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Differential Equations

A differential equation is an equation that relates some function of
one or more variables with its derivatives.

Ordinary differential equation:

mẍ+ bẋ+ kx = Fext

Partial differential equation:
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Differential Equations

I Widely used to model dynamic systems
I Maxwell’s equations in electromagnetism

I Navier-Stokes equations in fluid dynamics

I The Black-Scholes PDE in Economics

I Forward problem (i.e. solving differential equations) has been
studied extensively by mathematicians

Suppose a given data set can be reasonably model by a differ-
ential equation but with unknown coefficients. Can we make
a statistical inference?
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Differential Equations & Functional Data Analysis

Most dynamic systems defined by the solutions of their differential
equations are not fit to data, they intend to capture gross shape
features in the specified context. However, ...

I Solutions of differential equations are functions

I We can treat the data as an approximated solution of the
corresponding differential equation with unknown coefficients

FDA framework can help for solving this inverse problem



Set-up

Differential equations:

f(t, x, ẋ, ẍ, · · · ;θ) = 0, e.g., f = ẋ+ βx− µ = 0

Observed data:

yi = x(ti) + εi, εi
i.i.d.∼ N(0, σ2), i = 1, · · · , n.

Goal: to estimate the unknown θ in the differential equation
from the data and to quantify the uncertainty of the estimates



The Basic Idea of the Estimation Procedure

1. Use basis function expansion to approximate x(t), i.e.,
x(t) =

∑K
k=1 c

T
k φk(t)

2. Estimate the coefficients c = {ck}Kk=1 of the chosen basis
functions by incorporating differential equation defined penalty

3. Estimate the parameters θ in the differential equation

4. Choosing the amount of smoothing λ



Basic Function Expansion

x̂(t) =

K∑
k=1

ckφk(t)

I Choice of basis function:
splines are usually the logical choice because of the compact
support and the capacity to capture transient localized
features

I Number of basis function:
usually large because it requires not only to approximate x(t)
but also its derivatives



Data Fitting Criterion

J(c|θ) = ` (x̂(ti), y(ti))︸ ︷︷ ︸
data fidelity

+ λ

∫
[f(x̂(t);θ)]2 dt︸ ︷︷ ︸

DE defined penalty

I The first part of the criterion function is the fidelity of basis
function approximation to the data

I the second part is the penalty term with respect to differential
equation (DE) given θ

I smoothing parameter λ controls the relative emphasis on
these two objectives



The Parameter Hierarchy

There are three classes of parameters to estimate:

I The coefficients c in the basis function expansion

I The parameters θ defining the differential equation

I The smoothing parameter λ



The Roles of the Three Parameter Levels

I c are not of the direct interest ⇒ nuisance parameters

I We are primary interest in θ, the parameters that define the
differential equation

I Smoothing parameter λ control the overall complexity of the
model

I λ→ 0⇒ high complexity in x̂(t)

I λ→∞⇒ low complexity in x̂(t)



The Parameter Cascade Algorithm

I c are nuisance parameters are defined as a smooth functions
c(θ, λ)

I Structural parameters θ are defined as functions θ(λ) of the
complexity parameter

I These functional relationships are defined implicitly by
specifying a different conditional fitting criterion at each level
of the parameter hierarchy



The Multi-Criterion Optimization Strategy

I Nuisance parameter functions c(θ, λ) are defined by
optimizing the regularized fitting criterion

J(c|θ) =
n∑

i=1

{yi − x̂(ti)}2 + λ

∫
[f(x̂(t);θ)]2 dt

I A purely data-fitting criterion H(θ) is then optimized with
respect to the structural parameters θ alone

H(θ) =

n∑
i=1

{yi − x̂(ti;θ)}2

I At the top level, a complexity criterion, is optimized with
respect to λ



Groundwater Processes



Rain & Groundwater

Source: Ramsay’s slides on “Linear Models for Output-Buffered Systems”,
2010 SAMSI



Rain & Groundwater: A Smaller Time Scale

Source: Ramsay’s slides on “Linear Models for Output-Buffered Systems”,
2010 SAMSI



Differential Equation for Groundwater Level

dG(t)

dt
= −βG(t) + αR(t− δ) + µ,

where

I β specifies the the rate of change of G(t) with itself

I α defines the impact of R(t)

I µ is a baseline level, required here because the origin for level
G(t) is not meaningful

I lag δ is the time for rainfall to reach the groundwater level,
and is known to be about 3 hours



The Constant Coefficient Fit

Source: Ramsay’s slides on “Linear Models for Output-Buffered Systems”,
2010 SAMSI



Allowing ODE Coefficients Time Varying

I As groundwater level G(t) changes, the dynamics change,
too, because water move through different types of sub-soil
structures

I We weren’t given sub-soil transmission rates, so we needed to
allow β(t); α(t) and µ(t) to vary slowly over time:

dG(t)

dt
= −β(t)G(t) + α(t)R(t− δ) + µ(t)



The Time-Varying Coefficient Fit

Source: Ramsay’s slides on “Linear Models for Output-Buffered Systems”,
2010 SAMSI
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