Lecture 12

ARMA Case Study & Autoregressive Integrated Moving Average (ARIMA) Models Reading: Cryer and Chen (2008): Chapter 5.1-5.3

MATH 4070: Regression and Time-Series Analysis

Whitney Huang Clemson University

Agenda

 ARMA Case Study

2 ARMIA

A Modeling Case Study of Ireland Wind Data

(Courtesy of Peter Craigmile's time series lecture notes)

Notes

Perform forecast
 Haslett, J., & Rattery, A. E. (1989). Space-time modelling with long-memory dependence:
 Assessing Ireland's wind power resource. Journal of the Royal Statistical Society: Series C, 38(1), 1-21.

and selection

ARMIA Case Study ARMIA ARMIA

Notes

Notes

Here we use harmonic regression with 4 harmonics per year to model the seasonal components

$$s_t = \beta_0 + \sum_{j=1}^4 \left(\beta_{1j} \cos(2\pi jt) + \beta_{2j} \sin(2\pi jt) \right)$$

Square root transformation works! Now take the square root of the original data and deseasonalize again!

MA Case Stu

Next, we need to check if the deseasonalized series Gaussian like

Notes

Based on ACF/PACF, which ARMA model would you choose?

Notes

Notes

Normality assumption seems reasonable.

Next check the ACF/PACF and perform a Box test to assess if the AR(1) fit adequately account for temporal dependence strucuture

X-squared = 53.142, df = 31, p-value = 0.00794

Notes

Normality assumption seems reasonable.

Next check the ACF/PACF and perform a Box test to assess if the AR(2) fit adequately account for temporal dependence strucuture

Notes

Potential Model 3	: ARMA (1,	1)
> (armal1.model <- ar	ima(sqrt.ross	lare.ds, order = $c(1, 0, 1))$
Call: arima(x = sqrt.rossla	are.ds, order	= c(1, 0, 1))
Coefficients:		
ar1 ma1	intercept	
0.1978 0.2502	3.3254	
s.e. 0.0556 0.0553	0.0234	
sigma^2 estimated as	0.4108: log	likelihood = -1778.82, aic = 3565.6
0.4 - 9		0.4 -
0.3 -		0.3 -
u.0.2 -		40.2 -
0.1 -		[₩] 4 0.1 −
0.0		0.0

15

⊤ 10 Lag

15

Normality assumption seems reasonable.

Next check the ACF/PACF and perform a Box test to assess if the ARMA(1, 1) fit adequately account for temporal dependence structure

Notes

Notes

Next check the ACF/PACF and perform a Box test to assess if the ARMA(2, 1) fit adequately account for temporal dependence strucuture

Notes

Comparing Models via Information Criteria

Model	AIC	AICc
AR(1)	3583.817	3583.824
AR(2)	3570.650	3570.663
ARMA(1, 1)	3567.833	3567.847
ARMA(2, 1)	3569.319	3569.341

Which model would you pick?

Auto	Study & pregressive
In Movi (ARI	tegrated ng Average MA) Models
20	MATHEMATICAL AND STATISTICAL SCIENCES

Notes

Forecasting Future Wind Speeds

Question: How do we predict wind speeds on the original scale, including the seasonality that was previously estimated?

- Suppose we want to predict the next 7 days of wind speed values. We base our forecasts on the chosen ARMA(1,1) model.
- We need to reverse the order of our modeling process: ⇒ forecast under the transformed scale → add the estimated seasonal component → back-transform to the original scale.

Notes

netwatical and TISTICAL SCIENCES ase Study

Forecasting Future Wind Speeds, continued

Time Series: Start = c(1970, 1)End = c(1970, 7)Frequency = 365

Time Series: Start = c(1970, 1) End = c(1970, 7)Frequency = 365

• The forecasts for the next 7 days of deseasonalized square root values are:

[1] 0.641 0.702 0.705 0.705 0.705 0.705 0.705

: Auto In Movi	Study & pregressiv tegrated ing Averag
(ARI	MA) Model
÷	MATHEMATICAL A STATISTICAL SCIE

ARMA Case

Notes

Notes

AND Ences > round(sqrt.rosslare.forecast\$pred, 3) [1] 3.997 3.458 3.352 3.331 3.326 3.326 3.325 • The standard error for the forecasts are: > round(sqrt.rosslare.forecast\$se, 3)

Forecasting future wind speeds, continued	ARMA Case Study &
Next, we add back in the seasonality to get: > adj.forecast <- fitted(harm.model)[1:h] + sqrt.rosslare.forecast\$pred > round(adj.forecast, 3)	Autoregressive Integrated Moving Average (ARIMA) Models
Time Series: Start = ((1970, 1) End = c(1970, 7)	MATHEMATICAL AND STATISTICAL SCIENCES
Frequency = 365	ARMA Case Study
1 2 3 4 5 6 7	
• Finally, we transform back to the original scale	
Time Series:	
Start = c(1970, 1)	
End = c(1970, 7)	
Frequency = 365	
1 2 3 4 5 6 7	
17.132 12.962 12.208 12.064 12.039 12.039 12.044	
• To get the prediction limits, we need to transform the	

To get the prediction limits, we need to transform the lower and upper prediction limits on the sqrt scale

Further Questions

AF S Auto In Movi (ARII	IMA C Study oregre tegra ng Av MA) N	ase & ssiv ted rerag lode	re ge Is
÷	MATHEM	ATICAL Cal sci	AND Ences

Notes

- What is the full model for our time series data?
- Is there a better description for the trend than just a constant term? What about alternative seasonal modeling?
- How well do we forecast? What about forecast uncertainty?

1	;	MATHEMA	TICAL Al Sc
4	RMI	4	

Autoregressive Integrated Moving Average (ARIMA) Models

60 -				N
50 -				M
40 - 30 -			Ma	Arv.
20 -	www.	MANNA		<u>مر</u> ۱
10 -	1990	1 1995 Time	2000	2005

Monthly Price of Oil: January 1986–January 2006

A stationary model does not seem to be reasonable. However, it is also not clear which (deterministic) trend model is appropriate 🙁

Notes

Random Walks Revisited

Recall the random walk process

$$X_t = Z_1 + Z_2 + \dots + Z_t = \sum_{j=1}^t Z_j,$$

where $\{Z_t\} \sim WN(0, \sigma^2)$

 $\{X_t\}$ is a nonstationary process

• We can obtain a stationary process by differencing

$$\nabla X_t = X_t - X_{t-1} = (1 - B)X_t = Z_t$$

• {*X_t*} is an example of an autoregressive integrated moving average (ARIMA) process– ARIMA(0, 1, 0) process

ARMA Case
Study &
Autoregressive
Integrated
Moving Average
(ARIMA) Models
alla source
STATISTICAL SCIENCE
Cleaner' University

Notes

ARIMA Models

An ARIMA model is an ARMA process after differencing

• Let d be a non-negative integer. Then X_t is an ARIMA(p, d, q) process if

 $Y_t = \nabla^d X_t = (1 - B)^d X_t$

- is a causal ARMA process
- Let $\phi(B)$ be the AR polynomial and $\theta(B)$ be the MA polynomial. Then for $\{Z_t\} \sim WN(0, \sigma^2)$

 $\phi(B)Y_t = \theta(B)Z_t,$

and since $Y_t = (1 - B)^d X_t$, we have

 $\phi(B)(1-B)^d X_t = \theta(B)Z_t$

Let $\phi(z) = 1 - \phi_1 z$, $\theta(z) = 1$ and d = 1. For a causal stationary solution (after differencing) we need to assume $|\phi_1| < 1$. Then $\{X_t\}$ is an ARIMA (1, 1, 0) process,

$$(1-\phi_1 B)(1-B)X_t = Z_t$$

where $\{Z_t\} \sim WN(0, \sigma^2)$ Now let $Y_t = (1 - B)X_t = X_t - X_{t-1}$, after some rearrangements we have

$$X_{t} = X_{t-1} + Y_{t}$$

= $(X_{t-2} + Y_{t-1}) + Y_{t}$
:
= $X_{0} + \sum_{j=1}^{t} Y_{j}$

Thus $\{X_t\}$ is a "sort of random walk"–we cumulatively sum an AR(1) process, $\{Y_t\}$

ARMA Case
Study &
Autoregressiv
Integrated
Moving Avera
(A DIMA) Mode

Notes

Simulated ARIMA and Differenced ARMA Process We simulate an ARIMA(1, 1, 0):

Notes

Adding a Polynomial Trend

For $d \ge 1$, let $\{X_t\}$ be an ARIMA(p, d, q) process. Then $\{X_t\}$ satisfies the equation

$\phi(B)(1-B)^d X_t = \theta(B)Z_t$

- Let μ_t be a polynomial of degree (d-1), i.e., $\mu_t = \sum_{j=0}^{d-1} a_j t^j$ for constants $\{a_j\}$
- Now let $V_t = \mu_t + X_t$, then

$$\phi(B)(1-B)^{d}V_{t} = \phi(B)(1-B)^{d}(\mu_{t} + X_{t})$$

= $\phi(B)(1-B)^{d}\mu_{t} + \phi(B)(1-B)^{d}X_{t}$
= $0 + \phi(B)(1-B)^{d}X_{t}$
= $\theta(B)Z_{t}$

• Takeaway: ARIMA(p, d, q) are useful for modeling data with polynomial trends, due to the inherent differencing that can be used to remove trends

Notes

Steps for Modeling ARIMA Processes: Exploratory Analysis

- Plot the data, ACF, PACF and Q-Q plots
 - Check for unusual features of the data
 - Check for stationarity
 - Do we need to transform the data?
- Eliminate trend
 - Estimating the trend and removing it from the series
 - Or, differencing the series (i.e., select d in the ARIMA model)
- Plot the sample ACF/PACF for the stationary component
 - Identify candidate values of p and q

ARMA Case	
Study &	
Autoregressive	
Integrated	
Moving Average	
(ARIMA) Models	
MATHEMATICAL AND STATISTICAL SCIENCES	

Steps for Modeling ARIMA Processes: Estimation and Model Checking

- Estimate the ARMA process parameters for the candidate models
- Check the goodness of fit: Are the time series residuals, {*r*_t} a sample of *i.i.d.* noise?
- Model selection:
 - Using information criteria such as AIC and AICC
 - Test model parameters to compare between the "full" model and the "subset" model

ARMA Case	
Study &	
Autoregressive	
Integrated	
Moving Average	
(ARIMA) Models	
STATISTICAL SCIENCES	
tenne tenney	

ARMIA

Notes

Notes