Lecture 11

ARMA Models: Prediction and

Forecasting

Reading: Bowerman, O’Connell, and Koehler (2005):
Capter 10.3; Cryer and Chen (2008): Chapter 9.1, 9.3,

9.4

MATH 4070: Regression and Time-Series Analysis
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Forecasting Stationary Time Series

Whitney Huang
Clemson University

Let {X;} be a stationary process with mean n and ACVF

~(-). Based on the observed data,

X, = (X1, X, -, Xn)", we want to forecast X, for

some h, a positive integer

@ Question: What is the best way to do so?
= Need to decide on what “best” means

@ A commonly used metric for describing forecast
performance is the mean squared prediction error

(MSPE):

MSPE = E[(Xph - mn(X0))?] -
= the best predictor (in terms of MSPE) is

mn(Xn) =E [Xn+h‘Xn] )

the conditional expectation of X,,,; given X,
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Linear Predictor
Calculating E [ X,,.,|X,,] can be difficult in general
@ We will restrict to a linear combination of
X1, Xo,-+, X, and a constant = linear predictor:

Pan+h =cCo+ (,’1Xn + CQXn,,l + CnXl

n
=cCp+ Z CanJrl—j

=1

@ We select the coefficients that minimize the
h-step-ahead mean squared prediction error:

2
n
E ([Xn+h - PanJrh]z) =E (Xn+h —Co— Z Can+1—j)
J=1

@ The best linear predictor is the best predictor if { X;}
is Gaussian

How to Determine these Coefficients {¢;}?

The steps that we are about to follow to calculate the ¢;
values are the same as you would use for calculating
ordinary least squares estimates

@ Take the derivative of the MSPE with respect to each
coefficient ¢;

© Set each derivative equal to zero

© Solve with respect to the coefficients

Forecasting Stationary Processes |

For simplicity, let's assume . = 0 (we can always achieve
that by subtracting off 1) so that we don’t need the
constant term. We have

P7LXn,+h, = Can + CZXn—l +oee C1LX1~

We want the MSPE
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E [(X7z+h - PrLXn+h)2] =E [(Xn+h —aXp-caXp1 - - CnXl)z]

as small as possible.
From now on let’s definite
E [(XTL+h —aXy - X1 - - Xy )2] =S(c1,5en)

We are going to take derivative of the S(cy, -, ¢,,) with
respect to each coefficient ¢;




Forecasting Stationary Processes Il

S is a quadratic function of ¢y, ca, -+, ¢, SO @any minimizing

set of ¢;'s must satisfy these n equations:

9S(c1,ycn)

=0, j=1,-,n.
dcj J s n
Recall
S(Clv "'7cn) =E [(XTL+IL -1 Xp—caXpog = = C7LX1)2:|1 we
have

95(eryen) —-2E [(th -3 Can—i+1) Xn—j+1:| =0

8(:]'

i=1

n
= Cov(Xpin = Y. iXnoiv1, Xnjs1) =0, j=1,-n

i=1

= Prediction error is uncorrelated with all RVs used in

corresponding predictor

Forecasting Stationary Processes Il

Orthogonality principle:

Cov(Xnsh = . ¢iXn-iv1, Xn_je1) =0, j=1,--n.
i1
We have

COV(XVH}M X‘IL—]+1) - Z CiCOV(X'rL—i+1- XTL—j+l) =0
i=1

i=

We obtain {¢;;i = 1,---,n} by solving the system of linear

equations:

{v’(hw‘ 1= Yeni-d): = 1,...,7,},

i=1

to find n unknown ¢;’s

Computing P, X,,,, via Matrix Operations

We can rewrite the system of prediction equations as

Yn = Encm
with In = (’Y(h)vﬂy(h + 1)7 "/(h +n - 1))T1
Cp = (61’627 ""Cn)T and
7(0) (1) y(n-1)
5, - (1) 7(0) : v(n-2)
Wn-1) An-2) -~ 2(0)

is the covariance matrix of (X1, Xs, -, X,,)7 .
Solving for ¢,, we have

-1
Cp = by n Tn
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H i i ARMA Models:
Properties of the Prediction Errors il
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Unih = Xnin = PuXoin

n
= (XTH'h - ﬂ) - Z Cj(XnH—j - M). Prediction

j=1 Equations

It then follows that

@ The prediction error has mean zero

E(Unerh,) = E(Xn+h - PanJrh) =0

@ The prediction error is uncorrelated with all RVs used

in the predictor

COV(Un+h:Xj) = COV(Xn+h_Pan+h7Xj) = 07 J = 1a N
The Minimum Mean Squared Prediction Error Pt
We obtain the minimum value of the MSPE by substituting TICEHIE Notes

the expression for ¢, into E (X — PaXpin)?] :
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MSPE = E[(Xnsh = PuXnen)?]

Prediction

(Xn+h M) ] 2 Z (‘J (Xn+1 » M)(XTHh _H)] Equations

2
+E [Z (Xn+1—j - ,u):|

E[ n+h = L) ] 2 Z c] (Xn+1 -j N)(Xn+h - N)]

HMS

'ckE [(Xn+1—j - H)(erlfk - N)]

=v<0>—2ilcn<h+j—1>+ii cjar(k-5)
J= J=1k=1

=7(0) - 205771 + chnc,l.
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The Minimum Mean Squared Prediction Error (Cont’d) A Modele:
Forecasting Notes
From the previous slide we have

MSPE = 7(0) - 2¢t, + L ,cp

Recall that ¢, = X', therefore we have

MSPE = 7(0) - 2¢t, + £ 2,51,

=7(0) - e

=7(0) - Z ciy(h+j—1).

j=1

If {X;} is a Gaussian process then an approximate

100(1 - )% prediction interval for X, is given by

PyXph £ 21_a2/MSPE.
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One-Step Ahead Prediction of AR(1) Process

Consider AR(1) process X; = ¢X;_1 + Z;, where |¢| < 1
and {Z;} ~ WN(0,1 - ¢?).

o Since Var(X;) = 1, v(h) = p(h) = oMl

o To forecast X,,,; based upon X, = (X1, -, X,,)7,
using best linear predictor P, X,,,1 = c£ X,,, we need
to solve ¥,.¢,, = v

L6 ¢ fa] [¢
6 1w o2 le| |6
ot 1 e Lo

= the solution is ¢, = (¢,0,--,0)7, yielding

PoXpi1 = e X, = 90X,

One-Step Ahead Prediction of AR(1) Process (Cont’d)
@ ¢X, makes intuitive sense as a predictor since
Xnt1 = ¢Xn + Zns1

@ Prediction erroris X,,;1 - ¢X,, = Z,+1 and

Cov(Zy, Xn-js1) =0,5=1,--n

@ MSPE is
Var(XTH-l - d)X'rL) = 'Y(O) - C;{"/n =1- ¢27

because c, = (¢7Oy "'7O)T and Tn = (¢7 ¢2y ) (bn),r

Wind Speed Time Series Example [Source: UW stat 519
lecture notes by Donald Percival]

Wind Speed Time Series {x}

Let’s use this series to illustrate forecasting one step
ahead
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Model & Sample ACFs & 95% Confidence Bounds ARIA Models:

Prediction and
Forecasting

N .‘ MATHEMATICAL AND
Model & Sample ACFs & 95% Confidence Bounds ‘, STATISTICAL SCIENCES
1.0
Examples
-0.5 4
mw T
104 AR(1)
T T T T T
0 10 20 30 40
h (lag)
The sample ACF indicates compatibility with AR(1) model
= P/LXn+] = QﬁXn e
One-Step-Ahead Prediction of Wind Speed Series A Modele:
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ARMA Models:

Predicting “Missing” Values

Prediction and
Forecasting

o Let {X;} be a stationary process with mean x and
ACVF ~(-). Suppose we know X; and X3, and want
to predict X5 using linear combinations of X; and X3

@ Solution: To calculate Py, x,X> we minimize Examples

MSPE = E[(X> - Py, x,X2)?]
= E [(XQ —Co— C]X3 - CQX] )2]

@ Proceed as for the forecasting case to get the
optimal coefficients:

o Calculate derivatives
o Set the derivatives equal to zero

@ Solve the linear system of equation
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Another AR(1) Example with ¢ = -0.9

@=-0.9 AR(1) x; from Gaussian WN(0,1)

oo

Subsampled X, X3, --- and Removed X;, X,

St 9=-0.9 AR(L) X4, Xg,...
4
24
% 04
-2 4
T T T T T T
0 20 40 60 80 100
Time

The best linear predictor of X, given X1, X3 is

X? = ﬁ(){l + Xg),

and the MSPE is

1+¢2

Predict X, Xy, --- Using Best Linear Predictor

Subsampled and Predicted ¢ = -0.9 AR(1) X1, Xa,...
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Prediction Errors from Best Linear Predictor
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