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Lecture 7
Multivariate Linear Regression
Readings: Johnson & Wichern 2007, Chapter 7; DSA 8020
Lectures 1-4 [Link]; Zelterman, 2015, Chapter 9
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Agenda

1 Model and Assumptions

2 Parameter Estimation

3 Inference and Prediction
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7.3

Example: Motor Trend Car Road Tests

Suppose we would like to study the (linear) relationship
between mpg, disp, hp, wt (responses) and cyl, am,
carb (predictors)
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7.4

Review: Linear Regression Model

The multiple linear regression model has the form:

yi = β0 +
p

∑
j=1

βjxij + εi, i = 1,⋯, n,

where

yi is the response for the i-th observation

xij is the j-th predictor for the i-th observation

β0 and βj ’s are the regression intercept and slopes for the
response, respectively

εi is the error term for the response of the i-th observation
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7.5

The Multivariate Linear Regression Model: Scalar Form

The multivariate (multiple) linear regression model has the
form:

yik = β0k +
p

∑
j=1

βjkxij + εik, i = 1,⋯, n, k = 1,⋯, d,

where

yik is the k-th response for the i-th observation

xij is the j-th predictor for the i-th observation

β0k and βjk ’s are the regression intercept and slopes for
k-th response, respectively

εik is the error term for the k-th response of the i-th
observation
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7.6

The Multivariate Linear Regression Model: Assumptions

The assumptions of the model are:

Relationship between {xj}
p
j=1 and Yk is linear for each

k ∈ {1,⋯, d}

(εi1,⋯, εid)
T i.i.d.

∼ N(0,Σ) is an unobserved random vector

[Yik ∣xi1,⋯, xip] ∼ N(β0k +∑
p
j=1 βjkxij , σkk) for each

k ∈ {1,⋯, d}
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7.7

The Multivariate Linear Regression Model: Matrix Form

The multivariate multiple linear regression model has the form

Y =XB +E,

where

Y = [y1,⋯,yd] is the n × d response matrix, where
yk = (y1k,⋯, ynk)

T is the k-th response vector

X = [1,x1,⋯,xp] is the n × (p + 1) design matrix

B = [β1,⋯,βd] is the (p + 1) × d matrix of regression
coefficients

E = [ε1,⋯,εd] is the n × d error matrix
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7.8

Another Look of the Matrix Form

Matrix form writes the multivariate linear regression model for
all n × d points simultaneously as

Y =XB +E

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y11 ⋯ y1d
y21 ⋯ y2d
⋮ ⋱ ⋮

yn1 ⋯ ynd

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 ⋯ x1p
1 ⋯ x2p
⋮ ⋱ ⋮

1 ⋯ xnp

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β01 ⋯ β0d
β11 ⋯ β1d
⋮ ⋱ ⋮

βp1 ⋯ βpd

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε11 ⋯ ε1d
ε21 ⋯ ε2d
⋮ ⋱ ⋮

εn1 ⋯ εnd

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Assuming that n subjects are independent, we have

εk ∼ N(0, σkk), k ∈ {1,⋯, d}

εi
i.i.d.
∼ N(0,Σ), i = 1,⋯, n
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7.9

Ordinary Least Squares

The ordinary least squares OLS estimate is

argmin
B∈R(p+1)×d

∣∣Y −XB∣∣
2
= argmin

B∈R(p+1)×d

n

∑
i=1

d

∑
k=1

⎛

⎝
yik − β0k −

p

∑
j=1

βjkxij
⎞

⎠

2

,

where ∣∣ ⋅ ∣∣ denotes the Frobenius norm.

OLS(B) = ∣∣Y −XB∣∣2 =

tr(Y TY ) − 2tr(Y TXB) + tr(BTXTXB)

∂OLS(B)
∂B

= −2XTY + 2XTXB

The OLS estimate has the form

B̂ = (XTX)
−1XTY ⇒ β̂k = (XTX)

−1XTyk, k ∈ {1,⋯, d}
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7.10

Expected Value of Least Squares Coefficients

The expected value of the estimated coefficients is given by

E(B̂) = E [(XTX)
−1XTY ]

= (XTX)
−1XT E(Y )

= (XTX)
−1XTXB

=B

⇒ B̂ is an unbiased estimator of B
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7.11

Fitted Values and Residuals

Fitted values are given by

Ŷ =XB̂,

i.e., ŷik = β̂0k +∑
p
j=1 β̂jkxij , i = 1,⋯, n, k = 1,⋯, d

Residuals are given by

Ê = Y − Ŷ ,

i.e., ε̂ik = yik − ŷik, i = 1,⋯, n, k = 1,⋯, d



Multivariate Linear
Regression

Model and
Assumptions

Parameter Estimation

Inference and
Prediction

7.12

Hat Matrix

Just like in univariate linear regression we can write the fitted
values as

Ŷ =XB̂

=X(XTX)
−1XTY

=HY ,

where H =X(XTX)−1XT is the hat matrix

⇒H projects yk onto the column space of X for k ∈ {1,⋯, d}
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7.13

Partitioning the Total Variation

We can partition the total covariation in {yi}
n
i=1 (SSCPTot)as

SSCPtot =
n

∑
i=1

(yi − ȳ)
T
(yi − ȳ)

=
n

∑
i=1

(yi − ŷi + ŷi − ȳ)(yi − ŷi + ŷi − ȳ)
T

=
n

∑
i=1

(ŷi − ȳ)(ŷi − ȳ)
T

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
SSCPReg

+
n

∑
i=1

(yi − ŷi)(yi − ŷi)
T

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
SSCPErr

+ 2
n

∑
i=1

(ŷi − ȳ)(yi − ŷi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

= SSCPReg + SSCPErr

The corresponding degrees of freedom are d(n − 1) for
SSCPTot; dp for SSCPReg; and d(n − p − 1) for SSCPErr
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7.14

Estimated Error Covariance

The estimated error covariance matrix is

Σ̂ =
∑

n
i=1(yi − ŷi)(yi − ŷi)

T

n − p − 1

=
SSCPErr

n − p − 1

Σ̂ is an unbiased estimate of Σ

The estimate Σ̂ is the mean SSCPErr
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7.15

Sampling Distributions of B̂, Ŷ , and Ê

We would need to figure out the sampling distributions of
estimator and predictor in order to drawn inference

Given the model assumptions, we have

vec(B̂) ∼ N(vec(B),Σ⊗ (XTX)
−1

)

vec(Ŷ ) ∼ N(vec(XB),Σ⊗H)

vec(Ê) ∼ N(0,Σ⊗ (I −H)),

where vec(⋅) is the vectorization operator and ⊗ is the
Kronecker product
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7.16

Inference about Multiple β̂jk

Assume that q < p and want to test if a reduced model is
sufficient:

H0 ∶B2 = 0p−q × d, versus Ha ∶B2 ≠ 0p−q × d,

where

B = [
B1

B2
]

is the partitioned of the coefficient vector

We can compare the SSCPErr for the full model:

yik = β0k +
p

∑
j=1

βjkxij + εik, k − 1,⋯, d

and the reduced model:

yik = β0k +
q

∑
j=1

βjkxij + εik, k − 1,⋯, d
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7.17

Some Test Statistics
Let Ẽ = nΣ̃ denote the SSCPErr matrix from the full model,
and let H̃ = n (Σ̃1 − Σ̃) denote the hypothesis SSCPErr matrix
Some test statistics for

H0 ∶B2 = 0p−q × d, versus Ha ∶B2 ≠ 0p−q × d ∶

Wilks Lambda

Λ∗
=

∣Ẽ∣

∣H̃ + Ẽ∣

Reject H0 if Λ∗ is “small”

Hotelling-Lawley Trace

T 2
0 = tr(H̃Ẽ−1

)

Reject H0 if T 2
0 is “large”

Pillai Trace

V = tr(H̃(H̃ + Ẽ)
−1

)

Reject H0 if V is “large”
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7.18

Interval Estimation

We would like to estimate the expected value of the response
for a given predictor xh = (1, xh1,⋯, xhp).

Note that we have

ŷh ∼ N(BTxh,x
T
h (XTX)

−1xhΣ)

We can exploit the duality between interval estimation and
hypothesis testing. That is, we can test

H0 ∶ E(yh) = y
∗

h versus Ha ∶ E(yh) ≠ y
∗

h

The 100(1−α)% confidence region is the collection of y∗h
values that fail to reject H0 at α level
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7.19

Interval Estimation (Cont’d)

Test statistics:

T 2
=
⎛

⎝

B̂Txh −B
Txh

√
xT
h (XTX)−1xh

⎞

⎠

T

Σ̂−1 ⎛

⎝

B̂Txh −B
Txh

√
xT
h (XTX)−1xh

⎞

⎠

H0
∼
d(n − p − 1)

n − p − d
Fd,n−p−d

Therefore, the 100(1 − α)% simultaneous confidence interval
for yhk is

ŷhk ±

√
d(n − p − 1)

n − p − d
Fd,n−p−d

√

xT
h (XTX)−1xhσ̂kk,

k ∈ {1,⋯, d}
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7.20

Predicting New Observations

Here we want to predict the observed value of response for a
given predictor

Note: interested in actual ŷh instead of E(ŷh)

Given xh = (1, xh1,⋯, xhp), the fitted value is still
ŷh = B̂

Txh

We can exploit the duality between interval estimation and
hypothesis testing. That is, we can test

H0 ∶ yh = y
∗

h versus Ha ∶ yh ≠ y
∗

h

The 100(1−α)% prediction interval is the collection of y∗h
values that fail to reject H0 at α level
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7.21

Predicting New Observations (Cont’d)

Test statistics:

T 2
=
⎛

⎝

B̂Txh −B
Txh

√
1 +xT

h (XTX)−1xh

⎞

⎠

T

Σ̂−1 ⎛

⎝

B̂Txh −B
Txh

√
1 +xT

h (XTX)−1xh

⎞

⎠

H0
∼
d(n − p − 1)

n − p − d
Fd,n−p−d

Therefore, the 100(1 − α)% simultaneous prediction interval for
yhk is

ŷhk ±

√
d(n − p − 1)

n − p − d
Fd,n−p−d

√

(1 +xT
h (XTX)−1xh) σ̂kk,

k ∈ {1,⋯, d}
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7.22

Summary

In this lecture, we learned about Multivariate Linear Regression

Model and Assumptions

Parameter Estimation

Inference and Prediction

In the next lecture, we will learn about Repeated Measures
Analysis
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