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Book by Diggle and Ribeiro, 2007



Gaussian Process (GP) Spatial Model

We assume the observed data {y(xi)}ni=1 is one partial realization
of a spatial GP {Y (x)}x∈X .

Model:

Y (x) = m(x) + S(x) + ε, x ∈ X ⊂ Rd

where

I Mean function:

m(x) = E [Y (x)] = ZT (x)β

I Covariance function:

{S(x)}x∈X ∼ GP(0,K (·, ·)) , K(x1,x2) = Cov (S(x1), S(x2))



An Equivalent Representation

To simply the presentation let’s assume m(x) = µ. The data
model

Yi = µ+ S(xi) + εi, i = 1, · · · , n,

can be presented as

Yi|S(xi) ∼ N(µ+ S(xi), τ
2),

where εi ∼ N(0, τ2)) ⊥ S(·).

Parameter estimation can be done via likelihood-based method.
“Plug-in” spatial prediction is typically used.



Main Novelty of this Paper

Extend the GP spatial model to model non-Gaussian spatial data

I Incorporating spatial structure via GP model within the
framework of generalized linear model (GLM)

I Inference/Prediction is carry out under Bayesian framework
via Markov chain Monte Carlo (MCMC)

I Demonstrates the modeling approach with applications where
Poisson and binomial distributional assumptions are more
tenable



Spatial Generalized Linear Models

I Data Level: Yi conditionally follow a distribution within the
exponential family (e.g., Poisson; binomial) where

E[Yi|S(xi)] = µ(xi), i = 1, · · · , n.

I Linear “fixed effects” plus spatial “random effects”:

η(xi) = g(µ(xi)) = Z(xi)
Tβ + S(xi)

I Latent spatial process:

S(x) ∼ GP (0,K(·, ·)), x ∈ X



Example: Spatial Binary Data

I Yi|p(xi) ∼ Bernoulli(p(xi))

I log( p(xi)
1−p(xi)

) = Z(xi)
Tβ + S(xi)

I S(x) ∼ GP (0,K(·, ·)), x ∈ X



Example: Spatial Count Data

I Yi|λ(xi) ∼ Poisson(λ(xi))

I log(λ(xi)) = Z(xi)
Tβ + S(xi)

I S(x) ∼ GP (0,K(·, ·)), x ∈ X



Inference and Prediction: MCMC

Goal: To obtain the posterior distribution of

[(θ,β,S)|Y ],

where θ are the parameters for GP; β consist of the regression
parameters; S and Y are the values of S and Y at {xi}ni=1

To implement MCMC we would need to sample π(θ|Y ,S,β),
π(Si|S−i,Y ,θ,β), and π(β|Y ,S,θ)

Source: Diggle et al. (13)



Inference and Prediction: MCMC

I π(θ|Y ,S,β) = π(θ|S) ∝ f(S|θ)f(θ)

I π(Si|S−i,Y ,θ,β) ∝ f(Y |S,β)f(Si|S−i,θ) ={∏n
j=1 f(yj |sj ,β)

}
f(Si|S−i,θ)

I π(β|Y ,S,θ) = π(β|Y ,S) ∝ f(Y |S,β)f(β) ={∏n
j=1 f(yj |sj ,β)

}
f(β)


