

Estimation of the ARMA Process Parameters

Suppose we choose an ARMA(p, q) model for a zero-mean $\{\eta_t\}$

- Need to estimate the p + q + 1 parameters:
 - AR component $\{\phi_1, \dots, \phi_p\}$
 - MA component $\{\theta_1, \dots, \theta_q\}$
 - $\operatorname{Var}(Z_t) = \sigma^2$
- One strategy:
 - Do some preliminary estimation of the model parameters (e.g., via Yule-Walker estimates)
 - Follow-up with maximum likelihood estimation with Gaussian assumption

Es	AA Models: stimation, nostics, and el Selection
S.	MATHEMATICAL AND STATISTICAL SCIENCES

Notes

The Yule-Walker Method

Suppose η_t is a causal AR(*p*) process

```
\eta_t - \phi_1 \eta_{t-1} - \dots - \phi_p \eta_{t-p} = Z_t
```

To estimate the parameters $\{\phi_1, \cdots, \phi_p\}$, we use a method of moments estimation scheme:

• Let $h = 0, 1, \dots, p$. We multiply η_{t-h} to both sides

 $\eta_t\eta_{t-h} - \phi_1\eta_{t-1}\eta_{t-h} - \dots - \phi_p\eta_{t-p}\eta_{t-h} = Z_t\eta_{t-h}$

• Taking expectations:

 $\mathbb{E}(\eta_t \eta_{t-h}) - \phi_1 \mathbb{E}(\eta_{t-1} \eta_{t-h}) - \dots - \phi_p \mathbb{E}(\eta_{t-p} \eta_{t-h}) = \mathbb{E}(Z_t \eta_{t-h}),$

we get $\boxed{\gamma(h) - \phi_1 \gamma(h-1) - \dots - \phi_p \gamma(h-p) = \mathbb{E}(Z_t \eta_{t-h})}$

Notes

The Yule-Walker Equations

• When h = 0, $\mathbb{E}(Z_t \eta_{t-h}) = \text{Cov}(Z_t, \eta_t) = \sigma^2$ (Why?) Therefore, we have

$$\gamma(0) - \sum_{j=1}^{p} \phi_j \gamma(j) = \sigma^2$$

• When h > 0, Z_t is uncorrelated with η_{t-h} (because the assumption of causality), thus $\mathbb{E}(Z_t\eta_{t-h}) = 0$ and we have

$$\gamma(h) - \sum_{j=1}^p \phi_j \gamma(h-j) = 0, \quad h = 1, 2, \cdots, p$$

• The Yule-Walker estimates are the solution of these equations when we replace $\gamma(h)$ by $\hat{\gamma}(h)$

Notes

The Yule-Walker Equations in Matrix Form

Let $\hat{\phi}$ = $(\hat{\phi}_1, \cdots, \hat{\phi}_p)^T$ be an estimate for ϕ = $(\phi_1, \cdots, \phi_p)^T$ and let

$$\hat{\boldsymbol{\Gamma}} = \begin{bmatrix} \hat{\gamma}(0) & \hat{\gamma}(1) & \cdots & \hat{\gamma}(p-1) \\ \hat{\gamma}(1) & \hat{\gamma}(0) & \cdots & \hat{\gamma}(p-2) \\ \vdots & \vdots & \ddots & \vdots \\ \hat{\gamma}(p-1) & \hat{\gamma}(p-2) & \cdots & \hat{\gamma}(0) \end{bmatrix}.$$

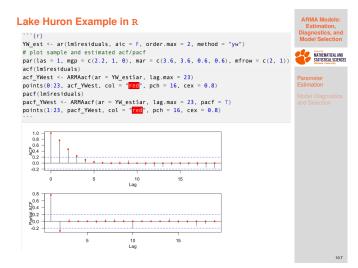
Then the Yule-Walker estimates of ϕ and σ^2 are

$$\hat{\phi}$$
 = $\hat{\Gamma}^{-1}\hat{\gamma}$,

and

$$\hat{\sigma}^2 = \hat{\gamma}(0) - \hat{\boldsymbol{\phi}}^T \hat{\boldsymbol{\gamma}},$$

where $\hat{\boldsymbol{\gamma}} = (\hat{\gamma}(1), \cdots, \hat{\gamma}(p))^T$



Notes

Remarks on the Yule-Walker Method

- For large sample size, Yule-Walker estimator have (approximately) the same sampling distribution as maximum likelihood estimator (MLE), but with small sample size Yule-Walker estimator can be far less efficient than the MLE
- Model Selection

• The Yule-Walker method is a poor procedure for MA(q) and ARMA(p,q) processes with q > 0 (see Cryer Chan 2008, p. 150-151)

 We move on the more versatile and popular method for estimating ARMA(p,q) parameters-maximum likelihood estimation¹

¹See Least Squares Estimation in Chapter 7.2 of Cryer and Chan (2008).

Notes

Maximum Likelihood Estimation

- The setup:
 - Model: $X = (X_1, X_2, \cdots, X_n)$ has joint probability density function $f(x; \omega)$ where $\omega = (\omega_1, \omega_2, \cdots, \omega_p)$ is a vector of p parameters
 - Data: $\boldsymbol{x} = (x_1, x_2, \cdots, x_n)$
- The likelihood function is defined as the the "likelihood" of the data, x, given the parameters, ω

$$L_n(oldsymbol{\omega})$$
 = $f(oldsymbol{x};oldsymbol{\omega})$

• The maximum likelihood estimate (MLE) is the value of ω which maximizes the likelihood, $L_n(\omega)$, of the data x:

$$\hat{\boldsymbol{\omega}} = \operatorname*{argmax}_{\boldsymbol{\omega}} L_n(\boldsymbol{\omega}).$$

It is equivalent (and often easier) to maximize the log likelihood,

$$\ell_n({oldsymbol \omega})$$
 = log $L_n({oldsymbol \omega})$

ARMA Models: Estimation,
Diagnostics, and
Model Selection
MATHEMATICAL AND STATISTICAL SCIENC
Parameter

The MLE for an i.i.d. Gaussian Process

Suppose $\{X_t\}$ be a Gaussian i.i.d. process with mean μ and variance σ^2 . We observe a time series $\boldsymbol{x} = (x_1, \dots, x_n)^T$.

• The likelihood function is

$$L_n(\mu, \sigma^2) = f(x|\mu, \sigma^2)$$

$$= \prod_{t=1}^n f(x_t|\mu, \sigma)$$

$$= \prod_{t=1}^n \left\{ \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x_t - \mu)^2}{2\sigma^2}\right] \right\}$$

$$= (2\pi)^{-n/2} (\sigma^2)^{-n/2} \exp\left[-\frac{\sum_{t=1}^n (x_t - \mu)^2}{2\sigma^2}\right]$$
• The log-likelihood function is

$$\ell_n(\mu, \sigma^2) = \log L_n(\mu, \sigma^2) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{\sum_{t=1}^n (x_t - \mu)^2}{2\sigma^2} \Rightarrow \hat{\mu}_{\text{MLE}} = \frac{\sum_{t=1}^n X_t}{n} = \bar{X}, \quad \hat{\sigma}_{\text{MLE}}^2 = \frac{\sum_{t=1}^n (X_t - \bar{X})^2}{n}$$

Likelihood for Stationary Gaussian Time Series Models Suppose $\{X_t\}$ be a mean zero stationary Gaussian time series with ACVF $\gamma(h)$. If $\gamma(h)$ depends on p parameters, $\boldsymbol{\omega} = (\omega_1, \cdots, \omega_p)$

• The likelihood of the data $\boldsymbol{x} = (x_1, \cdots, x_n)$ given the parameters ω is

$$L_n(\boldsymbol{\omega}) = (2\pi)^{-n/2} |\boldsymbol{\Gamma}|^{-1/2} \exp\left(-\frac{1}{2} \boldsymbol{x}^T \boldsymbol{\Gamma}^{-1} \boldsymbol{x}\right),$$

where $\boldsymbol{\Gamma}$ is the covariance matrix of $X = (X_1, \dots, X_n)^T$, $|\Gamma|$ is the determinant of the matrix Γ , and Γ^{-1} is the inverse of the matrix Γ

• The log-likelihood is

$$\ell_n(\boldsymbol{\theta}) = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\log|\boldsymbol{\Gamma}| - \frac{1}{2}\boldsymbol{x}^T\boldsymbol{\Gamma}^{-1}\boldsymbol{x}$$

Typically need to solve it numerically

Decomposing Joint Density into Conditional Densities A joint distribution can be represented as the product of

- conditionals and a marginal distribution
 - The simple version for n = 2 is:

$$f(x_1,x_2) = f(x_2|x_1)f(x_1)$$

 $\bullet\,$ Extending for general n we get the following expression for the likelihood:

$$L_n(\boldsymbol{\theta}) = f(\boldsymbol{x}; \boldsymbol{\theta}) = f(x_1) \prod_{t=2}^n f(x_t | x_{t-1}, \cdots, x_1; \boldsymbol{\theta}),$$

and the log-likelihood is

$$\ell_n(\boldsymbol{\theta}) = \log f(\boldsymbol{x}; \boldsymbol{\theta}) = \log(f(x_1)) + \sum_{t=2}^n \log f(x_t | x_{t-1}, \cdots, x_1; \boldsymbol{\theta}).$$

Notes

AR(1) Log-likelihood

Let $\{\eta_1, \eta_2, \cdots, \eta_n\}$ be a realization of a zero-mean stationary AR(1) Gaussian time series. Let $\theta = (\phi, \sigma^2)$

$$\ell_n(\boldsymbol{\theta}) = \underbrace{\log(f(\eta_1))}_{\ell_{n,1}} + \underbrace{\sum_{t=2}^n \log f(\eta_t | \eta_{t-1}, \dots, \eta_1; \boldsymbol{\theta})}_{\ell_{n,2}}.$$

Note that for
$$t \ge 2$$
, $f(\eta_t | \eta_{t-1}, \dots, \eta_1) = f(\eta_t | \eta_{t-1})$, where
 $[\eta_t | \eta_{t-1}] \sim N(\phi \eta_{t-1}, \sigma^2) \Rightarrow \ell_{n,2} =$
 $-\frac{(n-1)}{2} \log 2\pi - \frac{(n-1)}{2} \log \sigma^2 - \frac{\sum_{t=2}^n (\eta_t - \phi \eta_{t-1})^2}{2\sigma^2}$
Also, we know $[\eta_1] \sim N\left(0, \frac{\sigma^2}{(1-\phi^2)}\right) \Rightarrow \ell_{1,n} =$
 $\frac{-\log 2\pi}{2} - \frac{\log \sigma^2}{2} + \frac{\log(1-\phi^2)}{2} - \frac{(1-\phi^2)\eta_1^2}{2\sigma^2}$
 $\Rightarrow \ell_n(\theta) = -\frac{n}{2} \log 2\pi - \frac{n}{2} \log \sigma^2 - \frac{\sum_{t=2}^n (\eta_t - \phi \eta_{t-1})^2}{2\sigma^2}$
 $+ \frac{\log(1-\phi^2)}{2} - \frac{(1-\phi^2)\eta_1^2}{2\sigma^2}$

ARMA Models: Estimation, Diagnostics, and Model Selection

Notes

AR(1) Log-likelihood Cont'd

$$\ell_n(\boldsymbol{\theta}) = -\frac{n}{2}\log 2\pi - \frac{n}{2}\log \sigma^2 + \frac{\log(1-\phi^2)}{2} - \frac{S(\phi)}{2\sigma^2},$$

where $S(\phi) = \sum_{t=2}^{n} (\eta_t - \phi \eta_{t-1})^2 + (1 - \phi^2) \eta_1^2$

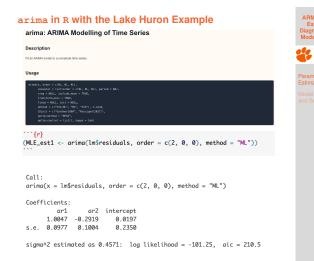
• For given value of $\phi, \ell_n(\phi,\sigma^2)$ can be maximized analytically with respect to σ^2

$$\hat{\sigma}^2 = \frac{S(\hat{\phi})}{n}$$

- Estimation of φ can be simplified by maximizing the conditional sum-of-squares (Σⁿ_{t=2}(η_t − φη_{t-1})²)
- Standard errors can be obtained by computing the inverse of the Hessian matrix: $Var(\hat{\theta}) = H(\hat{\theta})^{-1}$, where $H(\theta) = \frac{\partial^2 \ell_n(\theta)}{\partial \theta \partial \theta^T}$

2	MATHEMATICAL AND STATISTICAL SCIENCES	
aram stima	neter ation	

Notes



Inference for the ARMA Parameters

Motivating example: What is an approximate 95% CI for ϕ_1 in an AR(1) model?

• Let $\phi = (\phi_1, \dots, \phi_p)$ and $\theta = (\theta_1, \dots, \theta_q)$ denote the ARMA parameters (excluding σ^2), and let $\hat{\phi}$ and $\hat{\theta}$ be the ML estimates of ϕ and θ . Then for "large" n, $(\hat{\phi}, \hat{\theta})$ have approximately a joint normal distribution:

$$\begin{bmatrix} \hat{\boldsymbol{\phi}} \\ \hat{\boldsymbol{\theta}} \end{bmatrix} \stackrel{\sim}{\sim} \operatorname{N}\left(\begin{bmatrix} \boldsymbol{\phi} \\ \boldsymbol{\theta} \end{bmatrix}, \frac{V(\boldsymbol{\phi}, \boldsymbol{\theta})}{n} \right)$$

• $V(\phi, \theta)$ is a known $(p+q) \times (p+q)$ matrix depending on the ARMA parameters

Diag	IA Models: timation, nostics, an el Selection
*	NATHENATICAL AN STATISTICAL SCIEN

Notes



$V(\phi, \theta)$ for AR Processes

• For an AR(p) process

 $V(\boldsymbol{\phi}) = \sigma^2 \Gamma^{-1},$

where Γ is the $p \times p$ covariance matrix of the series (η_1, \cdots, η_p)

• AR(1) process:

$$V(\phi_1) = 1 - \phi_1^2$$

AR(2) process:

$$V(\phi_1, \phi_2) = \begin{bmatrix} 1 - \phi_2^2 & -\phi_1(1 + \phi_2) \\ -\phi_1(1 + \phi_2) & 1 - \phi_2^2 \end{bmatrix}$$

Notes

Other Examples of $V(\phi, \theta)$

• MA(1) process:

$$V(\theta_1) = 1 - \theta_1^2$$

MA(2) process:

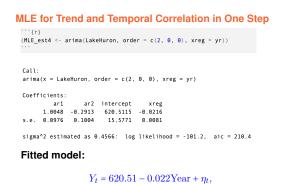
$$V(\theta_1, \theta_2) = \begin{bmatrix} 1 - \theta_2^2 & \theta_1(1 - \theta_2) \\ \theta_1(1 - \theta_2) & 1 - \theta_2^2 \end{bmatrix}$$

Casual and invertible ARMA(1,1) process

$$V(\phi, \theta) = \frac{1 + \phi\theta}{(\phi + \theta)^2} \begin{bmatrix} (1 - \phi^2)(1 + \phi\theta) & -(1 - \phi^2)(1 - \theta^2) \\ -(1 - \phi^2)(1 - \theta^2) & 1 - \theta_2^2 \end{bmatrix}$$

• More generally, for "small" *n*, the covariance matrix of $(\hat{\phi}, \hat{\theta})$ can be approximated using the second derivatives of the log-likelihood function, known as the Hessian matrix

ARMA Models Estimation, Diagnostics, a Model Selection	n
MATHEMATICAL SCI INATHEMATICAL SCI	



where

 $\eta_t = 1.00\eta_{t-1} - 0.29\eta_{t-2} + Z_t, \quad Z_t \sim N(0, \sigma^2 = 0.46^2).$

Notes

What About Non-Gaussian Processes?

It is more challenging to express the joint distribution of X_t for non-Gaussian processes. Instead, we often rely on the Gaussian likelihood as an approximate likelihood

- In practice:
 - Transform the data to make the series as close to Gaussian as possible (e.g., using a log, square-root, or Box-Cox transformation)
 - Then use the Gaussian likelihood to estimate parameters, assuming the transformed series follows a near-Gaussian structure
 - For many real-world applications, this approximation works well and simplifies estimation. However, residual diagnostics are needed to ensure the model fits the data adequately

ATTRENATICAL AND STATISTICAL SCIENCES

Assessing Fit / Comparing Different Time Series Models

- We can use diagnostic plots for the "residuals" of the fitted time series, along with Box tests to assess whether an i.i.d. process is reasonable
 - > Box.test(YW_est\$resid[-(1:2)], type = "Ljung-Box")
 - Box-Ljung test

data: YW_est\$resid[-(1:2)]
X-squared = 0.56352, df = 1, p-value = 0.4528

- Use confidence intervals for the parameters. Intervals that contain zero may indicate that we can simplify the model
- We can also use model selection criteria, such as AIC, to compare between different models

Notes

Diagnostics via the Time Series Residuals

• Recall the innovations are given by

$$U_t = X_t - \hat{X}_t$$

• Under a Gaussian model, $\{U_t : t = 1, \dots, T\}$ is an independent set of RVs with

$$U_t \sim \mathcal{N}(0, \nu_{t-1}) \stackrel{a}{=} \sigma \mathcal{N}(0, r_{t-1}).$$

• Define the residuals $\{R_t\}$ by

$$R_{t} = \frac{U_{t}}{\sqrt{r_{t-1}}} = \frac{X_{t} - \hat{X}_{t}}{\sqrt{r_{t-1}}}$$

Under Gaussian model $R_t \stackrel{i.i.d}{\sim} N(0, \sigma^2)$

Notes

ARMA Order Selection

- We would prefer to use models that compromise between a small residual error $\hat{\sigma}^2$ and a small number of parameters (p+q+1)
- To choose the order (p and q) of ARMA model it makes sense to penalize models with a large number of parameters
- Here we consider an information based criteria to compare models

;	MATHEMATICAL AND STATISTICAL SCIENCES

Akaike Information Criterion (AIC)

• The Akaike information criterion (AIC) is defined by

AIC =
$$-2\ell_n(\hat{\phi}, \hat{\theta}, \hat{\sigma}^2) + 2(p+q+1)$$

- We choose the values of p and q that minimizes the AIC value
- For AR(p) models, AIC tends to overestimate p. The bias corrected version is

AICc =
$$2\ell_n(\hat{\boldsymbol{\phi}}, \hat{\boldsymbol{\theta}}, \hat{\sigma}^2) + \frac{2n(p+q+1)}{(n-1)-(p+q+1)}$$

Notes

Lake Huron Example: AIC and AICc m1 <- arima(LakeHuron, order = c(1, 0, 0), xreg = yr) m2 <- arima(LakeHuron, order = c(1, 0, 1), xreg = yr) 💕 international Assemb m3 <- arima(LakeHuron, order = c(2, 0, 0), xreg = yr) m4 <- arima(LakeHuron, order = c(2, 0, 1), xreg = yr) AIC(m1); AIC(m2); AIC(m3); AIC(m4) Model Diagno and Selection library(MuMIn) AICc(m1); AICc(m2); AICc(m3); AICc(m4) [1] 218.4501 [1] 212.3954 [1] 212.3965 [1] 214.0638 [1] 218.8803 [1] 213.0476 [1] 213.0487

Lake Huron Model Diagnostics ₹-0.8 -13 1900 1920 1940 0.2 0.1 -0.1 -0.2 10 lag (year) 5 10 15 15 lag (> Box.test(resids, lag = 10, type = "Ljung-Box") Box-Ljung test data: resids X-squared = 3.7882, df = 10, p-value = 0.9564

[1] 214.9868

Diagnostics, and Model Selection

stimation lodel Diagnostics nd Selection

Notes

