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Summary. Conventional geosiatistical methodology solves the problem of predicting the realized
value of a linear functional of a Gaussian spatial stochastic process S(x) based on observations
Y; = 8(x;) + Z at sampling locations x;, where the Z; are mutually independent, zero-mean
Gaussian random variables. We describe two spatial applications for which Gaussian distributional
assumptions are clearly inappropriate. The first concerns the assessment of residual contamination
from nuclear weapons testing on a South Pacific island, in which the sampling method gener-
ates spatially indexed Poisson counts conditional on an unobserved spatially varying intensity of
radioactivity; we conclude that a conventional geostatistical analysis oversmooths the data and
underestimates the spatial extremes of the intensity. The second application provides a description
of spatial variation in the risk of campylobacter infections relative to other enteric infections in part of
north Lancashire and south Cumbria. For this application, we treat the data as binomial counts at
unit postcode locations, conditionally on an unobserved relative risk surface which we estimate.
The theoretical framework for our extension of geostatistical methods is that, conditionally on the
unobserved process S(x), observations at sample locations x; form a generalized linear model with
the corresponding values of S(x;) appearing as an offset term in the linear predictor. We use a
Bayesian inferential framework, implemented via the Markov chain Monte Carlo method, to solve
the prediction problem for non-linear functionals of S(x), making a proper allowance for the un-
certainty in the estimation of any model parameters.

Keywords. Generalized linear mixed model; Geostatistics; Kriging; Markov chain Monte Carlo
method; Spatial prediction



Book by Diggle and Ribeiro, 2007

Springer Series im Statistics B

Model-based

Geoslatistics




Gaussian Process (GP) Spatial Model

We assume the observed data {y(;)};_, is one partial realization
of a spatial GP {Y'(z)} -

Model:
Y(x) =m(x)+ S(x)+e, xcX CR?

where

> Mean function:

» Covariance function:

{S(@®)}gex ~GP (0, K (), K(z1,22) = Cov (5(21), S(2))



An Equivalent Representation

To simply the presentation let's assume m(x) = u. The data
model

}/;:M‘FS(IEZ)—FEZ,Z: 17 > 1,
can be presented as
YilS(@i) ~ N(u+ (i), 7%),

where ¢; ~ N(0,72)) L S(-).

Parameter estimation can be done via likelihood-based method.
“Plug-in" spatial prediction is typically used.



Main Novelty of this Paper

Extend the GP spatial model to model non-Gaussian spatial data

> Incorporating spatial structure via GP model within the
framework of generalized linear model (GLM)

> Inference/Prediction is carry out under Bayesian framework
via Markov chain Monte Carlo (MCMCQ)

» Demonstrates the modeling approach with applications where
Poisson and binomial distributional assumptions are more
tenable



Spatial Generalized Linear Models

> Data Level: Y; conditionally follow a distribution within the
exponential family (e.g., Poisson; binomial) where

E[Y;’S(ml)] ::u(mi)a t=1---,n.

> Linear “fixed effects” plus spatial “random effects”:

() = g(u:) = Z(x:)" B+ S(x:)

> Latent spatial process:

S(x) ~GP(0,K(--)), reX



Example: Spatial Binary Data

» Yilp(x;) ~ Bernoulli(p(x;))

> log({4515) = Z(@:)" B+ S(w.)

» S(x) ~GP(0,K(-")), rzedk



Example: Spatial Count Data

> Y;|A(x;) ~ Poisson(A(x;))
> log(M(z:)) = Z(z;)" B + S(=i)

» S(x) ~GP(0,K(-")), rxelkX



Inference and Prediction: MCMC
Goal: To obtain the posterior distribution of
(0,8, 9)Y],

where 0 are the parameters for GP; 3 consist of the regression
parameters; S and Y are the values of S and Y at {x;}! ;

To implement MCMC we would need to sample 7(0|Y, S, 3),
7(S;]8-:,Y,0,0), and 7(8|Y, S, 0)

TAVAN

Source: Diggle et al. (13)



Inference and Prediction: MCMC

> m(0]Y,S,8) =n(6|S) x f(5]0)f(0)

> W(Si|S*i7Y79HB) X f(Y|Svﬂ)f(Sl’S*MO) =
{0 £ (9155, 8) } £(5:1S-:.6)

> 7(B1Y.S,0) = n(B|Y. S) < f(Y]S, B)F(8) =
{0 £ ils5.8)} £(8)



