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Toy Examples of Spatial Interpolation

Question: What is your best guess of the value of the missing
pixel, denoted as Y'(sg), for each case?



Interpolating North American “Summer” Precipitation
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Goal: To interpolate the values in the spatial domain




The Spatial Interpolation Problem

Given observations of a spatially varying quantity Y at n spatial
locations

y(sl)ay(SQ);'“ )y(sn)a 8268,7'217 ,
We want to estimate this quantity at any unobserved location
Y(So), SpES

Applications
» Mining: ore grade

> Climate: temperature, precipitation, - - -
> Remote Sensing: COs retrievals

> Environmental Science: air pollution levels, - - -



Some history

» Mining (Krige 1951)
Matheron (1960s),
Forestry (Matérn
1960)

» More recent work:
Cressie (1993) Stein
(1999)




Outline

Gaussian Process Spatial Model



Linear Interpolation

The best guess (in a statistical sense) should be based on the
conditional distribution [Y (so) |Y = y]| where

y=(y(s1),,y(sa)"

> Calculating this conditional distribution can be difficult
> Instead we use a linear predictor: Y (s9) = Ao + >, \iy(si)

P The best linear predictor is completely determined by the
mean and covariance of {Y(s), s € S}, and the observations

Yy



Gaussian Process (GP) Spatial Model

We assume that the observed data {y(s;)};_, is one partial
realization of a (continuously indexed) spatial GP {Y'(s)}
Model:

SES”

Y(s) =m(s) + €(s), s€SCR?
where

» Mean function:

» Covariance function:

{e(8)}ses ~ GP (0, K (-,-)),  K(s1,82) = Cov (e(s1), €(52))



Assumptions on Covariance Function

In practice, the covariance must be estimated from the data
(y(s1),--- ,y(sn))T. We need to impose some structural
assumptions

> Stationarity:

K(s1,s2) = Cov (e(s1),€(s2)) = C(s1 — s2)
= Cov (e(s1 + h),e(s2 + h)))

> Isotropy:

K(s1,82) = Cov (e(s1), €(s2)) = C([[s1 — s2]))



A valid covariance function must be positive definite (p.d.)!

A covariance function is positive if

n

Z CLZ'CLjC(Si - Sj) > 0

ij=1

for any finite locations sq, - - -

, Sn, and for any constants a;,
i=1,---,n

Question: what is the consequence if a covariance function is NOT
p.d.? = weird things can happen

Question: How to guarantee a C'(+) is p.d.?

> Using a parametric covariance function

» Using Bochner's Theorem to construct a valid covariance
function



Some Commonly Used Covariance Functions

> Powered exponential:
2 h a 2
C(h) = o”exp —(;) , 0°>0,p>0,0<a<?2

> Spherical:

3
C(h) = g2 (1—1.5%4—0.5 <%> ) ]L{hgp}a 02, p>0

Note: it is only valid for 1,2, and 3 dimensional spatial

domain.
» Matérn:
2vh/p)’ K, (V2vh
O(h):aZ(‘/_V /’;)(V)QV_(I v /p), 0250, p>0,v>0

“Use the Matérn model” — Stein (1999, pp. 14)



1-D Realizations from Matérn Model with Fixed o2, p

covariance, k(r)
output, f(x)
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Figure: courtesy of Rasmussen & Williams 2006



2-D Realizations from Matérn Model with Fixed o2

DA



Outline

Spatial Interpolation



Review: conditional distribution of multivariate normal

()~ () G 32))

[Y1]Y2 = yo] ~ N (pq)2, Z31\2)

Then

where

K12 = p1 + S1255 (Y2 — p2)
Y =31 — Y1255 S



GP-Based Spatial Interpolation: Kriging

If {Y(s)}ses follows a GP, then
() ~~ (). (7 )

Y0¥ =) ~ N (mygfy—y vy

We have

where

Myyly =y = Mo + 'Sy — )

2 _ 2 _ 1 Ty-1
Oyyly=y =00 —k Xk



Estimated “Summer” Rainfall
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GP-Based Spatial Interpolation: Kriging

If {Y(5)}ses follows a GP, then
() ~~ (). (7 )

Y0¥ = ] ~ N (mygy—y, %y vy )

We have

where

Myyly =y = Mo + 'Sy — )

2 _ 2 Tyl
OYyly=y =00 —k X7k

Question: what if we don’t know pg, i1, 03, %7
= We need to estimate the mean and covariance from the data y.



Outline

Parameter estimation



Estimation: MLE

Log-likelihood:
Given data y = (y(s1), - ,y(sn))"

£4(8,0:) o — 3 log S| — 5 (v — X"8)" [Sal, L, (v — X"8)

where Xg(i,j) = O’Qpp,,/(HSi — sl + Tz]l{sizsj},i,j =1,---,n



Estimation: MLE

Log-likelihood:
Given data y = (y(s1), - ,y(sn))"

1 1 _
(a(8,8:y) < —3 log| S| — 5 (y — X7B)" [SelL,, (v — X'B)
where 3g(i,7) = 0°ppu (I8 = 8jll) + T°1(s,=s,3, 055 = 1,-- ,

for any fixed @y € © the unique value of 3 that maximizes ¢, is
given by

. -1
3= <XT2501X) X" g,y
Then we obtain the profile log likelihood

1 1
(n(6;y) o< — log | Zg| - inP(O)y

where )
PO) =%, -5, X (XTS,'X)  XT5,



Asymptotics for spatial data

» MLE: (usually) consistency, asymptotic normality, efficient

> Two different asymptotic frameworks in spatial statistics:
increasing-domain, fixed-domain

Fixed domain or “infill”: Increasingly dense set of
locations in a bounded domain

n=100 n=200 n=300

k]

Increasing domain: Minimum distance is bounded
away from zero

n=100 n=200 n=300

Figure: Figure courtesy of Cari Kaufman

> Inconsistent estimation and asymptotically equal
interpolations in Model-Based Geostatistics (Zhang, 2004)



An lllustration of Inconsistent Estimation of GP Parameters
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“Big n Problem”

> Modern environmental instruments have produced a wealth of
space—time data = n is big

> Evaluation of the likelihood function involves factorizing large
covariance matrices that generally requires

» O(n?) operations
» O(n?) memory

> Modeling strategies are needed to deal with large spatial data
set.
> parameter estimation = MLE, Bayesian

> spatial interpolation = Kriging

> multivariate spatial data (np x np), spatio-temporal data
(nt x nt)
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