Lecture 10
ARMA Models: Estimation,

Diagnostics, and Model Selection

Reading: Bowerman, O’Connell, and Koehler (2005):
Capter 10.1-10.2; Cryer and Chen (2008): Chapter

7.3-7.5; Chapter 8.1

MATH 4070: Regression and Time-Series Analysis

Whitney Huang
Clemson University

Agenda

o Parameter Estimation

o Model Diagnostics and Selection

Estimation of the ARMA Process Parameters

Suppose we choose an ARMA(p, ¢) model for a
zero-mean {n; }

o Need to estimate the p + ¢ + 1 parameters:
o AR component {¢y,--, ¢}
o MA component {6;,---,0,}

o Var(Z,) = o?

@ One strategy:

o Do some preliminary estimation of the model

parameters (e.g., via Yule-Walker estimates)

o Follow-up with maximum likelihood estimation with

Gaussian assumption
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The Yule-Walker Method

Suppose 7, is a causal AR(p) process

M= G111 = — PpNt—p = Zt

To estimate the parameters {¢1,---, ¢, }, we use a method

of moments estimation scheme:

o Leth=0,1,---,p. We multiply n._ to both sides

MNi-h = P1M=1M—h = = PpMh—pTi—h = ZtNi-h

o Taking expectations:

E(mni-n) D1 E(e—1m—n) == OpE(M—ph—n) = E(Zsmy—p),

we get
(1) = 1y (h=1) =~ = $1(h - p) = E(Zms-n)

The Yule-Walker Equations

@ When h =0, E(Zin;_s) = Cov(Zs, ;) = % (Why?)
Therefore, we have

wm—imwﬁ=&

@ When h > 0, Z; is uncorrelated with n,_;, (because the
assumption of causality), thus E(Z;n;-) = 0 and we

have

P
Y(h) = Y éir(h=5) =0, h=1,2,p
j=1

@ The Yule-Walker estimates are the solution of these

equations when we replace v(h) by 5(h)

The Yule-Walker Equations in Matrix Form

Let & = (1, ¢,)" be an estimate for ¢ = (¢1, -+, )7
and let

4(0) A(1) Y(p-1)
Fo| A A0 A2
-1 Ap-2) - A0
Then the Yule-Walker estimates of ¢ and o2 are
¢=T"5,

and N
5*=4(0) - "%
where 4 = ((1),--,9(p))"
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Lake Huron Example in R

vy
YW_est <- ar(lm$residuals, aic = F, order.max = 2, method = "yw")
# plot sample and estimated acf/pacf

ols
par(las = 1, mgp = c(2.2, 1, @), mar = c(3.6, 3.6, 0.6, 0.6), mfrow = c(2, 1)) " STATISTICAL SCIENCES

acf(Ilm$residuals)

acf_YWest <- ARMAacf(ar = YW_est$ar, lag.max = 23)
points(0:23, acf_YWest, col = "[@", pch = 16, cex = 0.8)
pacf (Im$residuals)

pacf_YWest <- ARMAacf(ar = YW_estSar, lag.max = 23, pacf = T)
points(1:23, pacf_YWest, col = "[{M", pch = 16, cex = 0.8)

Remarks on the Yule-Walker Method

@ For large sample size, Yule-Walker estimator have
(approximately) the same sampling distribution as
maximum likelihood estimator (MLE), but with small
sample size Yule-Walker estimator can be far less
efficient than the MLE

@ The Yule-Walker method is a poor procedure for
MA(q) and ARMA(p,q) processes with ¢ > 0 (see
Cryer Chan 2008, p. 150-151)

@ We move on the more versatile and popular method
for estimating ARMA(p,q) parameters—maximum
likelihood estimation’

"See Least Squares Estimation in Chapter 7.2 of Cryer and
Chan (2008).

Maximum Likelihood Estimation
@ The setup:
o Model: X = (X1, X»,-, X,,) has joint probability
density function f(x;w) where w = (wy, w2, -+, wp) IS
a vector of p parameters

o Data: @ = (z1,22,,2p)

@ The likelihood function is defined as the the
“likelihood” of the data, =, given the parameters, w

Ln(w) = f(z;w)

@ The maximum likelihood estimate (MLE) is the value
of w which maximizes the likelihood, L, (w), of the
data x:

@ = argmax Ly (w).
w

It is equivalent (and often easier) to maximize the log
likelihood,
n(w) =log Ln(w)
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The MLE for an i.i.d. Gaussian Process

Suppose {X;} be a Gaussian i.i.d. process with mean
and variance 2. We observe a time series
@ = (21, 20)7.

@ The likelihood function is

Ln(#vgz) = f(zlp, ‘72)

-1 f(arls )
t=1

~ n . _(ztiu)Z:I}
ﬂ{m P T 502
" _ 2
- (2m) P (0*) P exp [%]

@ The log-likelihood function is
gn(ﬂv 02) =log Ln('ufv 02)

- "o noo ooy T (ee-p)®
= —glog(Zﬂ') - glog(o ) - ==

~ XXt v ~2 X (X-X)?
= jMLE = =5 =X, Oy = =

Likelihood for Stationary Gaussian Time Series Models
Suppose {X;} be a mean zero stationary Gaussian time
series with ACVF ~(h). If v(h) depends on p parameters,
w = (Wi, wp)

o The likelihood of the data « = (z1, -, 2, ) given the
parameters w is

1
Lo(w) = (20) ™20 2 exp (—?cTr*lz) :
where T is the covariance matrix of

X = (X1, X,)7, T is the determinant of the
matrix ', and I'"! is the inverse of the matrix T"

@ The log-likelihood is
n 1 1
(0) = —=log(27) - =log|T| - =2’ T7!
£(8) = =3 log(2m) - S log || - 52" T "=

Typically need to solve it numerically

Decomposing Joint Density into Conditional Densities

A joint distribution can be represented as the product of
conditionals and a marginal distribution

@ The simple version for n = 2 is:

f(@1,22) = f(22lz1) f(21)

o Extending for general n we get the following
expression for the likelihood:

L.(8) = f(x:0) = f(a1) H @il y, - 21:0),

and the log-likelihood is

0,(0) = log £ (2:0) = log(f (11))+ 3" log f (aeltr 1, 213 0).
t=2
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AR(1) Log-likelihood ARMA Models:

Estimation,

Let {n1,m2,--,m, } be a realization of a zero-mean e Notes
stationary AR(1) Gaussian time series. Let 8 = (¢,0?) O .
@5 wtemaTicAL D
n " STATISTICAL SCIENCES
(2(8) = log(f(m)) + 3" log f(lm-1, 13 8) . o
— 3 o
o ln2
Note that for t > 2, f(milni-1,+m) = f(me|m-1), where
[elne-1] ~ N(@1e-1,0%) = L2 =
-1 -1 P o(ne = omi-1)?
(n )logQTr— (n-1) log o - Yieo (e — dme-1)
2 2 202
Also, we know [7;] ~ N(O, ﬁ) =l =
—log2r logo® log(1-¢%) (1-¢*)nt
2 2 2 202
n n Zn:r - ¢ -1 2
= 0p(0)=- 510g27r— gloga2 - %
Jlog(1-¢%) _ (1-¢*)n?
2 202
AR(1) Log-likelihood Contd AT
Diagnostics, and Notes
Model Selection
@9 o
n n lOg(l - ¢2) S(gb) " STATISTICAL SCENCES
£,(0) = ——log2m - = logo® + ——"2 —
”( ) 2 e 2 e 2 20’ Parameter
Estimation
where S(¢) = X1 (m — dme-1)? + (1= 6%
@ For given value of ¢, £,(¢, ) can be maximized
analytically with respect to ¢
903
52 = (¢)
n
@ Estimation of ¢ can be simplified by maximizing the
conditional sum-of-squares (X7, (7; - ¢1:-1)%)
o Standard errors can be obtained by computing the
inverse of the Hessian matrix: Var(8) = H(8)™,
9200 (8
where H(6) = 2 /1(0)
arima in R with the Lake Huron Example SR
arima: ARIMA Modelling of Time Series e Notes
Description ‘ i‘ﬂIN[MAﬂBALlND
Fit an ARIMA model to a univariate time series. .‘s S\YN\SI:I!J\B[}E\ENZE
Usage Parameter
Estimation

S
(MLE_estl <- arima(lm$residuals, order = c(2, @, @), method = "ML"))

Call:

arima(x = Im$residuals, order = c(2, @, @), method = "ML")

Coefficients:

arl ar2 intercept
1.0047 -0.2919 0.0197
s.e. 0.0977 0.1004 0.2350

sigmaA2 estimated as ©.4571: log likelihood = -101.25, aic = 210.5

1015



Inference for the ARMA Parameters

Motivating example: What is an approximate 95% Cl for
¢1 in an AR(1) model?

o Let¢p=(¢1,-,0p) and 6 = (61,--,6,) denote the
ARMA parameters (excluding ¢2), and let ¢ and 8 be
the ML estimates of ¢ and 6. Then for “large” n,

(¢, 6) have approximately a joint normal distribution:

(6 22)

o V(¢,0)is aknown (p+q) x (p+q) matrix depending
on the ARMA parameters

V(¢,0) for AR Processes
o For an AR(p) process
V(¢)=0o"T",

where T is the p x p covariance matrix of the series
(m, = 7mp)

@ AR(1) process:

V(g1)=1-6;
@ AR(2) process:
[ 1= —hi(1+0n)
V@)= g 1vgs)  1-03
Other Examples of V (¢, 0)
@ MA(1) process:
V(b)) =1-6}
@ MA(2) process:
[ 1-62 e(1-00)
V(91702) = [01(1*32) 179%

@ Casual and invertible ARMA(1,1) process

1+¢0 [ (1-¢2)(1+¢0)
(p+0)2[-(1-¢»(1-6%)

V(@,ﬁ) = 1_0%

@ More generally, for “small” n, the covariance matrix of

(¢,6) can be approximated using the second
derivatives of the log-likelihood function, known as
the Hessian matrix

-(1-¢?)(1-6%)
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MLE for Trend and Temporal Correlation in One Step

T{r}

(MLE_est4 <- arima(LakeHuron, order = c(2, @, @), xreg = yr))

Call:
arima(x = LakeHuron, order = c(2, @, 0),
Coefficients:

arl ar2 intercept xreg

1.0048 -0.2913 620.5115 -0.0216
s.e. 0.0976 ©0.1004 15.5771 0.0081

sigma”2 estimated as ©.4566: 1log likelihood = -101.2, aic = 210.4

Fitted model:

xreg = yr)

Y; = 620.51 - 0.022Year + 1,

where

1y = 1.00m—1 — 0.29m_2 + Z3,

Z; ~N(0,02 = 0.46%).

What About Non-Gaussian Processes?

It is more challenging to express the joint distribution of
X, for non-Gaussian processes. Instead, we often rely on
the Gaussian likelihood as an approximate likelihood

@ In practice:

o Transform the data to make the series as close to
Gaussian as possible (e.g., using a log, square-root,

or Box-Cox transformation)

@ Then use the Gaussian likelihood to estimate
parameters, assuming the transformed series follows

a near-Gaussian structure

o For many real-world applications, this approximation
works well and simplifies estimation. However,
residual diagnostics are needed to ensure the model

fits the data adequately

Assessing Fit / Comparing Different Time Series Models

@ We can use diagnostic plots for the “residuals” of the
fitted time series, along with Box tests to assess

whether an i.i.d. process is reasonable

> Box.test(YW_est$resid[-(1:2)],

Box-Ljung test

data: YW_est$resid[-(1:2)]

type = "Ljung-Box")

X-squared = 0.56352, df = 1, p-value = 0.4528

@ Use confidence intervals for the parameters.
Intervals that contain zero may indicate that we can

simplify the model

@ We can also use model selection criteria, such as

AIC, to compare between different models
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ARMA Models:

Diagnostics via the Time Series Residuals ikl s
Diagnostics, and Notes

Model Selection

@ Recall the innovations are given by ol |
MATHEMATICAL AND

@9 ST e
U= X - X,

@ Under a Gaussian model, {U;:¢t=1,---,T} is an

independent set of RVs with

Ut ~ N(O7 Vt—l) g O’N(O,’l’t_l).

o Define the residuals {R;} by

U Xi-X,

R = =
¢ V-1 VTt-1

Under Gaussian model R, =7 N(0,0?)

1022
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@ We would prefer to use models that compromise
between a small residual error 5% and a small

number of parameters (p+q+1)

@ To choose the order (p and ¢) of ARMA model it
makes sense to penalize models with a large number

of parameters

@ Here we consider an information based criteria to
compare models

1023
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@ The Akaike information criterion (AIC) is defined by QO e

AIC = -20,($,0,6%) +2(p+q+1)

@ We choose the values of p and ¢ that minimizes the

AIC value

@ For AR(p) models, AIC tends to overestimate p. The
bias corrected version is

AICe = 2, (6,6, 62) + —2np+a+1)

(n-1)-(p+q+1)
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Lake Huron Example: AIC and AlCc ATIA Models:

Do Notes
ml <- arima(LakeHuron, order = c(1, 0, 0), xreg = yr) oo selecton

m2 <- arima(LakeHuron, order = c(1, 0, 1), xreg = yr) .“siﬂmmmmmno

S‘TN\SI‘I‘I‘JBQD\ENEE
m3 <- arima(LakeHuron, order = c(2, 0, 0), xreg = yr)
m4 <- arima(LakeHuron, order = c(2, 0, 1), xreg yr)
AIC(ml); AIC(m2); AIC(m3); AIC(m4)

library (MuMIn)

AICc(ml); AICc(m2); AICc(m3); AICc(m4)

[1] 218.4501

[1] 212.3954
[1] 212.3965

[1] 214.0638
[1] 218.8803

[1] 213.0476
[1] 213.0487
[1] 214.9868

. . ARMA Models:
Lake Huron Model Diagnostics ks
Diagnostics, and Notes

15 154 Model Selection
g1 20 @9 o
é 054 Zos " STATISTICAL SCIENCES
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& &

lag (year) lag (year)

> Box.test(resids, lag = 10, type = "Ljung-Box")

Box-Ljung test

data: resids
X-squared = 3.7882, df = 16, p-value = 0.9564

1026
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