respectively
- $\varepsilon_{i k}$ is the error term for the k-th response of the i-th observation

The assumptions of the model are:

- Relationship between $\left\{x_{j}\right\}_{j=1}^{p}$ and Y_{k} is linear for each $k \in\{1, \cdots, d\}$
- $\left(\varepsilon_{i 1}, \cdots, \varepsilon_{i d}\right)^{T} \xrightarrow[\sim]{i . i . d .} \mathrm{N}(\mathbf{0}, \Sigma)$ is an unobserved random vector
- $\left[Y_{i k} \mid x_{i 1}, \cdots, x_{i p}\right] \sim \mathrm{N}\left(\beta_{0 k}+\sum_{j=1}^{p} \beta_{j k} x_{i j}, \sigma_{k k}\right)$ for each $k \in\{1, \cdots, d\}$

The multivariate multiple linear regression model has the form

$$
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{B}+\boldsymbol{E}
$$

where

- $\boldsymbol{Y}=\left[\boldsymbol{y}_{1}, \cdots, \boldsymbol{y}_{d}\right]$ is the $n \times d$ response matrix, where $\boldsymbol{y}_{k}=\left(y_{1 k}, \cdots, y_{n k}\right)^{T}$ is the k-th response vector
- $\boldsymbol{X}=\left[\mathbf{1}, \boldsymbol{x}_{1}, \cdots, \boldsymbol{x}_{p}\right]$ is the $n \times(p+1)$ design matrix
- $\boldsymbol{B}=\left[\boldsymbol{\beta}_{1}, \cdots, \boldsymbol{\beta}_{d}\right]$ is the $(p+1) \times d$ matrix of regression coefficients
- $\boldsymbol{E}=\left[\varepsilon_{1}, \cdots, \boldsymbol{\varepsilon}_{d}\right]$ is the $n \times d$ error matrix

Another Look of the Matrix Form

Matrix form writes the multivariate linear regression model for all $n \times d$ points simultaneously as

$$
\boldsymbol{Y}=\boldsymbol{X} B+E
$$

$$
\left[\begin{array}{ccc}
y_{11} & \cdots & y_{1 d} \\
y_{21} & \cdots & y_{2 d} \\
\vdots & \ddots & \vdots \\
y_{n 1} & \cdots & y_{n d}
\end{array}\right]=\left[\begin{array}{ccc}
1 & \cdots & x_{1 p} \\
1 & \cdots & x_{2 p} \\
\vdots & \ddots & \vdots \\
1 & \cdots & x_{n p}
\end{array}\right]\left[\begin{array}{ccc}
\beta_{01} & \cdots & \beta_{0 d} \\
\beta_{11} & \cdots & \beta_{1 d} \\
\vdots & \ddots & \vdots \\
\beta_{p 1} & \cdots & \beta_{p d}
\end{array}\right]+\left[\begin{array}{ccc}
\varepsilon_{11} & \cdots & \varepsilon_{1 d} \\
\varepsilon_{21} & \cdots & \varepsilon_{2 d} \\
\vdots & \ddots & \vdots \\
\varepsilon_{n 1} & \cdots & \varepsilon_{n d}
\end{array}\right]
$$

Assuming that n subjects are independent, we have

- $\varepsilon_{k} \sim \mathrm{~N}\left(0, \sigma_{k k}\right), \quad k \in\{1, \cdots, d\}$
- $\varepsilon_{i} \stackrel{i . i . d .}{\sim} \mathrm{N}(\mathbf{0}, \Sigma), \quad i=1, \cdots, n$

Ordinary Least Squares

The ordinary least squares OLS estimate is
$\underset{\boldsymbol{B} \in \mathbb{R}(p+1) \times d}{\operatorname{argmin}}\|\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{B}\|^{2}=\underset{\boldsymbol{B} \in \mathbb{R}(p+1) \times d}{\operatorname{argmin}} \sum_{i=1}^{n} \sum_{k=1}^{d}\left(y_{i k}-\beta_{0 k}-\sum_{j=1}^{p} \beta_{j k} x_{i j}\right)^{2}$,
where $\|\cdot\|$ denotes the Frobenius norm.

- $\operatorname{OLS}(\boldsymbol{B})=\|\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{B}\|^{2}=$ $\operatorname{tr}\left(\boldsymbol{Y}^{T} Y\right)-2 \operatorname{tr}\left(\boldsymbol{Y}^{T} \boldsymbol{X} \boldsymbol{B}\right)+\operatorname{tr}\left(\boldsymbol{B}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{B}\right)$
- $\frac{\partial \mathrm{OLS}(\boldsymbol{B})}{\partial \boldsymbol{B}}=-2 \boldsymbol{X}^{T} \boldsymbol{Y}+2 \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{B}$

The OLS estimate has the form

$$
\hat{\boldsymbol{B}}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{Y} \Rightarrow \hat{\boldsymbol{\beta}}_{k}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}_{k}, \quad k \in\{1, \cdots, d\}
$$

Expected Value of Least Squares Coefficients

The expected value of the estimated coefficients is given by

$$
\begin{aligned}
\mathbb{E}(\hat{\boldsymbol{B}}) & =\mathbb{E}\left[\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{Y}\right] \\
& =\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \mathbb{E}(\boldsymbol{Y}) \\
& =\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{B} \\
& =\boldsymbol{B}
\end{aligned}
$$

$\Rightarrow \hat{B}$ is an unbiased estimator of \boldsymbol{B}

Fitted Values and Residuals

- Fitted values are given by

$$
\begin{gathered}
\hat{\boldsymbol{Y}}=\boldsymbol{X} \hat{\boldsymbol{B}}, \\
\text { i.e., } \hat{y}_{i k}=\hat{\beta}_{0 k}+\sum_{j=1}^{p} \hat{\beta}_{j k} x_{i j}, \quad i=1, \cdots, n, \quad k=1, \cdots, d
\end{gathered}
$$

- Residuals are given by

$$
\hat{E}=\boldsymbol{Y}-\hat{\boldsymbol{Y}},
$$

i.e., $\hat{\varepsilon}_{i k}=y_{i k}-\hat{y}_{i k}, \quad i=1, \cdots, n, \quad k=1, \cdots, d$

Just like in univariate linear regression we can write the fitted values as

$$
\begin{aligned}
\hat{\boldsymbol{Y}} & =\boldsymbol{X} \hat{\boldsymbol{B}} \\
& =\boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{Y} \\
& =\boldsymbol{H} \boldsymbol{Y}
\end{aligned}
$$

where $\boldsymbol{H}=\boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T}$ is the hat matrix
$\Rightarrow \boldsymbol{H}$ projects \boldsymbol{y}_{k} onto the column space of \boldsymbol{X} for $k \in\{1, \cdots, d\}$

Partitioning the Total Variation

We can partition the total covariation in $\left\{\boldsymbol{y}_{i}\right\}_{i=1}^{n}\left(\mathrm{SSCP}_{\text {Tot }}\right)$ as

$$
\begin{aligned}
\mathrm{SSCP}_{\text {tot }} & =\sum_{i=1}^{n}\left(\boldsymbol{y}_{i}-\overline{\boldsymbol{y}}\right)^{T}\left(\boldsymbol{y}_{i}-\overline{\boldsymbol{y}}\right) \\
& =\sum_{i=1}^{n}\left(\boldsymbol{y}_{i}-\hat{\boldsymbol{y}}_{i}+\hat{\boldsymbol{y}}_{i}-\overline{\boldsymbol{y}}\right)\left(\boldsymbol{y}_{i}-\hat{\boldsymbol{y}}_{i}+\hat{\boldsymbol{y}}_{i}-\overline{\boldsymbol{y}}\right)^{T} \\
& =\underbrace{\sum_{i=1}^{n}\left(\hat{\boldsymbol{y}}_{i}-\overline{\boldsymbol{y}}\right)\left(\hat{\boldsymbol{y}}_{i}-\overline{\boldsymbol{y}}\right)^{T}}_{\operatorname{SSCP}_{\text {Reg }}}+\underbrace{\sum_{i=1}^{n}\left(\boldsymbol{y}_{i}-\hat{\boldsymbol{y}}_{i}\right)\left(\boldsymbol{y}_{i}-\hat{\boldsymbol{y}}_{i}\right)^{T}}_{\mathrm{SSCP}_{\mathrm{Err}}} \\
& +\underbrace{2 \sum_{i=1}^{n}\left(\hat{\boldsymbol{y}}_{i}-\overline{\boldsymbol{y}}\right)\left(\boldsymbol{y}_{i}-\hat{\boldsymbol{y}}_{i}\right)}_{=0} \\
& =\operatorname{SSCP}_{\text {Reg }}+\mathrm{SSCP}_{\mathrm{Err}}
\end{aligned}
$$

The corresponding degrees of freedom are $d(n-1)$ for $\mathrm{SSCP}_{\text {Tot }} ; d p$ for $\mathrm{SSCP}_{\text {Reg }}$; and $d(n-p-1)$ for $\mathrm{SSCP}_{\text {Err }}$

Estimated Error Covariance

The estimated error covariance matrix is

$$
\begin{aligned}
\hat{\boldsymbol{\Sigma}} & =\frac{\sum_{i=1}^{n}\left(\boldsymbol{y}_{i}-\hat{\boldsymbol{y}}_{i}\right)\left(\boldsymbol{y}_{i}-\hat{\boldsymbol{y}}_{i}\right)^{T}}{n-p-1} \\
& =\frac{\operatorname{SSCP}_{E r r}}{n-p-1}
\end{aligned}
$$

- $\hat{\boldsymbol{\Sigma}}$ is an unbiased estimate of $\boldsymbol{\Sigma}$
- The estimate $\hat{\boldsymbol{\Sigma}}$ is the mean $\mathrm{SSCP}_{\text {Err }}$

Sampling Distributions of \hat{B}, \hat{Y}, and \hat{E}

We would need to figure out the sampling distributions of estimator and predictor in order to drawn inference

Given the model assumptions, we have

$$
\begin{aligned}
& \operatorname{vec}(\hat{\boldsymbol{B}}) \sim \mathrm{N}\left(\operatorname{vec}(\boldsymbol{B}), \boldsymbol{\Sigma} \otimes\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1}\right) \\
& \operatorname{vec}(\hat{\boldsymbol{Y}}) \sim \mathrm{N}(\operatorname{vec}(\boldsymbol{X B}), \boldsymbol{\Sigma} \otimes \boldsymbol{H}) \\
& \operatorname{vec}(\hat{\boldsymbol{E}}) \sim \mathrm{N}(\mathbf{0}, \boldsymbol{\Sigma} \otimes(\boldsymbol{I}-\boldsymbol{H})),
\end{aligned}
$$

where $\operatorname{vec}(\cdot)$ is the vectorization operator and \otimes is the Kronecker product

Inference about Multiple $\hat{\boldsymbol{\beta}}_{j k}$

Assume that $q<p$ and want to test if a reduced model is sufficient:

$$
H_{0}: \boldsymbol{B}_{2}=\mathbf{0}_{p-q} \times d, \quad \text { versus } \quad H_{a}: \boldsymbol{B}_{2} \neq \mathbf{0}_{p-q} \times d,
$$

where

$$
\boldsymbol{B}=\left[\begin{array}{l}
\boldsymbol{B}_{1} \\
\boldsymbol{B}_{2}
\end{array}\right]
$$

is the partitioned of the coefficient vector
We can compare the $\mathrm{SSCP}_{\text {Err }}$ for the full model:

$$
y_{i k}=\beta_{0 k}+\sum_{j=1}^{p} \beta_{j k} x_{i j}+\varepsilon_{i k}, \quad k-1, \cdots, d
$$

and the reduced model:

$$
y_{i k}=\beta_{0 k}+\sum_{j=1}^{q} \beta_{j k} x_{i j}+\varepsilon_{i k}, \quad k-1, \cdots, d
$$

Some Test Statistics

Let $\tilde{\boldsymbol{E}}=n \tilde{\boldsymbol{\Sigma}}$ denote the $\mathrm{SSCP}_{\text {Err }}$ matrix from the full model, and let $\tilde{\boldsymbol{H}}=n\left(\tilde{\boldsymbol{\Sigma}}_{1}-\tilde{\boldsymbol{\Sigma}}\right)$ denote the hypothesis $\mathrm{SSCP}_{E r r}$ matrix Some test statistics for

$$
H_{0}: \boldsymbol{B}_{2}=\mathbf{0}_{p-q} \times d, \quad \text { versus } \quad H_{a}: \boldsymbol{B}_{2} \neq \mathbf{0}_{p-q} \times d:
$$

- Wilks Lambda

$$
\Lambda^{*}=\frac{|\tilde{\boldsymbol{E}}|}{|\tilde{\boldsymbol{H}}+\tilde{\boldsymbol{E}}|}
$$

Reject H_{0} if Λ^{*} is "small"

- Hotelling-Lawley Trace

$$
T_{0}^{2}=\operatorname{tr}\left(\tilde{\boldsymbol{H}} \tilde{\boldsymbol{E}}^{-1}\right)
$$

Reject H_{0} if T_{0}^{2} is "large"

- Pillai Trace

$$
V=\operatorname{tr}\left(\tilde{\boldsymbol{H}}(\tilde{\boldsymbol{H}}+\tilde{\boldsymbol{E}})^{-1}\right)
$$

Reject H_{0} if V is "large"

We would like to estimate the expected value of the response for a given predictor $\boldsymbol{x}_{h}=\left(1, x_{h 1}, \cdots, x_{h p}\right)$.

Note that we have

$$
\hat{\boldsymbol{y}}_{h} \sim \mathrm{~N}\left(\boldsymbol{B}^{T} \boldsymbol{x}_{h}, \boldsymbol{x}_{h}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{x}_{h} \boldsymbol{\Sigma}\right)
$$

We can exploit the duality between interval estimation and hypothesis testing. That is, we can test

$$
H_{0}: \mathbb{E}\left(\boldsymbol{y}_{h}\right)=\boldsymbol{y}_{h}^{*} \text { versus } H_{a}: \mathbb{E}\left(\boldsymbol{y}_{h}\right) \neq \boldsymbol{y}_{h}^{\star}
$$

The $100(1-\alpha) \%$ confidence region is the collection of \boldsymbol{y}_{h}^{*} values that fail to reject H_{0} at α level

Interval Estimation (Cont'd)

Test statistics:

$$
\begin{aligned}
T^{2} & =\left(\frac{\hat{\boldsymbol{B}}^{T} \boldsymbol{x}_{h}-\boldsymbol{B}^{T} \boldsymbol{x}_{h}}{\sqrt{\boldsymbol{x}_{h}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{x}_{h}}}\right)^{T} \hat{\boldsymbol{\Sigma}}^{-1}\left(\frac{\hat{\boldsymbol{B}}^{T} \boldsymbol{x}_{h}-\boldsymbol{B}^{T} \boldsymbol{x}_{h}}{\sqrt{\boldsymbol{x}_{h}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{x}_{h}}}\right) \\
\quad H_{0} & \frac{d(n-p-1)}{n-p-d} F_{d, n-p-d}
\end{aligned}
$$

Therefore, the $100(1-\alpha) \%$ simultaneous confidence interval for $y_{h k}$ is

$$
\hat{y}_{h k} \pm \sqrt{\frac{d(n-p-1)}{n-p-d} F_{d, n-p-d}} \sqrt{\boldsymbol{x}_{h}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{x}_{h} \hat{\sigma}_{k k}},
$$

$k \in\{1, \cdots, d\}$

Predicting New Observations

Here we want to predict the observed value of response for a given predictor

- Note: interested in actual $\hat{\boldsymbol{y}}_{h}$ instead of $\mathbb{E}\left(\hat{\boldsymbol{y}}_{h}\right)$
- Given $\boldsymbol{x}_{h}=\left(1, x_{h 1}, \cdots, x_{h p}\right)$, the fitted value is still $\hat{\boldsymbol{y}}_{h}=\hat{\boldsymbol{B}}^{T} \boldsymbol{x}_{h}$

We can exploit the duality between interval estimation and hypothesis testing. That is, we can test

$$
H_{0}: \boldsymbol{y}_{h}=\boldsymbol{y}_{h}^{*} \text { versus } H_{a}: \boldsymbol{y}_{h} \neq \boldsymbol{y}_{h}^{*}
$$

The $100(1-\alpha) \%$ prediction interval is the collection of \boldsymbol{y}_{h}^{*} values that fail to reject H_{0} at α level

Predicting New Observations (Cont'd)

Test statistics:

$$
\begin{aligned}
T^{2} & =\left(\frac{\hat{\boldsymbol{B}}^{T} \boldsymbol{x}_{h}-\boldsymbol{B}^{T} \boldsymbol{x}_{h}}{\sqrt{1+\boldsymbol{x}_{h}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{x}_{h}}}\right)^{T} \hat{\boldsymbol{\Sigma}}^{-1}\left(\frac{\hat{\boldsymbol{B}}^{T} \boldsymbol{x}_{h}-\boldsymbol{B}^{T} \boldsymbol{x}_{h}}{\sqrt{1+\boldsymbol{x}_{h}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{x}_{h}}}\right) \\
\quad \mathrm{H}_{0} & \frac{d(n-p-1)}{n-p-d} F_{d, n-p-d}
\end{aligned}
$$

Therefore, the $100(1-\alpha) \%$ simultaneous prediction interval for $y_{h k}$ is

$$
\begin{aligned}
& \hat{y}_{h k} \pm \sqrt{\frac{d(n-p-1)}{n-p-d} F_{d, n-p-d}} \sqrt{\left(1+\boldsymbol{x}_{h}^{T}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{x}_{h}\right) \hat{\sigma}_{k k}}, \\
& k \in\{1, \cdots, d\}
\end{aligned}
$$

Summary

In this lecture, we learned about Multivariate Linear Regression

- Model and Assumptions
- Parameter Estimation
- Inference and Prediction

In the next lecture, we will learn about Repeated Measures Analysis

