Lecture 11

ARMA Models: Prediction and

Forecasting

Reading: Bowerman, O'Connell, and Koehler (2005): Capter 10.3; Cryer and Chen (2008): Chapter 9.1, 9.3, 9.4

MATH 4070: Regression and Time-Series Analysis

Whitney Huang Clemson University

Notes

Notes

_			
_			
_			

Agenda

- Linear Predictor
- Prediction Equations
- 3 Examples

Linear Predictor
Prediction
Equations
Examples

Forecasting Stationary Time Series

Let $\{X_t\}$ be a stationary process with mean μ and ACVF $\gamma(\cdot)$. Based on the observed data, $\boldsymbol{X}_n = (X_1, X_2, \cdots, X_n)^T$, we want to forecast X_{n+h} for some h, a positive integer

- Question: What is the best way to do so?
 ⇒ Need to decide on what "best" means
- A commonly used metric for describing forecast performance is the mean squared prediction error (MSPE):

$$\text{MSPE} = \mathbb{E}\left[(X_{n+h} - m_n(\boldsymbol{X}_n))^2 \right].$$

 \Rightarrow the best predictor (in terms of MSPE) is

$$m_n(\boldsymbol{X}_n) = \mathbb{E}\left[X_{n+h}|\boldsymbol{X}_n\right],$$

the conditional expectation of X_{n+h} given \boldsymbol{X}_n

ARMA Models: Prediction and Forecasting

Linear Predictor
Prediction
Equations

Notes			

Linear Predictor

Calculating $\mathbb{E}\left[X_{n+h}|\mathbf{X}_n\right]$ can be difficult in general

• We will restrict to a linear combination of X_1, X_2, \dots, X_n and a constant \Rightarrow linear predictor:

$$\begin{split} P_n X_{n+h} &= c_0 + c_1 X_n + c_2 X_{n-1} + \dots + c_n X_1 \\ &= c_0 + \sum_{j=1}^n c_j X_{n+1-j} \end{split}$$

• We select the coefficients that minimize the *h*-step-ahead mean squared prediction error:

$$\mathbb{E}\left(\left[X_{n+h} - P_n X_{n+h}\right]^2\right) = \mathbb{E}\left(X_{n+h} - c_0 - \sum_{j=1}^n c_j X_{n+1-j}\right)^2$$

• The best linear predictor is the best predictor if $\{X_t\}$ is Gaussian

How to Determine these Coefficients $\{c_i\}$?

The steps that we are about to follow to calculate the c_i values are the same as you would use for calculating ordinary least squares estimates

- Take the derivative of the MSPE with respect to each coefficient c_i
- Set each derivative equal to zero
- Solve with respect to the coefficients

Forecasting Stationary Processes I

For simplicity, let's assume μ = 0 (we can always achieve that by subtracting off μ) so that we don't need the constant term. We have

$$P_n X_{n+h} = c_1 X_n + c_2 X_{n-1} + \dots + c_n X_1.$$

We want the MSPE

$$\mathbb{E}\left[(X_{n+h} - P_n X_{n+h})^2\right] = \mathbb{E}\left[(X_{n+h} - c_1 X_n - c_2 X_{n-1} - \dots - c_n X_1)^2\right]$$

as small as possible.

From now on let's definite

$$\mathbb{E}[(X_{n+h} - c_1 X_n - c_2 X_{n-1} - \dots - c_n X_1)^2] = S(c_1, \dots, c_n)$$

We are going to take derivative of the $S(c_1, \dots, c_n)$ with respect to each coefficient c_j

Notes

Notes

Notes

Forecasting Stationary Processes II

S is a quadratic function of $c_1, c_2, \cdots, c_n,$ so any minimizing set of c_i 's must satisfy these n equations:

$$\frac{\partial S(c_1, \dots, c_n)}{\partial c_i} = 0, \quad j = 1, \dots, n.$$

 $S(c_1, \dots, c_n) = \mathbb{E}[(X_{n+h} - c_1 X_n - c_2 X_{n-1} - \dots - c_n X_1)^2],$ we

$$\frac{\partial S(c_1, \cdots, c_n)}{\partial c_j} = -2\mathbb{E}\left[\left(X_{n+h} - \sum_{i=1}^n c_i X_{n-i+1}\right) X_{n-j+1}\right] = 0$$

$$\Rightarrow \operatorname{Cov}(X_{n+h} - \sum_{i=1}^{n} c_i X_{n-i+1}, X_{n-j+1}) = 0, \quad j = 1, \dots, n$$

⇒ Prediction error is uncorrelated with all RVs used in corresponding predictor

Notes

Forecasting Stationary Processes III

Orthogonality principle:

$$\mathrm{Cov}\big(X_{n+h} - \sum_{i=1}^n c_i X_{n-i+1}, X_{n-j+1}\big) = 0, \quad j = 1, \cdots, n.$$

$$Cov(X_{n+h}, X_{n-j+1}) - \sum_{i=1}^{n} c_i Cov(X_{n-i+1}, X_{n-j+1}) = 0$$

We obtain $\{c_i; i$ = $1, \cdots, n\}$ by solving the system of linear equations:

$$\left\{\gamma(h+j-1)=\sum_{i=1}^n c_i\gamma(i-j): j=1,\cdots,n\right\},\,$$

to find n unknown c_i 's

Notes

Computing P_nX_{n+h} via Matrix Operations

We can rewrite the system of prediction equations as

$$\gamma_n$$
 = $\Sigma_n c_n$,

with
$$\gamma_n = (\gamma(h), \gamma(h+1), \cdots \gamma(h+n-1))^T$$
, $c_n = (c_1, c_2, \cdots, c_n)^T$ and

$$\Sigma_n = \begin{bmatrix} \gamma(0) & \gamma(1) & \cdots & \gamma(n-1) \\ \gamma(1) & \gamma(0) & \cdots & \gamma(n-2) \\ \vdots & \vdots & \ddots & \vdots \\ \gamma(n-1) & \gamma(n-2) & \cdots & \gamma(0) \end{bmatrix}$$

is the covariance matrix of $(X_1, X_2, \cdots, X_n)^T$.

Solving for c_n we have

$$c_n = \sum_{n=1}^{-1} \gamma_n$$

Notes			

Properties of the Prediction Errors

The prediction errors are

$$\begin{split} U_{n+h} &= X_{n+h} - P_n X_{n+h} \\ &= \big(X_{n+h} - \mu \big) - \sum_{j=1}^n c_j \big(X_{n+1-j} - \mu \big). \end{split}$$

It then follows that

• The prediction error has mean zero

$$\mathbb{E}(U_{n+h}) = \mathbb{E}(X_{n+h} - P_n X_{n+h}) = 0$$

• The prediction error is uncorrelated with all RVs used in the predictor

$$Cov(U_{n+h}, X_j) = Cov(X_{n+h} - P_n X_{n+h}, X_j) = 0, \quad j = 1, \dots, n$$

Notes

Notes

The Minimum Mean Squared Prediction Error

We obtain the minimum value of the MSPE by substituting the expression for c_n into $\mathbb{E}\left[(X_{n+h} - P_n X_{n+h})^2\right]$:

 $MSPE = \mathbb{E}\left[\left(X_{n+h} - P_n X_{n+h}\right)^2\right]$ $= \mathbb{E}\left[(X_{n+h} - \mu)^2 \right] - 2 \sum_{i=1}^{n} c_j \mathbb{E}\left[(X_{n+1-j} - \mu)(X_{n+h} - \mu) \right]$ $+ \mathbb{E} \left[\sum_{j=1}^{n} c_j (X_{n+1-j} - \mu) \right]^2$ $= \mathbb{E}\left[(X_{n+h} - \mu)^2 \right] - 2 \sum_{i=1}^{n} c_j \mathbb{E}\left[(X_{n+1-j} - \mu)(X_{n+h} - \mu) \right]$ + $\sum_{j=1}^{n} \sum_{k=1}^{n} c_j c_k \mathbb{E} [(X_{n+1-j} - \mu)(X_{n+1-k} - \mu)]$ $= \gamma(0) - 2\sum_{i=1}^{n} c_{j} \gamma(h+j-1) + \sum_{i=1}^{n} \sum_{k=1}^{n} c_{j} c_{k} \gamma(k-j)$ $= \gamma(0) - 2\boldsymbol{c}_n^T \boldsymbol{\gamma}_n + \boldsymbol{c}_n^T \boldsymbol{\Sigma}_n \boldsymbol{c}_n.$

The Minimum Mean Squared Prediction Error (Cont'd)

From the previous slide we have

$$\text{MSPE} = \gamma(0) - 2\boldsymbol{c}_n^T \boldsymbol{\gamma}_n + \boldsymbol{c}_n^T \boldsymbol{\Sigma}_n \boldsymbol{c}_n$$

Recall that $c_n = \sum_{n=1}^{\infty} \gamma_n$, therefore we have

$$\begin{aligned} \text{MSPE} &= \gamma(0) - 2\boldsymbol{c}_n^T \boldsymbol{\gamma}_n + \boldsymbol{c}_n^T \boldsymbol{\Sigma}_n \boldsymbol{\Sigma}_n^{-1} \boldsymbol{\gamma}_n \\ &= \gamma(0) - \boldsymbol{c}_n^T \boldsymbol{\gamma}_n \\ &= \gamma(0) - \sum_{i=1}^n c_j \gamma(h+j-1). \end{aligned}$$

If $\{X_t\}$ is a Gaussian process then an approximate $100(1-\alpha)\%$ prediction interval for X_{n+h} is given by

$$P_n X_{n+h} \pm z_{1-\alpha/2} \sqrt{\text{MSPE}}$$
.

Votes			

One-Step Ahead Prediction of AR(1) Process

Consider AR(1) process X_t = ϕX_{t-1} + Z_t , where $|\phi|$ < 1 and $\{Z_t\} \sim \mathrm{WN}(0,1-\phi^2)$.

- Since $Var(X_t) = 1$, $\gamma(h) = \rho(h) = \phi^{|h|}$
- To forecast X_{n+1} based upon $\mathbf{X}_n = (X_1, \cdots, X_n)^T$, using best linear predictor $P_n X_{n+1} = \mathbf{c}_n^T \mathbf{X}_n$, we need to solve $\Sigma_n \mathbf{c}_n = \gamma_n$

$$\begin{bmatrix} 1 & \phi & \cdots & \phi^{n-1} \\ \phi & 1 & \cdots & \phi^{n-2} \\ \vdots & \vdots & \cdots & \vdots \\ \phi^{n-1} & \phi^{n-2} & \cdots & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} \phi \\ \phi^2 \\ \vdots \\ \phi^n \end{bmatrix}$$

 \Rightarrow the solution is $c_n = (\phi, 0, \dots, 0)^T$, yielding

$$P_n X_{n+1} = \boldsymbol{c}_n^T \boldsymbol{X}_n = \phi X_n$$

ARMA Models: Prediction and Forecasting

Notes

Linear Predictor
Prediction
Equations

One-Step Ahead Prediction of AR(1) Process (Cont'd)

ullet ϕX_n makes intuitive sense as a predictor since

$$X_{n+1} = \phi X_n + Z_{n+1}$$

• Prediction error is X_{n+1} – ϕX_n = Z_{n+1} and

$$Cov(Z_t, X_{n-j+1}) = 0, j = 1, \dots, n$$

MSPE is

$$Var(X_{n+1} - \phi X_n) = \gamma(0) - \boldsymbol{c}_n^T \boldsymbol{\gamma}_n = 1 - \phi^2,$$

because $c_n = (\phi, 0, \dots, 0)^T$ and $\gamma_n = (\phi, \phi^2, \dots, \phi^n)^T$

ARMA Models: Prediction and Forecasting

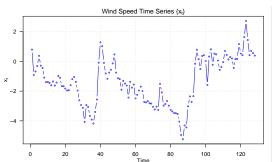
Linear Predictor

Prediction
Equations

11.14

Notes

Wind Speed Time Series Example [Source: UW stat 519 lecture notes by Donald Percival]



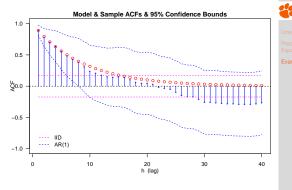
Let's use this series to illustrate forecasting one step ahead

ARMA Models: Prediction and Forecasting

Linear Predictor

Notes

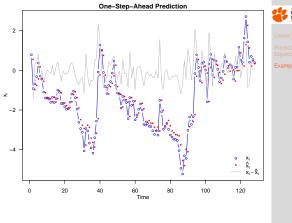
Model & Sample ACFs & 95% Confidence Bounds



The sample ACF indicates compatibility with AR(1) model $\Rightarrow P_n X_{n+1} = \phi X_n$

IN	otes

One-Step-Ahead Prediction of Wind Speed Series



Notes

•		
•		

Predicting "Missing" Values

- \bullet Let $\{X_t\}$ be a stationary process with mean μ and ACVF $\gamma(\cdot)$. Suppose we know X_1 and X_3 , and want to predict X_2 using linear combinations of X_1 and X_3
- \bullet Solution: To calculate $P_{X_1,X_3}X_2$ we minimize

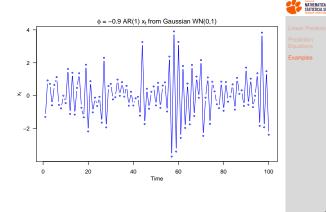
$$\begin{split} \text{MSPE} &= \mathbb{E}\left[\left(X_2 - P_{X_1, X_3} X_2\right)^2\right] \\ &= \mathbb{E}\left[\left(X_2 - c_0 - c_1 X_3 - c_2 X_1\right)^2\right] \end{split}$$

- Proceed as for the forecasting case to get the optimal coefficients:
 - Calculate derivatives
 - Set the derivatives equal to zero
 - Solve the linear system of equation

ARMA Models:
Prediction and
Forecasting

Notes				

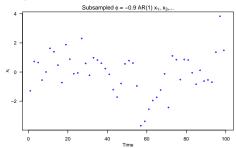
Another AR(1) Example with ϕ = $-0.9\,$



Notes

		_

Subsampled X_1, X_3, \cdots and Removed X_2, X_4, \cdots



The best linear predictor of X_2 given X_1, X_3 is

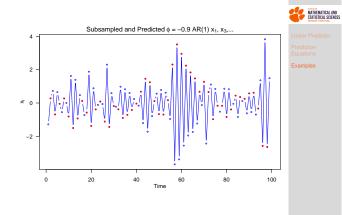
$$\hat{X}_2 = \frac{\phi}{1 + \phi^2} (X_1 + X_3),$$

and the MSPE is

$$\frac{\sigma^2}{1+\phi^2}$$

Notes

$\textbf{Predict} \ X_2, X_4, \cdots \ \textbf{Using Best Linear Predictor}$



Notes

Prediction Errors from Best Linear Predictor

Notes	
Notes	
Notes	