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Modeling Trend, Seasonality, and Noise

Recall the trend, seasonality, noise decomposition:

Yt = µt + st + ηt,

where

µt: (deterministic) trend component;

st: (deterministic) seasonal component with mean 0;

ηt: random noise with E(ηt) = 0

We have already described ways to estimate each
component both separately and jointly (via
likelihood-based method). But what about if {st} is a
“random” function of t?

⇒ The seasonal ARIMA model allows us to model the
case when st itself varies randomly from one cycle to the
next
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Digression: Using ARIMA for Stochastic Trend
Modeling

For a given time series, it may be challenging to identify
the exact form of a deterministic trend µt. However,
ARIMA models can effectively capture and account for a
“stochastic” trend
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The Seasonal ARIMA (SARIMA) Model
Let d and D be non-negative integers. Then {Xt} is a
seasonal ARIMA(p, d, q) ×(P,D,Q)s process with period
s if

Yt = ∇d∇D
s Xt = (1 −B)d(1 −Bs)DXt,

is a casual ARMA process define by

ϕ(B)Φ(Bs)Yt = θ(B)Θ(Bs)Zt,

where {Zt} ∼WN(0, σ2).
{Yt} is causal if ϕ(z) ≠ 0 and Φ(z) ≠ 0, for ∣z∣ ≤ 1, where

ϕ(z) = 1 − ϕ1z −⋯ − ϕpz
p;

Φ(z) = 1 −Φ1z −⋯ −ΦP z
P .

All roots of the AR and SAR characteristic equations
must be greater than 1 in modulus
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An Example of a Seasonal AR Model

Yt = 0.9Yt−12 +Zt,

⇒ p = q = d =D = Q = 0, P = 1, Φ1 = 0.9, s = 12.
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An Example of a Seasonal MA Model

Yt = Zt + 0.75Zt−4,

⇒ p = q = d =D = P = 0, Q = 1, Θ1 = 0.75, s = 4.
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Example of a SARIMA Model

(1 −B)(1 −B12)Xt = Yt
(1 + 0.25B)(1 − 0.9B12)Yt = (1 + 0.75B12)Zt

⇒ p = P = Q = d =D = 1,
ϕ = −0.25,Φ = 0.9,Θ1 = 0.75, s = 12.
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An Illustration of Seasonal Model

Consider a monthly time series {Xt} with both a trend,
and a seasonal component of period s = 12.

Suppose we know the values of d and D such that
Yt = (1 −B)d(1 −B12)DXt is stationary

We can arrange the data this way:

Month 1 Month 2 ⋯ Month 12
Year 1 Y1 Y2 ⋯ Y12
Year 2 Y13 Y14 ⋯ Y24
⋮ ⋮ ⋮ ⋯ ⋮

Year r Y1+12(r−1) Y2+12(r−1) ⋯ Y12+12(r−1)
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The Inter-annual Model

Here we view each column (month) of the data table from
the previous slide as a separate time series

For each month m, we assume the same
ARMA(P,Q) model. We have

Ym+12y −
P

∑
i=1

ΦiYm+12(y−i)

= Um+12y +
Q

∑
j=1

ΘjUm+12(y−j),

for each y = 0,⋯, r − 1, where
{Um+12y∶y=0,⋯,r−1} ∼WN(0, σ2

U) for each m

We can write this as

Φ(B12)Yt = Θ(B12)Ut,

and this defines the inter-annual model
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The Intra-Annual Model

We induce correlation between the months by letting the
process {Ut} follow an ARMA(p, q) model,

ϕ(B)Ut = θ(B)Zt,

where Zt ∼WN(0, σ2)

This is the intra-annual model

The combination of the inter-annual and intra-annual
models for the differenced stationary series,

Yt = (1 −B)d(1 −B12)DXt,

yields a SARIMA model for {Xt}
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Steps for Modeling SARIMA Processes

1. Transform data is necessary

2. Find d and D so that

Yt = (1 −B)d(1 −Bs)DXt

is stationary

3. Examine the sample ACF/PACF of {Yt} at lags
that are multiples of s for plausible values of P and Q

4. Examine the sample ACF/PACF at lags
{1,2,⋯, s − 1}, to identify possible values of p and q

Notes

Notes

Notes
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Modeling SARIMA Processes (Cont’d)

5. Use maximum likelihood method to fit the models

6. Use model summaries, diagnostics, AIC (AICc) to
determine the best SARIMA model

7. Conduct forecast
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Airline Passengers Example
We consider the data set airpassengers, which are
the monthly totals of international airline passengers from
1960 to 1971.
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Here we stabilize the variance with a log10 transformation
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Sample ACF/PACF Plots
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The sample ACF decays slowly with a wave structure
⇒ seasonality

The lag one PACF is close to one, indicating that
differencing the data would be reasonable
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Trying Different Orders of Differencing
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Choosing Candidate SARIMA Models

We choose a SARIMA(p,1, q) × (P,0,Q)12 model. Next
we examine the sample ACF/PACF of the process
Yt = (1 −B)Xt
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Now we need to choose P , Q, p, and q
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Fitting a SARIMA(1,1,0) × (1,0,0) Model
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A Discussion of the Model Fit
Residuals show greater spread in 1949-1955 and
have heavier-than-normal tails

The Ljung-Box test result indicates the fitted SARIMA
(1,1,0) × (1,0,0)12 has sufficiently account for the
temporal dependence

95% CI for ϕ1 and Φ1 do not contain zero⇒ no need
to go with simpler model

Our estimated model is:

Xt = log10(#Passengers)
Yt = (1 −B)Xt =Xt −Xt−1

(1 + 0.2667B)(1 − 0.9291B12)(Yt − 0.0039) = Zt,

where {Zt} i.i.d.∼ N(0, σ2) with σ̂2 = 0.00033
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Comparing with a SARIMA(0,1,0) × (1,0,0) Model
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A Discussion of SARIMA(0,1,0) × (1,0,0) Model Fit

Here we drop the AR(1) term

Residual plots are similar to before, with greater
spread in 1949-1955 and heavy tails

Both σ̂2 and AIC increase (compared with model fit1)

The lag 1 of ACF and PACF now lies outside the IID
noise bounds. The Ljung-Box p-value of 0.0022,
leads us to reject the IID residual assumption

In conclusion, the SARIMA(1,1,0) × (1,0,0)12 model fits
better than SARIMA(0,1,0) × (1,0,0)12

Notes
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Forecasting the 1971 Data
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Evaluating Forecast Performance
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Metrics Model Fit1 Model Fit2
Root Mean Square Error 30.36 31.32

Mean Relative Error 0.057 0.060
Empirical Coverage 0.917 1.000
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The SARIMA(1,1,0) × (1,0,0) Model is Equivalent To?

Our model for the log passenger series {Xt} is

ϕ(B)Φ(B12)(1 −B)Xt = Zt,

where ϕ(B) = 1 − ϕ1B and Φ(B) = 1 −Φ1(B)

Note that

ϕ(B)Φ(B12) = (1 − ϕ1B)(1 −Φ1B
12)

= 1 − ϕ1B −Φ1B
12 + ϕ1Φ1B

13

Question: What is this SARIMA model equivalent to?
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