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Fixed Rank Kriging (Cressie & Johannesson 2008)



Fixed Rank Kriging (FRK)

Fixed rank kriging outlines how kriging can be applied in the
low-rank parameterization of a spatial process.

I A: multiresolutional non-orthogonal basis functions

a(s)T =
(
{1− (‖s− s∗1(l)‖/ρ(l))

2}2+, · · · , {1− (‖s− s∗r(l)‖/ρ(l))
2}2+

)
I Z = (Z (s∗1) , · · · , Z (s∗r))

T, ΣZ to be estimated
“nonparametrically” from data

The fixed rank kriging is equivalent to the following low rank
model

Y (s) =X(s)Tβ +

r∑
j=1

a(s− s∗j(l))Zj + ε(s) + ξ(s)



Multiresolutional basis functions

Motivation: To capture multiple scales of spatial variation

Figure: courtesy of Cressie & Johannesson 2008



FRK Can Accommodate Nonstationary covariance

Figure: courtesy of Cressie & Johannesson 2008



FRK: Predictions and Their Associated Uncertainties

Figure: courtesy of Cressie & Johannesson 2008
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Gaussian Predictive Process (Banerjee et al. 2008)



Gaussian Predictive Process

Y (s) =X(s)Tβ + η(s) + ε(s), η ∼ GP(0, C(·, ·;θ)

Reasoning: Given Z, we seek a linear combination a(s)TZ such
that ∫

S
E
[
η (s)− a (s)TZ

]2
ds

is minimized.

In predictive process one let Z = η∗ = {η(s∗i )}
r
i=1 ∼ Nr(0, C

∗(θ))

where C∗(θ) =
[
C(s∗i , s

∗
j ;θ)

]r
i,j=1

and

A =
[
C(si, s

∗
j ;θ)

]j=1,··· ,r

i=1,··· ,n
[C∗]−1

⇒ C(s1, s2) = CT(s1, s
∗) [C∗(θ)]−1C(s2, s

∗), s∗ = (s∗1, · · · , s∗r)
T



Covaraince Function Approximation

Figure: courtesy of Banerjee et al. 08



Covaraince Function Approximation Cont’d

Figure: courtesy of Banerjee et al. 2008



Selection of Spatial Knots

Figure: courtesy of Banerjee et al. 2008



Recap: Low-Rank Approximation

I Use

Y (s) =X(s)Tβ +

r∑
j=1

aj(s)Zj + ε(s)

to approximate

Y (s) =X(s)Tβ + η(s), ∀s ∈ S

I Why: to gain computational efficiency

I Question: how well the low rank approach work statistically



Limitation on Low-Rank Approximation (Stein 2014)



How to Improve Low-Rank Approach?

I Low rank does not perform well for short range dependence

I Recall the low rank representation:

η = AZ + ξ

where Σξ is assumed to be diagonal

I Sang and Huang (2012): replace Σξ by a sensible spatial
model while keep the computation tractable ⇒ covariance
tapering.
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Covariance Tapering (Furrer et al. 2006)
Replace the covariance function C(h) by

Ctap(h; γ) = C(h)ρtap(h; γ)

where ρtap(h; γ) is an isotropic correlation function with compact
support (ρtap(h) = 0 if h ≥ γ)



Covariance Tapering Cont’d

I Ctap(h) is a valid covariance function

I Sparse matrix algorithm can be used



A Full Scale Approximation (Sang & Huang 2012)



Covaraince Function Approximation

Figure: courtesy of Sang & Huang, 2012
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