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Fixed Rank Kriging (Cressie & Johannesson 2008)
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Summary. Spatial statistics for very large spatial data sets is challenging. The size of the data set,
n, causes problems in computing optimal spatial predictors such as kriging, since its computa-
tional cost is of order n3. In addition, a large data set is often defined on a large spatial domain,
so the spatial process of interest typically exhibits non-stationary behaviour over that domain. A
flexible family of non-stationary covariance functions is defined by using a set of basis functions
that is fixed in number, which leads to a spatial prediction method that we call fixed rank kriging.
Specifically, fixed rank kriging is kriging within this class of non-stationary covariance functions.
It relies on computational simplifications when n is very large, for obtaining the spatial best
linear unbiased predictor and its mean-squared prediction error for a hidden spatial process. A
method based on minimizing a weighted Frobenius norm yields best estimators of the covari-
ance function parameters, which are then substituted into the fixed rank kriging equations. The
new methodology is applied to a very large data set of total column ozone data, observed over
the entire globe, where n is of the order of hundreds of thousands.



Fixed Rank Kriging (FRK)

Fixed rank kriging outlines how kriging can be applied in the
low-rank parameterization of a spatial process.

> A: multiresolutional non-orthogonal basis functions

a(s)" = ({1 = (lls = sig Il /pw)*F A1 = (s = s Il /pw)*13)

> Z=(Z(s}), -, Z(s5), Tz to be estimated

s
“nonparametrically” from data

The fixed rank kriging is equivalent to the following low rank
model

Y(s)=X(s)'B + Z a(s — s5))Z;j +e(s) +&(s)
j=1



Multiresolutional basis functions

Motivation: To capture multiple scales of spatial variation

Figure: courtesy of Cressie & Johannesson 2008



FRK Can Accommodate Nonstationary covariance
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Figure: courtesy of Cressie & Johannesson 2008



FRK: Predictions and Their Associated Uncertainties

Figure: courtesy of Cressie & Johannesson 2008
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Gaussian Predictive Process (Banerjee et al. 2008)
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Summary. With scientific data available at locations, il are

turning to spatial process models for carrying out statistical inference. Over the last decade,
hierarchical models implemented through Markov chain Monte Carlo methods have become
especially popular for spatial modelling, given their flexibility and power to fit models that would
be infeasible with classical methods as well as their avoidance of possibly inappropriate as-
ymptotics. However, fitting hierarchical spatial models often involves expensive matrix decom-
positions whose computational complexity increases in cubic order with the number of spatial
locations, rendering such models infeasible for large spatial data sets. This computational bur-
den is exacerbated in multivariate settings with several spatially dependent response variables.
Itis also aggravated when data are collected at frequent time points and spatiotemporal process
models are used. With regard to this challenge, our contribution is to work with what we call
predictive process models for spatial and spatiotemporal data. Every spatial (or spatiotemporal)
process induces a predictive process model (in fact, arbitrarily many of them). The latter models
project process realizations of the former to a lower dimensional subspace, thereby reducing
the computational burden. Hence, we achieve the flexibility to accommodate non-stationary,

possibly i posslbly in the context of large
data sets. We discuss attractive properties of thes: We also
provide a template ing these dlverss settings. Finally, we illustrate

pl
the approach with simulated and real data sets.



Gaussian Predictive Process

Y(s) = X(s)"B+n(s)+e(s), n~GP(0,C(,;0)

Reasoning: Given Z, we seek a linear combination a(s)TZ such
that

/SE [n(s) —a(s)TZ]2 ds
is minimized.

In predictive process one let Z = n* = {n(s})};_; ~ N,(0,C*(0))
where C*(9) = [C(sf,s;;e)y and
ij=1

(7!

A [C(si, s;f; 6’)]jzl,... )T

=1, n

= C(s1,82) = CT(sl,s*) [C’*(O)]f1 C(s2,s"), st =(s], - ,s,



Covaraince Function Approximation
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Fig. 1. Covariances of w(s) against distance { ) and covariances of w(s) against distance (®):
(a) smoothness parameter 0.5; (b) smoothness parameter 1; (c) smoothness parameter 1.5; (d) smooth-
ness parameter 5

Figure: courtesy of Banerjee et al. 08



Covaraince Function Approximation Cont'd
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Fig. 2. Covariances of w(s) against distance ( ) and covariances of w(s) against distance: (a) range
parameter 2; (b) range parameter 4; (c) range parameter 6; (d) range parameter 12

Figure: courtesy of Banerjee et al. 2008



Selection of Spatial Knots
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Figure: courtesy of Banerjee et al. 2008



Recap: Low-Rank Approximation

> Use
Y(s) = Tﬁ"‘z% )Zj +(s)

to approximate
Y(s) = X ()18 +n(s), VseS
> Why: to gain computational efficiency

» Question: how well the low rank approach work statistically



Limitation on Low-Rank Approximation (Stein 2014)

Limitations on low rank approximations for @ Croshark
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Evaluating the likelihood function for Gaussian models when a spa-
tial process is observed irregularly is problematic for larger datasets
due to constraints of memory and calculation. If the covariance
structure can be approximated by a diagonal matrix plus a low rank
matrix, then both the memory and calculations needed to evalu-
ate the likelihood function are greatly reduced. When neighboring
observations are strongly correlated, much of the variation in the
observations can be captured by low frequency components, so the
low rank approach might be thought to work well in this setting.
Through both theory and numerical results, where the diagonal
matrix is assumed to be a multiple of the identity, this paper shows
that the low rank approximation sometimes performs poorly in
this setting. In particular, an approximation in which observations
are split into contiguous blocks and independence across blocks is
assumed often provides a much better approximation to the like-
lihood than a low rank approximation requiring similar memory
and calculations. An example with satellite-based measurements
of total column ozone shows that these results are relevant to real
data and that the low rank models also can be highly statistically
inefficient for spatial interpolation,

© 2013 Elsevier B.V. All rights reserved.



How to Improve Low-Rank Approach?

» Low rank does not perform well for short range dependence

> Recall the low rank representation:
n=AZ+¢
where 3¢ is assumed to be diagonal
» Sang and Huang (2012): replace 3¢ by a sensible spatial

model while keep the computation tractable = covariance
tapering.
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Covariance Tapering



Covariance Tapering (Furrer et al. 2006)

Replace the covariance function C'(h) by

Crap(h;7) = C(h) prap(h;7)

where prap(h;y) is an isotropic correlation function with compact
support (prap(h) = 0 if h > )
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Covariance Tapering Cont'd
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» Ctap(h) is a valid covariance function

> Sparse matrix algorithm can be used



A Full Scale Approximation (Sang & Huang 2012)
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‘Summary. Gaussian process models have been widely used in spatial statistics but face tremen-
dous computational challenges for ver; large data sets. The model fitting and spatial prediction
of such models typically require O(n®) operations for a data set of size n. Various approxi-
mations of the covariance functions have been introduced to reduce the computational cost.
However, most existing approximations cannot simultaneously capture both the large- and the
small-scale spatial dependence. A new approximation scheme is developed to provide a high
quality approximation to the covariance function at both the large and the small spatial scales.
The new approximation is the summation of two parts: a reduced rank covariance and a com-
pactly supported covariance obtained by tapering the covariance of the residual of the reduced
rank approximation. Whereas the former part mainly captures the large-scale spatial variation,
the latter part captures the small-scale, local variation that is unexplained by the former part. By
combining the reduced rank representation and sparse matrix techniques, our approach allows
for efficient computation for maximum likelihood estimation, spatial prediction and Bayesian
inference. We illustrate the new approach with simulated and real data sets.

Keywords: Covariance function; Gaussian processes; Geostatistics; Kriging; Large spatial
data set; Spatial processes



Covaraince Function Approximation
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Figure: courtesy of Sang & Huang, 2012



A Case Study Competition Among Methods
for Analyzing Large Spatial Data
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The Gaussian process is an indispensable tool for spatial data analysts. The onset of
the “big data” era, however, has lead to the traditional Gaussian process being com-
putationally infeasible for modern spatial data. As such, various alternatives to the full
Gaussian process that are more amenable to handling big spatial data have been pro-
posed. These modern methods often exploit low-rank structures and/or multi-core and
multi-threaded computing environments to facilitate computation. This study provides,
first, an introductory overview of several methods for analyzing large spatial data. Sec-
ond, this study describes the results of a predictive competition among the described
methods as implemented by different groups with strong expertise in the methodology.
Specifically, each research group was provided with two training datasets (one simulated
and one observed) along with a set of prediction locations. Each group then wrote their
own implementation of their method to produce predictions at the given location and
each was subsequently run on a common computing environment. The methods were
then compared in terms of various predictive diagnostics.

Supplementary materials regarding implementation details of the methods and code
are available for this article online.

Key Words: Big data; Gaussian process; Parallel computing; Low-rank approximation.
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