Lecture 13

Seasonal Time Series Models

Reading: Bowerman, O'Connell, and Koehler (2005): Chapter 11; Cryer and Chen (2008): Chapter 10

MATH 4070: Regression and Time-Series Analysis

Whitney Huang Clemson University

Notes

Notes

Agenda

- Seasonal ARIMA (SARIMA) Model
- A Case Study of Airline Passengers

Seasonal ARIMA (SARIMA) Model A Case Study of Airline Passengers

122

Modeling Trend, Seasonality, and Noise

Recall the trend, seasonality, noise decomposition:

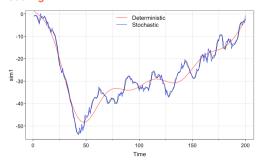
$$Y_t = \mu_t + s_t + \eta_t,$$

where

- μ_t : (deterministic) trend component;
- ullet s_t : (deterministic) seasonal component with mean 0;
- η_t : random noise with $\mathbb{E}(\eta_t) = 0$

We have already described ways to estimate each component both separately and jointly (via likelihood-based method). But what about if $\{s_t\}$ is a "random" function of t?

 \Rightarrow The seasonal ARIMA model allows us to model the case when s_t itself varies randomly from one cycle to the next



Seasonal AHIMA (SARIMA) Model A Case Study of Airline Passengers

Notes			

Digression: Using ARIMA for Stochastic Trend Modeling

For a given time series, it may be challenging to identify the exact form of a deterministic trend μ_t . However, ARIMA models can effectively capture and account for a "stochastic" trend

Notes

The Seasonal ARIMA (SARIMA) Model

Let d and D be non-negative integers. Then $\{X_t\}$ is a seasonal $\mathsf{ARIMA}(p,d,q) \times (P,D,Q)_s$ process with period s if

$$Y_t = \nabla^d \nabla_s^D X_t = (1 - B)^d (1 - B^s)^D X_t,$$

is a casual ARMA process define by

$$\phi(B)\Phi(B^s)Y_t = \theta(B)\Theta(B^s)Z_t,$$

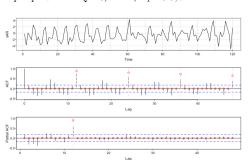
where $\{Z_t\} \sim WN(0, \sigma^2)$.

 $\{Y_t\}$ is causal if $\phi(z) \neq 0$ and $\Phi(z) \neq 0$, for $|z| \leq 1$, where

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p;$$

$$\Phi(z) = 1 - \Phi_1 z - \dots - \Phi_P z^P.$$

All roots of the AR and SAR characteristic equations must be greater than 1 in modulus



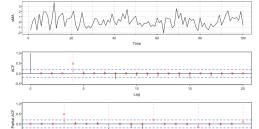
Seasonal ARIMA (SARIMA) Model

Notes _____

An Example of a Seasonal AR Model

$$Y_t = 0.9 Y_{t-12} + Z_t,$$

$$\Rightarrow p = q = d = D = Q = 0, \ P = 1, \ \Phi_1 = 0.9, s = 12.$$

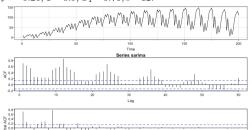

Seasonal Time

Seasonal ARIMA (SARIMA) Model A Case Study of Airline Passengers

An Example of a Seasonal MA Model

$$Y_t = Z_t + 0.75 Z_{t-4},$$

$$\Rightarrow p = q = d = D = P = 0, \ Q = 1, \ \Theta_1 = 0.75, s = 4.$$



Notes

Example of a SARIMA Model

$$(1-B)(1-B^{12})X_t = Y_t$$
$$(1+0.25B)(1-0.9B^{12})Y_t = (1+0.75B^{12})Z_t$$

$$\begin{array}{l} \Rightarrow p = P = Q = d = D = 1, \\ \phi = -0.25, \Phi = 0.9, \Theta_1 = 0.75, s = 12. \end{array}$$

Notes

An Illustration of Seasonal Model

Consider a monthly time series $\{X_t\}$ with both a trend, and a seasonal component of period s = 12.

- ullet Suppose we know the values of d and D such that $Y_t = (1 - B)^d (1 - B^{12})^D X_t$ is stationary
- We can arrange the data this way:

	Month 1	Month 2	•••	Month 12
Year 1	Y_1	Y_2		Y_{12}
Year 2	Y_{13}	Y_{14}		Y_{24}
:	:	:		:
Year r	$Y_{1+12(r-1)}$	$Y_{2+12(r-1)}$		$Y_{12+12(r-1)}$

Notes

The Inter-annual Model

Here we view each column (month) of the data table from the previous slide as a separate time series

 \bullet For each month m, we assume the same $\mathsf{ARMA}(P,Q)$ model. We have

$$\begin{split} Y_{m+12y} - & \sum_{i=1}^{P} \Phi_{i} Y_{m+12(y-i)} \\ = & U_{m+12y} + \sum_{j=1}^{Q} \Theta_{j} U_{m+12(y-j)}, \end{split}$$

for each $y = 0, \dots, r-1$, where $\{U_{m+12y:y=0,\cdots,r-1}\} \sim \mathrm{WN}(0,\sigma_U^2)$ for each m

We can write this as

$$\Phi(B^{12})Y_t = \Theta(B^{12})U_t,$$

and this defines the inter-annual model

Notes

The Intra-Annual Model

We induce correlation between the months by letting the process $\{U_t\}$ follow an ARMA(p,q) model,

$$\phi(B)U_t = \theta(B)Z_t,$$

where $Z_t \sim WN(0, \sigma^2)$

- This is the intra-annual model
- The combination of the inter-annual and intra-annual models for the differenced stationary series,

$$Y_t = (1 - B)^d (1 - B^{12})^D X_t$$

yields a SARIMA model for $\{X_t\}$

Notes

Steps for Modeling SARIMA Processes

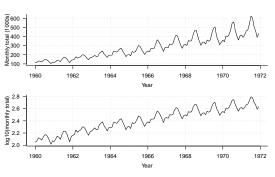
- 1. Transform data is necessary
- 2. Find d and D so that

$$Y_t = (1 - B)^d (1 - B^s)^D X_t$$

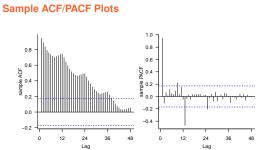
is stationary

- 3. Examine the sample ACF/PACF of $\{Y_t\}$ at lags that are multiples of s for plausible values of P and Q
- 4. Examine the sample ACF/PACF at lags $\{1, 2, \dots, s-1\}$, to identify possible values of p and q

Notes			


Modeling SARIMA Processes (Cont'd)

- 5. Use maximum likelihood method to fit the models
- 6. Use model summaries, diagnostics, AIC (AICc) to determine the best SARIMA model
- 7. Conduct forecast

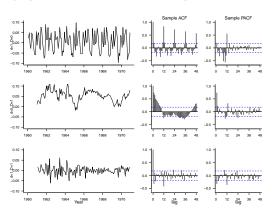

Airline Passengers Example

We consider the data set <code>airpassengers</code>, which are the monthly totals of international airline passengers from 1960 to 1971.

Here we stabilize the variance with a \log_{10} transformation

Sousonal ARIMA (SARIMA) Model
A Case Study of Airline Passengers

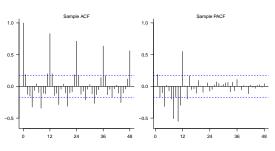
- The sample ACF decays slowly with a wave structure ⇒ seasonality
- The lag one PACF is close to one, indicating that differencing the data would be reasonable


Seasonal Time	
Series Models	
MATHEMATICAL AND STATISTICAL SCIENCES	
A Case Study of Airline Passengers	

 ·			

Notes

Notes


Trying Different Orders of Differencing

Choosing Candidate SARIMA Models

We choose a SARIMA $(p,1,q) \times (P,0,Q)_{12}$ model. Next we examine the sample ACF/PACF of the process $Y_t = (1-B)X_t$

Now we need to choose P, Q, p, and q

Notes

Fitting a SARIMA $(1,1,0) \times (1,0,0)$ Model

—
> fit1 <- arima(diff.1.0, order = c(1, 0, 0), seasonal = list(order = c(1, 0, 0), period = 12)) > fit1
Call:
arima(x = diff.1.0, order = c(1, 0, 0), seasonal = list(order = c(1, 0, 0), period = 12))
Coefficients:
arl sarl intercept
-0.2667 0.9291 0.0039
s.e. 0.0865 0.0235 0.0096
sigma^2 estimated as 0.0003298: log likelihood = 327.27, aic = -646.54
<pre>> Box.test(fit1\$residuals, lag = 48, type = "Ljung-Box")</pre>
Box-Ljung test
data: fit1\$residuals X-squared = 55.372, df = 48, p-value = 0.2164
1 0.00 1
1960 1962 1964 1966 1968 1970 -2 -1 0 1 2
Year Theoretical Quantiles
1.0 1
0.8
0 12 24 36 48 0 12 24 36 48

	Seasonal Time Series Models	
1	MATHEMATICAL AND STATISTICAL SCIENCES	
	Case Study of irline Passengers	
	13.18	

Notes			

A Discussion of the Model Fit

- Residuals show greater spread in 1949-1955 and have heavier-than-normal tails
- The Ljung-Box test result indicates the fitted SARIMA $(1,1,0) \times (1,0,0)_{12}$ has sufficiently account for the temporal dependence
- 95% CI for ϕ_1 and Φ_1 do not contain zero \Rightarrow no need to go with simpler model

Our estimated model is:

```
X_t = \log_{10}(\text{\#Passengers})
Y_t = (1 - B)X_t = X_t - X_{t-1}
(1+0.2667B)(1-0.9291B^{12})(Y_t-0.0039) = Z_t
```

where $\{Z_t\}$ $\stackrel{i.i.d.}{\sim}$ N(0, σ^2) with $\hat{\sigma}^2$ = 0.00033


```
Call:
arima(x = diff.1.0, seasonal = list(order = c(1, 0, 0), period = 12))
Coefficients:

sar1 intercept

0.9081 0.0040

s.e. 0.0278 0.0108
sigma^2 estimated as 0.0003616: log likelihood = 322.75, aic = -639.51
> Box.test(fit2$residuals, lag = 48, type = "Ljung-Box")
            Box-Ljung test
data: fit2$residuals
X-squared = 80.641, df
```

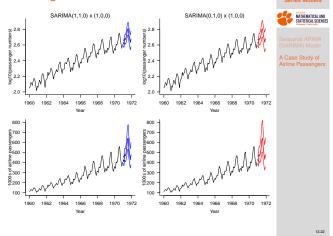

Notes

Notes

A Discussion of SARIMA $(0,1,0) \times (1,0,0)$ Model Fit

Here we drop the AR(1) term

- Residual plots are similar to before, with greater spread in 1949-1955 and heavy tails
- \bullet Both $\hat{\sigma}^2$ and AIC increase (compared with model fit1)
- The lag 1 of ACF and PACF now lies outside the IID noise bounds. The Ljung-Box p-value of 0.0022, leads us to reject the IID residual assumption


In conclusion, the SARIMA $(1,1,0) \times (1,0,0)_{12}$ model fits better than SARIMA $(0,1,0) \times (1,0,0)_{12}$

Sea	sonai	iime	
Ser	ies Mo	dels	
00.			
	School of		


Notes				

Forecasting the 1971 Data

Notes

Evaluating Forecast Performance

Metrics	Model Fit1	Model Fit2
Root Mean Square Error	30.36	31.32
Mean Relative Error	0.057	0.060
Empirical Coverage	0.917	1.000

Seasonal Time

Seasonal ARIMA (SARIMA) Model A Case Study of Airline Passengers

13.

Notes

The SARIMA $(1,1,0) \times (1,0,0)$ Model is Equivalent To?

Our model for the log passenger series $\{X_t\}$ is

$$\phi(B)\Phi(B^{12})(1-B)X_t=Z_t,$$
 where $\phi(B)$ = $1-\phi_1B$ and $\Phi(B)$ = $1-\Phi_1(B)$

Note that

$$\begin{split} \phi(B)\Phi(B^{12}) &= (1-\phi_1 B)(1-\Phi_1 B^{12}) \\ &= 1-\phi_1 B - \Phi_1 B^{12} + \phi_1 \Phi_1 B^{13} \end{split}$$

Question: What is this SARIMA model equivalent to?

Seasonal Time

Seasonal ARIMA (SARIMA) Model

A Case Study of

Notes			