Lecture 1

Course Information and Review

Reading: Forecasting, Time Series, and Regression (4th edition) by Bowerman, O'Connell, and Koehler [Link]: Chapters 1 and 2

MATH 4070: Regression and Time-Series Analysis

1.1

Notes

About the Instructor

1.3

1.2

Instructor Background

- Assistant Professor of Applied Statistics and Data Science
- **•** Born in Laramie, WY, and raised in Taiwan

• Obtained a B.S. in Mechanical Engineering; transitioned to Statistics in graduate school

Earned a Ph.D. in Statistics from Purdue University

- **Email** \boxtimes : wkhuang@clemson.edu Please include [MATH 4070] in your email subject line
- **Office:** O-221 Martin Hall
- **Office Hours:** Tue., Wed., and Thurs., 1:45 pm 2:30 pm, and by appointment

About the Instructor

1.4

Course Information and Review

About the Instructor

Notes

Notes

1.6

1.5

Notes

Class Policies

Logistics

- There will be some (4-6) homework assignments:
	- To be uploaded to Canvas by 11:59 pm ET on the due dates
	- Worst grade will be dropped
- There will be three 60-minute exam. The (tentative) dates are: Sep. 24, Tuesday; Oct. 22, Tuesday; Nov. 21, Thursday
- There will be a final project. It could be a **data analysis**, a **simulation study**, **methodological or theoretical research**, or a **report on a research article** of interest to you

1.7

Course Information and Review

Class Policies

Notes

Evaluation

Grades will be weighted as follows:

Final course grades will be assigned using the following grading scheme:

Notes

Computing

We will use software to perform statistical analyses. Specifically, we will be using R/Rstudio \mathbf{R} **B** Studio

- ^a **free/open-source** programming language for statistical analysis
- available at <https://www.r-project.org/> (R); <https://rstudio.com/> (Rstudio)
- I strongly encourage you to use **^R Markdown** for homework assignments

1.9

1.8

Course Materials at CANVAS

- Course syllabus / announcements
- Lecture slides/notes/videos
- **•** R Codes
- **o** Data sets

1.10

Course Information and Review

MATICAL AND

Notes

Course Website

Link: https://whitneyhuang83.github.io/ MATH4070/Schedule.html

Notes

[Tentative Schedule](https://whitneyhuang83.github.io/MATH4070/Schedule.html)

Course Information and Review

MATHEMATICAL AND
STATISTICAL SCIENCES

Class Polici

1.11

Review

Notes

Population (parameters) vs. Sample (statistics)

- We use parameters to describe the population and statistics to describe the sample
- **Statistical Science** involves using sample information to infer about populations

1.14

Course Information and

Notes

Example

Population is Clemson students and variable Y is IQ

- \bullet μ is the average IQ of all Clemson students (we don't know this)
- σ^2 is the variance of IQ in the whole student body (don't know this either)
- Randomly select $n = 36$ students and administer an IQ test to them. Suppose the average IQ score in the sample is 116, with a sample variance of 256
- Note that different samples yield different sample means and variances, but the population mean and variance remain constant. This variation in sample means reflects the sampling properties of the sample mean

Review

1.15

Some Properties of the Sample Mean

Consider a random sample: Y_1, Y_2, \dots, Y_n

- For any outcome of the sample, $\sum_{i=1}^{n} (y_i \bar{y}) = 0$, where $\bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}$
- The theoretical average of the sample mean is the population mean: $E[\bar{V}]$

$$
\mathbb{E}[Y] = \mu
$$

⇒ average over all possible sample means we get the population mean

• The variance of the sample mean is

$$
\text{Var}(\bar{Y}) = \mathbb{E}\left[\left(\bar{Y} - \mu\right)^2\right] = \frac{\sigma^2}{n}
$$

 \Rightarrow the average "distance" between \bar{Y} and μ is $\frac{\sigma}{\sqrt{n}}$

Course Information and Review

Review

1.17

Review

Notes

Notes

1.16

Statistical Inference

Statistical inference is the process of using sample data to draw conclusions about a population

- **•** Tools
	- Confidence intervals
	- **•** Hypothesis tests
- **•** These require distributional assumptions
- If our population variable has a normal distribution, for each sample

$$
t=\frac{\bar{y}-\mu}{\frac{s}{\sqrt{n}}}
$$

is a draw from a t -distribution with degrees of freedom (df) = $n - 1$

Inference on µ **for Normal Samples: Confidence Interval**

95% confidence interval:

$$
\left(\bar{Y}-t_{0.975, df=n-1}\frac{s}{\sqrt{n}}, \bar{Y}+t_{0.975, df=n-1}\frac{s}{\sqrt{n}}\right),
$$

where $t_{0.975,\mathrm{df}=n-1}$ denotes the 0.975 quantile of the t distribution with $df = n - 1$.

- This interval contains μ in 95% of samples, meaning each (random) sample has a 95% chance that its CI includes μ (see next slide for a demonstration)
- \bullet The interval gives a likely range for μ . For example, if the interval is $(3.4, 8.6)$, it is unlikely that $\mu < 3$ or $\mu > 10$

Notes

Notes

1.19

1.20

Course Information and Review

Review

1.21

Course Information and Review Review **A Demonstration of Confidence Intervals**

- The black horizontal line represents the true population mean μ , which is unknown but fixed
- Each vertical line represents a confidence interval around a sample mean, constructed from different samples drawn from the same population

Inference on ^µ **for Normal Samples: Hypothesis Test** Say you want to conclude that the average IQ of Clemson students is greater than 110.

> Null hypothesis $H_0: \mu \le 110$; Alternative hypothesis $H_1 : \mu \ge 110$.

Note:

• The alternative hypothesis is what we want to show

• The hypotheses do not depend on any sample

Now take a sample of $n = 36$ students: $\bar{y} = 112$ and $s = 16$. If μ were 110 (H_0)

$$
t = {\overline{y} - 110 \over \overline{\sqrt{36}}}
$$
 = 0.75, and $\mathbb{P}(t_{35} > 0.75) = 0.229$.

 \Rightarrow there is up to a 22.9% chance that $\bar{y} \ge 112$ if $\mu \le 110$. Not too convincing. Can't conclude that $\mu \ge 110$ from this sample

Hypothesis Test Cont'd

Null hypothesis $H_0: \mu \le 110$; Alternative hypothesis $H_1: \mu \ge 110$.

If instead $n = 36$, $\bar{y} = 116$ and $s = 16$. If μ were 110 (H_0)

$$
t = \frac{116 - 110}{\frac{16}{\sqrt{36}}} = 2.25
$$
, and $\mathbb{P}(t_{35} > 2.25) = 0.0154$.

 \Rightarrow If $\mu \le 110$, the chance of getting $\bar{y} \ge 116$ is at most 0.0154 . Since this is **unlikely**, we reject H_0 and conclude that $\mu \geq 110$. This outcome provides strong evidence that the average population IQ exceeds 110

• Here, the p -value = 0.0154. A small p -value indicates the likelihood of obtaining our result (in the direction of H_1) if H_0 were true, suggesting that H_0 should be rejected in favor of H_1

A Connection to Calculus: Mean Squared Error

Consider taking a measurement Y (random variable). If we were to approximate Y with a single number, what would be the best choice?

Consider minimizing

$$
g(c) = \mathbb{E}\left[\left(Y-c\right)^2\right] = \mathbb{E}[Y^2] + c^2 - 2c\mathbb{E}[Y].
$$

Take the derivative on the left hand side and solve $g'(c_0) = 0$ to solve for minimum

Solution

$$
c_0 = \mathbb{E}[Y] = \mu
$$

 \Rightarrow we say μ is the best mean squared error (MSE) constant predictor of ^Y

A Little Linear Algebra

Recall that for real-valued vectors

$$
u = (u1, u2, ..., un)T, v = (v1, v2, ..., vn)T,
$$

where the superscript T denotes the transpose. The inner product between u and v is

$$
\mathbf{u}^T \mathbf{v} = \sum_{i=1}^n u_i v_i.
$$

The vectors are orthogonal if the inner product is ⁰, and in that case

,

$$
\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2
$$

where $\|\mathbf{u}\|^2 = \mathbf{u}^T \mathbf{u} = \sum_{i=1}^n u_i^2$.

Review

1.24

1.23

1.22

Course Information and Review

Review

Review

Course Information and Review

Notes

A Connection to Linear Algebra

Consider the sample outcome as a vector:

$$
\mathbf{y}=(y_1,y_2,\cdots,y_n)^T.
$$

Approximate each component by μ , estimated by \bar{y} .

$$
\mathbf{y} - \boldsymbol{\mu} = (\hat{\mathbf{y}} - \boldsymbol{\mu}) + (\mathbf{y} - \hat{\mathbf{y}}),
$$

where $\hat{\mathbf{y}} = (\bar{y}, \bar{y}, \dots, \bar{y})^T$ and $\boldsymbol{\mu} = (\mu, \mu, \dots, \mu)^T$.

Since the first and second vector on the RHS are orthogonal (why?):

$$
\|\mathbf{y} - \boldsymbol{\mu}\|^2 = \|\hat{\mathbf{y}} - \boldsymbol{\mu}\|^2 + \|\mathbf{y} - \hat{\mathbf{y}}\|^2
$$

1.25

Course Information and Review

Review

Notes

A Connection to Linear Algebra: Remarks

- \bullet y consists of ordinary *n*-vectors of real numbers
- The vector $\hat{y} \mu$ is a one-dimensional object since all its components have the same value
- The vector $y \hat{y}$ is an $n 1$ dimensional object since its components sum to 0 (one linear restriction)
- The sample variance is related to the squared norm of $y - \hat{y}$

$$
s^2 = \frac{(\mathbf{y} - \hat{\mathbf{y}})^T (\mathbf{y} - \hat{\mathbf{y}})}{n-1}
$$

Notice that the denominator (df) represents the dimension of $y - \hat{y}$.

Notes

Chi-Square Distribution

Let Y_1, Y_2, \dots, Y_n be independent with

 $Y_j \sim \mathcal{N}(\mu_j, \sigma^2).$

$$
\chi^2 = \sum_{j=1}^n \left(\frac{Y_j - \mu_j}{\sigma}\right)^2
$$

2

has a chi-square distribution with n degrees of freedom. Note that the df is the dimension of outcomes of the data vector.

Now say $\hat{\mathbf{y}} = (\hat{y}_1, \hat{y}_2, \cdots, \hat{y}_n)^T$ takes outcomes in k -dimensions $(k < n)$ with

$$
\mathbb{E}(\hat{\mathbf{y}}) = \boldsymbol{\mu} = (\mu_1, \mu_2, \cdots, \mu_n)^T, \qquad (\hat{\mathbf{y}} - \boldsymbol{\mu})^T (\mathbf{y} - \hat{\mathbf{y}})
$$

Then

Then
 $\bullet \frac{(n-k)\hat{\sigma}^2}{\sigma^2} = \frac{(\hat{y} - \mu)^T(\hat{y} - \mu)}{\sigma^2} \sim \chi^2_{\text{df }= n-k}; \mathbb{E}(\hat{\sigma}^2) = \sigma^2$

$$
\bullet\ \hat{\bf y}\ {\rm is\ independent\ of}\ \hat{\sigma}^2
$$

 $\overline{0}$

1.27

Course

1.26

F**- and** t**- Distributions**

Let Y_1, Y_2, \dots, Y_n be independent with

$$
Y_j \sim \mathcal{N}(\mu_j, \sigma^2),
$$

 \hat{y} takes outcomes in k-dimensions $(k < n)$ with

$$
\mathbb{E}(\hat{\mathbf{y}}) = \boldsymbol{\mu} = (\mu_1, \mu_2, \cdots, \mu_n)^T, \qquad (\hat{\mathbf{y}} - \boldsymbol{\mu})^T (\mathbf{y} - \hat{\mathbf{y}}) = 0
$$

Then for any real vector $\mathbf{a} = (a_1, a_2, \cdots, a_n)^T$,

$$
T = \frac{\sum_{i=1}^{n} a_i (\hat{y}_i - \mu_i)}{\hat{\sigma} \sqrt{\sum_{i=1}^{n} a_i^2}} = \frac{(\hat{\mathbf{y}} - \boldsymbol{\mu})^T \mathbf{a}}{\sqrt{\hat{\sigma}^2 \mathbf{a}^T \mathbf{a}}}
$$

is a draw from a *t*-distribution with $df = n - k$ Also,

$$
F = \frac{\left(\hat{\mathbf{y}} - \boldsymbol{\mu}\right)^{T} \left(\hat{\mathbf{y}} - \boldsymbol{\mu}\right) / k}{\hat{\sigma}^{2}}
$$

is a draw from an F-distribution with $df_1 = k$ and $df_2 = n - k^1$
¹Note: the textbook uses s^2 to denote the estimated varaince.

1.28

Course Information and Review

Review

Review

Notes

Example: 2 Sample t-Test

Let's assume that we have two independent samples, each with a sample size of $n = 10$, and we want to infer the mean difference $\mu_M - \mu_F$:

Set $\mathbf{a} = (\frac{1}{10}, \frac{1}{10}, \cdots, \frac{1}{10}, \frac{-1}{10}, \frac{-1}{10}, \cdots, \frac{1}{10})^T$ and let

$$
T = \frac{\hat{\mu}_F - \hat{\mu}_M - \left(\mu_M - \mu_F\right)}{\hat{\sigma}\sqrt{\frac{2}{10}}}
$$

• Reject H_0 : $(\mu_M - \mu_F) \le 0$ if the *p*-value < 0.05, where $T_{\text{obs}} = \frac{\hat{\mu}_m - \hat{\mu}_F}{\sqrt{2}}$ $\frac{\hat{a}_m - \hat{\mu}_F}{\hat{\sigma}\sqrt{\frac{2}{10}}}$, and

 p -value = $\mathbb{P}(t_{n-2} > T_{obs})$.

• A 95% confidence interval for
$$
(\mu - \mu_F)
$$
 is

$$
(\hat{\mu}_M - \hat{\mu}_F) \pm t_{0.975, df = n - 2} \hat{\sigma} \sqrt{\frac{2}{10}}
$$

Notes

Review of Main Concepts

- Population parameters are inferred from data using statistics as estimators.
- Statistics are random variables when the data is a random sample.
- The mean is the best MSE predictor. The mean vector \hat{y} can be estimated from a data vector, with variance estimated by $s^2 = \frac{(\mathbf{y}-\hat{\mathbf{y}})^T(\mathbf{y}-\hat{\mathbf{y}})}{(n-k)}$.
- \bullet The t and F -distributions arise from independent sampling from normal distributions with equal variance. The df of \hat{y} is k, and the df of the variance estimate determines the df of the t -distribution $(n - k)$.

Course Information and Review

1.30

Review

1.29

Standard Error for Normal Models

Let Y_1, Y_2, \dots, Y_n be independent with $Y_j \sim N(\mu_j, \sigma^2)$

$$
\begin{aligned} \mathbb{E}(\hat{\mathbf{y}}) &= \boldsymbol{\mu} = \left(\mu_1, \mu_2, \cdots, \mu_n\right)^T; \\ (\hat{\mathbf{y}} - \mu)^T (\mathbf{y} - \hat{\mathbf{y}}) &= 0; \\ \hat{\sigma}^2 &= \frac{(\mathbf{y} - \hat{\mathbf{y}})^T (\mathbf{y} - \hat{\mathbf{y}})}{n - k} \end{aligned}
$$

For $\hat{\theta} = \sum_{i=1}^{n} a_i \hat{y}_i$

$$
\sqrt{\text{Var}(\hat{\theta})} = \sqrt{\sigma^2 \mathbf{a}^T \mathbf{a}}
$$

The standard error of $\hat{\theta}$ is

 $se(\hat{\theta}) = \sqrt{\hat{\sigma}^2 \mathbf{a}^T \mathbf{a}}$

1.31

Notes

t**-Distribution Revisited**

Under the setup from the previous slide:

$$
\mathbb{E}\big(\hat{\theta}\big)=\theta=\sum_{i=1}^n a_i\mu_i.
$$

Then

$$
T=\frac{\hat{\theta}-\theta}{\mathrm{se}(\hat{\theta})}
$$

has a *t*-distribution with $df = n - k$

Notes

Two Sample t-Test Revisited

Take two independent random samples

$$
Y_1, Y_2, \dots, Y_n \sim N(\mu_1, \sigma^2), \quad X_1, X_2, \dots, X_m \sim N(\mu_2, \sigma^2)
$$

Estimate the means as

$$
\bar{Y} = \sum_{i=1}^{n} \frac{Y_i}{n}; \quad \bar{X} = \sum_{j=1}^{m} \frac{X_j}{m}
$$

Estimate the variance with

$$
s^2 = \frac{\sum_{i=1}^n (Y_i - \bar{Y})^2 + \sum_{j=1}^m (X_j - \bar{X})^2}{n + m - 2} = \frac{(n-1)s_1^2 + (m-1)s_2^2}{n + m - 2}
$$

By independent of the two samples

$$
Var(\bar{Y} - \bar{X}) = Var(\bar{Y}) + Var(\bar{X}) = \frac{\sigma^2}{n} + \frac{\sigma^2}{m}
$$

$$
se(\bar{Y} - \bar{X}) = s\sqrt{\frac{1}{n} + \frac{1}{m}}
$$

1.33

Review

1.32

Two Sample t**-Test**

From the previous slide, we have

$$
T = \frac{(\bar{Y} - \bar{X}) - (\mu_1 - \mu_2)}{s\sqrt{\frac{1}{n} + \frac{1}{m}}}
$$

has a *t*-distribution with $df = n + m - 2$

Review

Notes

Summary

In this lecture, we reviewed:

- Statistical Inference: Confidence Intervals and Hypothesis Testing
- The t-distribution, F-distribution, χ^2 distribution, and their applications
- Two-sample t-tests

In the next lecture, we will begin exploring Regression Analysis, starting with Simple Linear Regression

Information and Review

1.35

Review

Course

1.34

Notes