An Introduction to Kriging

Whitney Huang

CLEMSesN
wkhuang@clemson.edu
Clemson ENVR Group, September 9, 2020

Toy Examples of Spatial Interpolation

Question: What is your best guess of the value of the missing pixel, denoted as $Y\left(s_{0}\right)$, for each case?

Interpolating North American "Summer" Precipitation

Goal: To interpolate the values in the spatial domain

The Spatial Interpolation Problem

Given observations of a spatially varying quantity Y at n spatial locations

$$
y\left(s_{1}\right), y\left(s_{2}\right), \cdots, y\left(s_{n}\right), \quad s_{i} \in \mathcal{S}, i=1, \cdots, n
$$

We want to estimate this quantity at any unobserved location

$$
Y\left(s_{0}\right), \quad s_{0} \in \mathcal{S}
$$

Applications

- Mining: ore grade
- Climate: temperature, precipitation, ...
- Remote Sensing: CO_{2} retrievals
- Environmental Science: air pollution levels, ...

Some history

- Mining (Krige 1951) Matheron (1960s), Forestry (Matérn 1960)

- More recent work: Cressie (1993) Stein (1999)

Outline

Gaussian Process Spatial Model

Spatial Interpolation

Parameter estimation

Linear Interpolation

The best guess (in a statistical sense) should be based on the conditional distribution $\left[Y\left(s_{0}\right) \mid \boldsymbol{Y}=\boldsymbol{y}\right]$ where

$$
\boldsymbol{y}=\left(y\left(\boldsymbol{s}_{1}\right), \cdots, y\left(\boldsymbol{s}_{n}\right)\right)^{\mathrm{T}}
$$

- Calculating this conditional distribution can be difficult
- Instead we use a linear predictor: $\hat{Y}\left(s_{0}\right)=\lambda_{0}+\sum_{i=1}^{n} \lambda_{i} y\left(s_{i}\right)$
- The best linear predictor is completely determined by the mean and covariance of $\{Y(s), s \in \mathcal{S}\}$, and the observations \boldsymbol{y}

Gaussian Process (GP) Spatial Model

We assume that the observed data $\left\{y\left(s_{i}\right)\right\}_{i=1}^{n}$ is one partial realization of a (continuously indexed) spatial GP $\{Y(s)\}_{s \in \mathcal{S}}$. Model:

$$
Y(s)=m(s)+\epsilon(s), \quad s \in \mathcal{S} \subset \mathbb{R}^{d}
$$

where

- Mean function:

$$
m(s)=\mathbb{E}[Y(s)]=\boldsymbol{X}^{T}(\boldsymbol{s}) \boldsymbol{\beta}
$$

- Covariance function:

$$
\{\epsilon(\boldsymbol{s})\}_{s \in \mathcal{S}} \sim \operatorname{GP}(0, K(\cdot, \cdot)), \quad K\left(s_{1}, s_{2}\right)=\operatorname{Cov}\left(\epsilon\left(s_{1}\right), \epsilon\left(s_{2}\right)\right)
$$

Assumptions on Covariance Function

In practice, the covariance must be estimated from the data $\left(y\left(s_{1}\right), \cdots, y\left(s_{n}\right)\right)^{\mathrm{T}}$. We need to impose some structural assumptions

- Stationarity:

$$
\begin{aligned}
K\left(\boldsymbol{s}_{1}, \boldsymbol{s}_{2}\right) & =\operatorname{Cov}\left(\epsilon\left(\boldsymbol{s}_{1}\right), \epsilon\left(\boldsymbol{s}_{2}\right)\right)=C\left(\boldsymbol{s}_{1}-\boldsymbol{s}_{2}\right) \\
& \left.=\operatorname{Cov}\left(\epsilon\left(\boldsymbol{s}_{1}+\boldsymbol{h}\right), \epsilon\left(\boldsymbol{s}_{2}+\boldsymbol{h}\right)\right)\right)
\end{aligned}
$$

- Isotropy:

$$
K\left(s_{1}, s_{2}\right)=\operatorname{Cov}\left(\epsilon\left(s_{1}\right), \epsilon\left(s_{2}\right)\right)=C\left(\left\|s_{1}-s_{2}\right\|\right)
$$

A valid covariance function must be positive definite (p.d.)!

A covariance function is positive if

$$
\sum_{i, j=1}^{n} a_{i} a_{j} C\left(s_{i}-\boldsymbol{s}_{j}\right) \geq 0
$$

for any finite locations s_{1}, \cdots, s_{n}, and for any constants a_{i}, $i=1, \cdots, n$
Question: what is the consequence if a covariance function is NOT p.d.? \Rightarrow weird things can happen

Question: How to guarantee a $C(\cdot)$ is p.d.?

- Using a parametric covariance function
- Using Bochner's Theorem to construct a valid covariance function

Some Commonly Used Covariance Functions

- Powered exponential:

$$
C(h)=\sigma^{2} \exp \left(-\left(\frac{h}{\rho}\right)^{\alpha}\right), \quad \sigma^{2}>0, \rho>0,0<\alpha \leq 2
$$

- Spherical:

$$
C(h)=\sigma^{2}\left(1-1.5 \frac{h}{\rho}+0.5\left(\frac{h}{\rho}\right)^{3}\right) \mathbb{1}_{\{h \leq \rho\}}, \quad \sigma^{2}, \rho>0
$$

Note: it is only valid for 1,2 , and 3 dimensional spatial domain.

- Matérn:

$$
C(h)=\sigma^{2} \frac{(\sqrt{2 \nu} h / \rho)^{\nu} \mathcal{K}_{\nu}(\sqrt{2 \nu} h / \rho)}{\Gamma(\nu) 2^{\nu-1}}, \quad \sigma^{2}>0, \rho>0, \nu>0
$$

"Use the Matérn model" - Stein (1999, pp. 14)

1-D Realizations from Matérn Model with Fixed σ^{2}, ρ

Figure: courtesy of Rasmussen \& Williams 2006

2-D Realizations from Matérn Model with Fixed σ^{2}

Outline

Gaussian Process Spatial Model

Spatial Interpolation

Parameter estimation

Review: conditional distribution of multivariate normal

If

$$
\binom{\boldsymbol{Y}_{1}}{\boldsymbol{Y}_{2}} \sim \mathrm{~N}\left(\binom{\boldsymbol{\mu}_{\mathbf{1}}}{\boldsymbol{\mu}_{\mathbf{2}}},\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)\right)
$$

Then

$$
\left[\boldsymbol{Y}_{1} \mid \boldsymbol{Y}_{2}=\boldsymbol{y}_{2}\right] \sim \mathrm{N}\left(\boldsymbol{\mu}_{\mathbf{1} \mid \mathbf{2}}, \Sigma_{1 \mid 2}\right)
$$

where

$$
\begin{aligned}
\boldsymbol{\mu}_{\mathbf{1} \mid \mathbf{2}} & =\boldsymbol{\mu}_{\mathbf{1}}+\Sigma_{12} \Sigma_{22}^{-1}\left(\boldsymbol{y}_{2}-\boldsymbol{\mu}_{\mathbf{2}}\right) \\
\Sigma_{1 \mid 2} & =\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}
\end{aligned}
$$

GP-Based Spatial Interpolation: Kriging

If $\{Y(s)\}_{s \in \mathcal{S}}$ follows a GP, then

$$
\binom{Y_{0}}{\boldsymbol{Y}} \sim \mathrm{~N}\left(\binom{m_{0}}{\boldsymbol{m}},\left(\begin{array}{cc}
\sigma_{0}^{2} & k^{\mathrm{T}} \\
k & \Sigma
\end{array}\right)\right)
$$

We have

$$
\left[Y_{0} \mid \boldsymbol{Y}=\boldsymbol{y}\right] \sim \mathrm{N}\left(m_{Y_{0} \mid \boldsymbol{Y}=\boldsymbol{y}}, \sigma_{Y_{0} \mid \boldsymbol{Y}=\boldsymbol{y}}^{2}\right)
$$

where

$$
\begin{aligned}
m_{Y_{0} \mid \boldsymbol{Y}=\boldsymbol{y}} & =m_{0}+k^{\mathrm{T}} \Sigma^{-1}(\boldsymbol{y}-\boldsymbol{\mu}) \\
\sigma_{Y_{0} \mid \boldsymbol{Y}=\boldsymbol{y}}^{2} & =\sigma_{0}^{2}-k^{\mathrm{T}} \Sigma^{-1} k
\end{aligned}
$$

Estimated "Summer" Rainfall

GP-Based Spatial Interpolation: Kriging

If $\{Y(s)\}_{s \in \mathcal{S}}$ follows a GP, then

$$
\binom{Y_{0}}{\boldsymbol{Y}} \sim \mathrm{~N}\left(\binom{m_{0}}{\boldsymbol{m}},\left(\begin{array}{cc}
\sigma_{0}^{2} & k^{\mathrm{T}} \\
k & \Sigma
\end{array}\right)\right)
$$

We have

$$
\left[Y_{0} \mid \boldsymbol{Y}=\boldsymbol{y}\right] \sim \mathrm{N}\left(m_{Y_{0} \mid \boldsymbol{Y}=\boldsymbol{y}}, \sigma_{Y_{0} \mid \boldsymbol{Y}=\boldsymbol{y}}^{2}\right)
$$

where

$$
\begin{aligned}
m_{Y_{0} \mid \boldsymbol{Y}=\boldsymbol{y}} & =m_{0}+k^{\mathrm{T}} \Sigma^{-1}(\boldsymbol{y}-\boldsymbol{\mu}) \\
\sigma_{Y_{0} \mid \boldsymbol{Y}=\boldsymbol{y}}^{2} & =\sigma_{0}^{2}-k^{\mathrm{T}} \Sigma^{-1} k
\end{aligned}
$$

Question: what if we don't know $\mu_{0}, \boldsymbol{\mu}, \sigma_{0}^{2}, \Sigma$?
\Rightarrow We need to estimate the mean and covariance from the data \boldsymbol{y}.

Outline

Gaussian Process Spatial Model

Spatial Interpolation

Parameter estimation

Estimation: MLE

Log-likelihood:
Given data $\boldsymbol{y}=\left(y\left(\boldsymbol{s}_{1}\right), \cdots, y\left(\boldsymbol{s}_{n}\right)\right)^{\mathrm{T}}$

$$
\begin{aligned}
& \ell_{n}(\boldsymbol{\beta}, \boldsymbol{\theta} ; \boldsymbol{y}) \propto-\frac{1}{2} \log \left|\boldsymbol{\Sigma}_{\boldsymbol{\theta}}\right|-\frac{1}{2}\left(\boldsymbol{y}-\boldsymbol{X}^{\mathrm{T}} \boldsymbol{\beta}\right)^{\mathrm{T}}\left[\boldsymbol{\Sigma}_{\boldsymbol{\theta}}\right]_{n \times n}^{-1}\left(\boldsymbol{y}-\boldsymbol{X}^{\mathrm{T}} \boldsymbol{\beta}\right) \\
& \text { where } \boldsymbol{\Sigma}_{\boldsymbol{\theta}}(i, j)=\sigma^{2} \rho_{\rho, \nu}\left(\left\|\boldsymbol{s}_{i}-\boldsymbol{s}_{j}\right\|\right)+\tau^{2} \mathbb{1}_{\left\{\boldsymbol{s}_{i}=\boldsymbol{s}_{j}\right\}}, i, j=1, \cdots, n
\end{aligned}
$$

for any fixed $\theta_{0} \in \Theta$ the unique value of β that maximizes ℓ_{n} is

Then we obtain the profile log likelihood

where

Estimation: MLE

Log-likelihood:
Given data $\boldsymbol{y}=\left(y\left(\boldsymbol{s}_{1}\right), \cdots, y\left(\boldsymbol{s}_{n}\right)\right)^{\mathrm{T}}$

$$
\begin{aligned}
& \ell_{n}(\boldsymbol{\beta}, \boldsymbol{\theta} ; \boldsymbol{y}) \propto-\frac{1}{2} \log \left|\boldsymbol{\Sigma}_{\boldsymbol{\theta}}\right|-\frac{1}{2}\left(\boldsymbol{y}-\boldsymbol{X}^{\mathrm{T}} \boldsymbol{\beta}\right)^{\mathrm{T}}\left[\boldsymbol{\Sigma}_{\boldsymbol{\theta}}\right]_{n \times n}^{-1}\left(\boldsymbol{y}-\boldsymbol{X}^{\mathrm{T}} \boldsymbol{\beta}\right) \\
& \text { where } \boldsymbol{\Sigma}_{\boldsymbol{\theta}}(i, j)=\sigma^{2} \rho_{\rho, \nu}\left(\left\|\boldsymbol{s}_{i}-\boldsymbol{s}_{j}\right\|\right)+\tau^{2} \mathbb{1}_{\left\{\boldsymbol{s}_{i}=\boldsymbol{s}_{j}\right\}}, i, j=1, \cdots, n
\end{aligned}
$$

for any fixed $\boldsymbol{\theta}_{0} \in \Theta$ the unique value of $\boldsymbol{\beta}$ that maximizes ℓ_{n} is given by

$$
\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\mathrm{T}} \Sigma_{\boldsymbol{\theta}_{0}}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\mathrm{T}} \Sigma_{\boldsymbol{\theta}_{0}} \boldsymbol{y}
$$

Then we obtain the profile log likelihood

$$
\ell_{n}(\boldsymbol{\theta} ; \boldsymbol{y}) \propto-\frac{1}{2} \log \left|\boldsymbol{\Sigma}_{\boldsymbol{\theta}}\right|-\frac{1}{2} \boldsymbol{y}^{\mathrm{T}} P(\boldsymbol{\theta}) \boldsymbol{y}
$$

where

$$
P(\boldsymbol{\theta})=\Sigma_{\boldsymbol{\theta}}^{-1}-\Sigma_{\boldsymbol{\theta}}^{-1} \boldsymbol{X}\left(\boldsymbol{X}^{\mathrm{T}} \Sigma_{\boldsymbol{\theta}}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\mathrm{T}} \Sigma_{\boldsymbol{\theta}}
$$

Asymptotics for spatial data

- MLE: (usually) consistency, asymptotic normality, efficient
- Two different asymptotic frameworks in spatial statistics: increasing-domain, fixed-domain

Fixed domain or "infill": Increasingly dense set of locations in a bounded domain

Increasing domain: Minimum distance is bounded away from zero

Figure: Figure courtesy of Cari Kaufman

- Inconsistent estimation and asymptotically equal interpolations in Model-Based Geostatistics (Zhang, 2004)

An Illustration of Inconsistent Estimation of GP Parameters

- Modern environmental instruments have produced a wealth of space-time data $\Rightarrow n$ is big
- Evaluation of the likelihood function involves factorizing large covariance matrices that generally requires
- $\mathcal{O}\left(n^{3}\right)$ operations
- $\mathcal{O}\left(n^{2}\right)$ memory
- Modeling strategies are needed to deal with large spatial data set.
- parameter estimation \Rightarrow MLE, Bayesian
- spatial interpolation \Rightarrow Kriging
- multivariate spatial data ($n p \times n p$), spatio-temporal data $(n t \times n t)$

