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Toy Examples of Spatial Interpolation
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Question: What is your best guess of the value of the missing
pixel, denoted as Y (s0), for each case?



Interpolating North American “Summer” Precipitation
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Goal: To interpolate the values in the spatial domain



The Spatial Interpolation Problem

Given observations of a spatially varying quantity Y at n spatial
locations

y(s1), y(s2), · · · , y(sn), si ∈ S, i = 1, · · · , n

We want to estimate this quantity at any unobserved location

Y (s0), s0 ∈ S

Applications

I Mining: ore grade

I Climate: temperature, precipitation, · · ·

I Remote Sensing: CO2 retrievals

I Environmental Science: air pollution levels, · · ·



Some history

I Mining (Krige 1951)
Matheron (1960s),
Forestry (Matérn
1960)

I More recent work:
Cressie (1993) Stein
(1999)
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Linear Interpolation

The best guess (in a statistical sense) should be based on the
conditional distribution [Y (s0) |Y = y] where

y = (y (s1) , · · · , y (sn))T

I Calculating this conditional distribution can be difficult

I Instead we use a linear predictor: Ŷ (s0) = λ0 +
∑n

i=1 λiy(si)

I The best linear predictor is completely determined by the
mean and covariance of {Y (s), s ∈ S}, and the observations
y



Gaussian Process (GP) Spatial Model

We assume that the observed data {y(si)}ni=1 is one partial
realization of a (continuously indexed) spatial GP {Y (s)}s∈S .
Model:

Y (s) = m(s) + ε(s), s ∈ S ⊂ Rd

where

I Mean function:

m(s) = E [Y (s)] = XT (s)β

I Covariance function:

{ε(s)}s∈S ∼ GP (0,K (·, ·)) , K(s1, s2) = Cov (ε(s1), ε(s2))



Assumptions on Covariance Function

In practice, the covariance must be estimated from the data
(y(s1), · · · , y(sn))T. We need to impose some structural
assumptions

I Stationarity:

K(s1, s2) = Cov (ε(s1), ε(s2)) = C(s1 − s2)
= Cov (ε(s1 + h), ε(s2 + h)))

I Isotropy:

K(s1, s2) = Cov (ε(s1), ε(s2)) = C(‖s1 − s2‖)



A valid covariance function must be positive definite (p.d.)!

A covariance function is positive if

n∑
i,j=1

aiajC(si − sj) ≥ 0

for any finite locations s1, · · · , sn, and for any constants ai,
i = 1, · · · , n
Question: what is the consequence if a covariance function is NOT
p.d.? ⇒ weird things can happen
Question: How to guarantee a C(·) is p.d.?

I Using a parametric covariance function

I Using Bochner’s Theorem to construct a valid covariance
function



Some Commonly Used Covariance Functions

I Powered exponential:

C(h) = σ2 exp

(
−(
h

ρ
)α
)
, σ2 > 0, ρ > 0, 0 < α ≤ 2

I Spherical:

C(h) = σ2

(
1− 1.5

h

ρ
+ 0.5

(
h

ρ

)3
)
1{h≤ρ}, σ2, ρ > 0

Note: it is only valid for 1,2, and 3 dimensional spatial
domain.

I Matérn:

C(h) = σ2
(√

2νh/ρ
)ν Kν (√2νh/ρ

)
Γ(ν)2ν−1

, σ2 > 0, ρ > 0, ν > 0

“Use the Matérn model” – Stein (1999, pp. 14)



1-D Realizations from Matérn Model with Fixed σ2, ρ

Figure: courtesy of Rasmussen & Williams 2006



2-D Realizations from Matérn Model with Fixed σ2
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Review: conditional distribution of multivariate normal

If (
Y1

Y2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
Then

[Y1|Y2 = y2] ∼ N
(
µ1|2,Σ1|2

)
where

µ1|2 = µ1 + Σ12Σ
−1
22 (y2 − µ2)

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21



GP-Based Spatial Interpolation: Kriging

If {Y (s)}s∈S follows a GP, then(
Y0
Y

)
∼ N

((
m0

m

)
,

(
σ20 kT

k Σ

))
We have

[Y0|Y = y] ∼ N
(
mY0|Y =y, σ

2
Y0|Y =y

)
where

mY0|Y =y = m0 + kTΣ−1 (y − µ)

σ2Y0|Y =y = σ20 − kTΣ−1k



Estimated “Summer” Rainfall



GP-Based Spatial Interpolation: Kriging

If {Y (s)}s∈S follows a GP, then(
Y0
Y

)
∼ N

((
m0

m

)
,

(
σ20 kT

k Σ

))
We have

[Y0|Y = y] ∼ N
(
mY0|Y =y, σ

2
Y0|Y =y

)
where

mY0|Y =y = m0 + kTΣ−1 (y − µ)

σ2Y0|Y =y = σ20 − kTΣ−1k

Question: what if we don’t know µ0,µ, σ
2
0,Σ?

⇒ We need to estimate the mean and covariance from the data y.
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Estimation: MLE

Log-likelihood:
Given data y = (y(s1), · · · , y(sn))T

`n(β,θ;y) ∝ −1

2
log |Σθ| −

1

2
(y −XTβ)T [Σθ]−1n×n (y −XTβ)

where Σθ(i, j) = σ2ρρ,ν(‖si − sj‖) + τ21{si=sj}, i, j = 1, · · · , n

for any fixed θ0 ∈ Θ the unique value of β that maximizes `n is
given by

β̂ =
(
XTΣ−1θ0 X

)−1
XTΣθ0y

Then we obtain the profile log likelihood

`n(θ;y) ∝ −1

2
log |Σθ| −

1

2
yTP (θ)y

where
P (θ) = Σ−1θ − Σ−1θ X

(
XTΣ−1θ X

)−1
XTΣθ
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1
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Asymptotics for spatial data

I MLE: (usually) consistency, asymptotic normality, efficient

I Two different asymptotic frameworks in spatial statistics:
increasing-domain, fixed-domain

Figure: Figure courtesy of Cari Kaufman

I Inconsistent estimation and asymptotically equal
interpolations in Model-Based Geostatistics (Zhang, 2004)



An Illustration of Inconsistent Estimation of GP Parameters
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“Big n Problem”

I Modern environmental instruments have produced a wealth of
space–time data ⇒ n is big

I Evaluation of the likelihood function involves factorizing large
covariance matrices that generally requires
I O(n3) operations

I O(n2) memory

I Modeling strategies are needed to deal with large spatial data
set.
I parameter estimation ⇒ MLE, Bayesian

I spatial interpolation ⇒ Kriging

I multivariate spatial data (np× np), spatio-temporal data
(nt× nt)
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