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10.3

Estimation of the ARMA Process Parameters

Suppose we choose an ARMA(p, q) model for a
zero-mean {ηt}

Need to estimate the p + q + 1 parameters:

AR component {ϕ1,⋯, ϕp}

MA component {θ1,⋯, θq}

Var(Zt) = σ
2

One strategy:

Do some preliminary estimation of the model
parameters (e.g., via Yule-Walker estimates)

Follow-up with maximum likelihood estimation with
Gaussian assumption

Notes

Notes

Notes
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10.4

The Yule-Walker Method

Suppose ηt is a causal AR(p) process

ηt − ϕ1ηt−1 −⋯ − ϕpηt−p = Zt

To estimate the parameters {ϕ1,⋯, ϕp}, we use a method
of moments estimation scheme:

Let h = 0,1,⋯, p. We multiply ηt−h to both sides

ηtηt−h − ϕ1ηt−1ηt−h −⋯ − ϕpηt−pηt−h = Ztηt−h

Taking expectations:

E(ηtηt−h)−ϕ1E(ηt−1ηt−h)−⋯−ϕpE(ηt−pηt−h) = E(Ztηt−h),

we get
γ(h) − ϕ1γ(h − 1) − ⋯ − ϕpγ(h − p) = E(Ztηt−h)
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10.5

The Yule-Walker Equations

When h = 0, E(Ztηt−h) = Cov(Zt, ηt) = σ
2 (Why?)

Therefore, we have

γ(0) −
p

∑
j=1

ϕjγ(j) = σ
2

When h > 0, Zt is uncorrelated with ηt−h (because the
assumption of causality), thus E(Ztηt−h) = 0 and we
have

γ(h) −
p

∑
j=1

ϕjγ(h − j) = 0, h = 1,2,⋯, p

The Yule-Walker estimates are the solution of these
equations when we replace γ(h) by γ̂(h)
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10.6

The Yule-Walker Equations in Matrix Form

Let ϕ̂ = (ϕ̂1,⋯, ϕ̂p)
T be an estimate for ϕ = (ϕ1,⋯, ϕp)

T

and let

Γ̂ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ̂(0) γ̂(1) ⋯ γ̂(p − 1)
γ̂(1) γ̂(0) ⋯ γ̂(p − 2)
⋮ ⋮ ⋱ ⋮

γ̂(p − 1) γ̂(p − 2) ⋯ γ̂(0)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then the Yule-Walker estimates of ϕ and σ2 are

ϕ̂ = Γ̂−1γ̂,

and
σ̂2
= γ̂(0) − ϕ̂T γ̂,

where γ̂ = (γ̂(1),⋯, γ̂(p))T

Notes

Notes

Notes
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10.7

Lake Huron Example in R
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10.8

Remarks on the Yule-Walker Method

For large sample size, Yule-Walker estimator have
(approximately) the same sampling distribution as
maximum likelihood estimator (MLE), but with small
sample size Yule-Walker estimator can be far less
efficient than the MLE

The Yule-Walker method is a poor procedure for
MA(q) and ARMA(p,q) processes with q > 0 (see
Cryer Chan 2008, p. 150-151)

We move on the more versatile and popular method
for estimating ARMA(p,q) parameters–maximum
likelihood estimation1

1See Least Squares Estimation in Chapter 7.2 of Cryer and
Chan (2008).
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10.9

Maximum Likelihood Estimation
The setup:

Model: X = (X1,X2,⋯,Xn) has joint probability
density function f(x;ω) where ω = (ω1, ω2,⋯, ωp) is
a vector of p parameters

Data: x = (x1, x2,⋯, xn)

The likelihood function is defined as the the
“likelihood” of the data, x, given the parameters, ω

Ln(ω) = f(x;ω)

The maximum likelihood estimate (MLE) is the value
of ω which maximizes the likelihood, Ln(ω), of the
data x:

ω̂ = argmax
ω

Ln(ω).

It is equivalent (and often easier) to maximize the log
likelihood,

ℓn(ω) = logLn(ω)

Notes

Notes

Notes
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10.10

The MLE for an i.i.d. Gaussian Process
Suppose {Xt} be a Gaussian i.i.d. process with mean µ
and variance σ2. We observe a time series
x = (x1,⋯, xn)

T .
The likelihood function is

Ln(µ,σ
2
) = f(x∣µ,σ2

)

=
n

∏
t=1

f(xt∣µ,σ)

=
n

∏
t=1
{

1
√
2πσ2

exp [−
(xt − µ)

2

2σ2
]}

= (2π)−n/2(σ2
)
−n/2 exp [−

∑
n
t=1(xt − µ)

2

2σ2
]

The log-likelihood function is

ℓn(µ,σ
2
) = logLn(µ,σ

2
)

= −
n

2
log(2π) −

n

2
log(σ2

) −
∑

n
t=1(xt − µ)

2

2σ2

⇒ µ̂MLE =
∑n

t=1 Xt

n = X̄, σ̂2
MLE =

∑n
t=1(Xt−X̄)2

n
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10.11

Likelihood for Stationary Gaussian Time Series Models
Suppose {Xt} be a mean zero stationary Gaussian time
series with ACVF γ(h). If γ(h) depends on p parameters,
ω = (ω1,⋯, ωp)

The likelihood of the data x = (x1,⋯, xn) given the
parameters ω is

Ln(ω) = (2π)
−n/2
∣Γ∣−1/2 exp(−

1

2
xTΓ−1x) ,

where Γ is the covariance matrix of
X = (X1,⋯,Xn)

T , ∣Γ∣ is the determinant of the
matrix Γ, and Γ−1 is the inverse of the matrix Γ

The log-likelihood is

ℓn(θ) = −
n

2
log(2π) −

1

2
log ∣Γ∣ −

1

2
xTΓ−1x

Typically need to solve it numerically
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10.12

Decomposing Joint Density into Conditional Densities
A joint distribution can be represented as the product of
conditionals and a marginal distribution

The simple version for n = 2 is:

f(x1, x2) = f(x2∣x1)f(x1)

Extending for general n we get the following
expression for the likelihood:

Ln(θ) = f(x;θ) = f(x1)
n

∏
t=2

f(xt∣xt−1,⋯, x1;θ),

and the log-likelihood is

ℓn(θ) = log f(x;θ) = log(f(x1))+
n

∑
t=2

log f(xt∣xt−1,⋯, x1;θ).

Notes

Notes

Notes
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10.13

AR(1) Log-likelihood
Let {η1, η2,⋯, ηn} be a realization of a zero-mean
stationary AR(1) Gaussian time series. Let θ = (ϕ,σ2)

ℓn(θ) = log(f(η1))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ℓn,1

+
n

∑
t=2

log f(ηt∣ηt−1,⋯, η1;θ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ℓn,2

.

Note that for t ≥ 2, f(ηt∣ηt−1,⋯, η1) = f(ηt∣ηt−1), where
[ηt∣ηt−1] ∼ N(ϕηt−1, σ2) ⇒ ℓn,2 =

−
(n − 1)

2
log 2π −

(n − 1)

2
logσ2

−
∑

n
t=2(ηt − ϕηt−1)

2

2σ2

Also, we know [η1] ∼ N (0, σ2

(1−ϕ2)) ⇒ ℓ1,n =

− log 2π

2
−
logσ2

2
+
log(1 − ϕ2)

2
−
(1 − ϕ2)η21

2σ2

⇒ ℓn(θ) = −
n

2
log 2π −

n

2
logσ2

−
∑

n
t=2(ηt − ϕηt−1)

2

2σ2

+
log(1 − ϕ2)

2
−
(1 − ϕ2)η21

2σ2
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10.14

AR(1) Log-likelihood Cont’d

ℓn(θ) = −
n

2
log 2π −

n

2
logσ2

+
log(1 − ϕ2)

2
−
S(ϕ)

2σ2
,

where S(ϕ) = ∑n
t=2(ηt − ϕηt−1)

2 + (1 − ϕ2)η21

For given value of ϕ, ℓn(ϕ,σ2) can be maximized
analytically with respect to σ2

σ̂2
=
S(ϕ̂)

n

Estimation of ϕ can be simplified by maximizing the
conditional sum-of-squares (∑n

t=2(ηt − ϕηt−1)
2)

Standard errors can be obtained by computing the
inverse of the Hessian matrix: Var(θ̂) =H(θ̂)−1,
where H(θ) =

∂2ℓn(θ)
∂θ∂θT
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10.15

arima in R with the Lake Huron Example

Notes

Notes

Notes
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10.16

Inference for the ARMA Parameters

Motivating example: What is an approximate 95% CI for
ϕ1 in an AR(1) model?

Let ϕ = (ϕ1,⋯, ϕp) and θ = (θ1,⋯, θq) denote the
ARMA parameters (excluding σ2), and let ϕ̂ and θ̂ be
the ML estimates of ϕ and θ. Then for “large” n,
(ϕ̂, θ̂) have approximately a joint normal distribution:

[
ϕ̂

θ̂
]
⋅
∼ N([

ϕ
θ
] ,

V (ϕ,θ)

n
)

V (ϕ,θ) is a known (p + q) × (p + q) matrix depending
on the ARMA parameters
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10.17

V (ϕ,θ) for AR Processes

For an AR(p) process

V (ϕ) = σ2Γ−1,

where Γ is the p × p covariance matrix of the series
(η1,⋯, ηp)

AR(1) process:

V (ϕ1) = 1 − ϕ
2
1

AR(2) process:

V (ϕ1, ϕ2) = [
1 − ϕ2

2 −ϕ1(1 + ϕ2)

−ϕ1(1 + ϕ2) 1 − ϕ2
2
]
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10.18

Other Examples of V (ϕ,θ)
MA(1) process:

V (θ1) = 1 − θ
2
1

MA(2) process:

V (θ1, θ2) = [
1 − θ22 θ1(1 − θ2)

θ1(1 − θ2) 1 − θ22
]

Casual and invertible ARMA(1,1) process

V (ϕ, θ) =
1 + ϕθ

(ϕ + θ)2
[
(1 − ϕ2)(1 + ϕθ) −(1 − ϕ2)(1 − θ2)
−(1 − ϕ2)(1 − θ2) 1 − θ22

]

More generally, for “small” n, the covariance matrix of
(ϕ̂, θ̂) can be approximated using the second
derivatives of the log-likelihood function, known as
the Hessian matrix

Notes

Notes

Notes
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10.19

MLE for Trend and Temporal Correlation in One Step

Fitted model:

Yt = 620.51 − 0.022Year + ηt,

where

ηt = 1.00ηt−1 − 0.29ηt−2 +Zt, Zt ∼ N(0, σ
2
= 0.462).
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10.20

What About Non-Gaussian Processes?

It is more challenging to express the joint distribution of
Xt for non-Gaussian processes. Instead, we often rely on
the Gaussian likelihood as an approximate likelihood

In practice:

Transform the data to make the series as close to
Gaussian as possible (e.g., using a log, square-root,
or Box-Cox transformation)

Then use the Gaussian likelihood to estimate
parameters, assuming the transformed series follows
a near-Gaussian structure

For many real-world applications, this approximation
works well and simplifies estimation. However,
residual diagnostics are needed to ensure the model
fits the data adequately
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10.21

Assessing Fit / Comparing Different Time Series Models

We can use diagnostic plots for the “residuals” of the
fitted time series, along with Box tests to assess
whether an i.i.d. process is reasonable

Use confidence intervals for the parameters.
Intervals that contain zero may indicate that we can
simplify the model

We can also use model selection criteria, such as
AIC, to compare between different models

Notes

Notes

Notes
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10.22

Diagnostics via the Time Series Residuals

Recall the innovations are given by

Ut =Xt − X̂t

Under a Gaussian model, {Ut ∶ t = 1,⋯, T} is an
independent set of RVs with

Ut ∼ N(0, νt−1)
d
= σN(0, rt−1).

Define the residuals {Rt} by

Rt =
Ut
√
rt−1
=
Xt − X̂t
√
rt−1

Under Gaussian model Rt
i.i.d
∼ N(0, σ2)
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10.23

ARMA Order Selection

We would prefer to use models that compromise
between a small residual error σ̂2 and a small
number of parameters (p + q + 1)

To choose the order (p and q) of ARMA model it
makes sense to penalize models with a large number
of parameters

Here we consider an information based criteria to
compare models
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10.24

Akaike Information Criterion (AIC)

The Akaike information criterion (AIC) is defined by

AIC = −2ℓn(ϕ̂, θ̂, σ̂
2
) + 2(p + q + 1)

We choose the values of p and q that minimizes the
AIC value

For AR(p) models, AIC tends to overestimate p. The
bias corrected version is

AICc = 2ℓn(ϕ̂, θ̂, σ̂
2
) +

2n(p + q + 1)

(n − 1) − (p + q + 1)

Notes

Notes

Notes
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10.25

Lake Huron Example: AIC and AICc
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10.26

Lake Huron Model Diagnostics
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