# Lecture 14

# Regression with Time Series Errors, Unit Root Tests, Spurious Correlations, and Prewhitening

Reading: Cryer and Chen (2008): Chapter 3.3-3.4; Chapter 6.4; Chapter 11.3-11.4

MATH 4070: Regression and Time-Series Analysis



## Notes

Notes



Whitney Huang Clemson University





# **Time Series Regression**

Suppose we have the following time series model for  $\{Y_t\}$ :  $Y_t = m_t + \eta_t,$ 

where

- $m_t$  captures the mean of  $\{Y_t\}$ , i.e.,  $\mathbb{E}(Y_t) = m_t$
- $\{\eta_t\}$  is a zero mean stationary process with ACVF  $\gamma_{\eta}(\cdot)$

The component  $\{m_t\}$  may depend on time t, or possibly on other explanatory series



# Example Models for *m*<sub>t</sub>: Trends and Seasonality

- Constant trend model: For each t let  $m_t = \beta_0$  for some unknown parameter  $\beta_0$
- Simple linear regression: For unknown parameters  $\beta_0$  and  $\beta_1$ ,

$$m_t = \beta_0 + \beta_1 x_t,$$

where  $\{x_t\}$  is some explanatory variable indexed in time (may just be a function of time or could be other series)

• Harmonic regression: For each t let

 $m_t = A\cos(2\pi\omega t + \phi),$ 

where A > 0 is the amplitude (an unknown parameter),  $\omega > 0$  is the frequency of the sinusoid (usually known), and  $\phi \in (-\pi, \pi]$  is the phase (usually unknown). We can rewrite this model as

 $m_t = \beta_0 x_{1,t} + \beta_1 x_{2,t},$ 

where  $x_{1,t} = \cos(2\pi\omega t)$  and  $x_{2,t} = \sin(2\pi\omega t)$ 

# Multiple Linear Regression Model

Suppose there are p explanatory series  $\{x_{j,t}\}_{j=1}^p$ , the time series model for  $\{Y_t\}$  is

$$Y_t = m_t + \eta_t,$$

where

$$m_t = \beta_0 + \sum_{j=1}^p \beta_j x_{j,t},$$

and  $\{\eta_t\}$  is a mean zero stationary process with ACVF  $\gamma_{\eta}(\cdot)$  We can write the linear model in matrix notation:

$$Y = X\beta + \eta$$
,

where  $\boldsymbol{Y} = (Y_1, \dots, Y_n)^T$  is the observation vector, the coefficient vector is  $\beta = (\beta_0, \beta_1, \cdots, \beta_p)^T$ ,  $\eta = (\eta_1, \cdots, \eta_n)^T$  is the error vector, and the design matrix is

$$\boldsymbol{X} = \begin{bmatrix} 1 & x_{1,1} & x_{2,1} & \cdots & x_{p,1} \\ 1 & x_{1,2} & x_{2,2} & \cdots & x_{p,2} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & x_{1,n} & x_{2,n} & \cdots & x_{n,n} \end{bmatrix}$$

Model Estimates & Distribution for i.i.d. Errors Suppose  $\{\eta_t\}$  is i.i.d.  $N(0, \sigma^2)$ . Then the ordinary least squares (OLS) estimate of  $\beta$  is

$$\hat{\boldsymbol{\beta}}_{\text{OLS}} = \left( \boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{Y},$$

with

$$\hat{\sigma}^{2} = \frac{\left(\boldsymbol{Y} - \boldsymbol{X}\hat{\beta}_{\text{OLS}}\right)^{T} \left(\boldsymbol{Y} - \boldsymbol{X}\hat{\beta}_{\text{OLS}}\right)}{n - (p+1)}$$

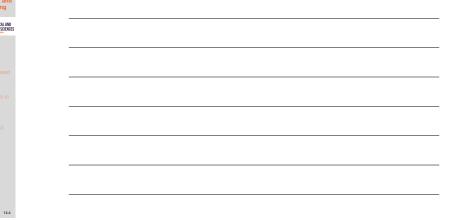
- Gauss-Markov theorem:  $\hat{\beta}_{OLS}$  is the best linear unbiased estimator (BLUE) of  $\beta$
- We have
  - $\hat{\boldsymbol{\beta}}_{\text{OLS}} \sim N(\boldsymbol{\beta}, \sigma^2 (\boldsymbol{X}^T \boldsymbol{X})^{-1})$

is independent of

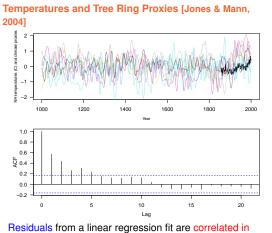
$$\frac{(n-(p+1))\hat{\sigma}^2}{\sigma^2} \sim \chi^2_{n-(p+1)}$$



#### Notes



# Notes



time  $\Rightarrow$  OLS is not appropriate here  $\odot$ 

# Generalized Least Squares Regression

When dealing with time series the errors  $\{\eta_t\}$  are typically correlated in time

• Assuming the errors  $\{\eta_l\}$  are a stationary Gaussian process, consider the model

 $Y = X\beta + \eta$ ,

where  $\eta$  has a multivariate normal distribution, i.e.,  $\eta \sim \mathrm{N}(0, \Sigma)$ 

• The generalized least squares (GLS) estimate of  $\beta$  is

$$\hat{\boldsymbol{\beta}}_{\text{GLS}} = \left( \boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{Y},$$

with

$$\hat{\sigma}^{2} = \frac{\left(\boldsymbol{Y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}_{\text{GLS}}\right)^{T} \left(\boldsymbol{Y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}_{\text{GLS}}\right)}{n - (p + 1)}$$

| Errors, Unit Root<br>Tests, Spurious<br>Correlations, and<br>Prewhitening |
|---------------------------------------------------------------------------|
| MATHEMATICAL AND<br>STATISTICAL SCIENCES                                  |
|                                                                           |

## Notes



# Notes

# **Distributional Properties of Estimators**

Gauss-Markov theorem:  $\beta_{\rm GLS}$  is the best linear unbiased estimator (BLUE) of  $\beta$ 

We have

$$\hat{\boldsymbol{\beta}}_{\text{GLS}} \sim \mathrm{N}(\boldsymbol{\beta}, \sigma^2 \left( \boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{X} \right)^T)$$

• The variance of linear combinations of  $\hat{\beta}_{GLS}$  is less than or equal to the variance of linear combinations of  $\hat{\beta}_{OLS}$ , that is:

$$\operatorname{Var}\left(\boldsymbol{c}^{T}\hat{\boldsymbol{\beta}}_{\mathrm{GLS}}\right) \leq \operatorname{Var}\left(\boldsymbol{c}^{T}\hat{\boldsymbol{\beta}}_{\mathrm{OLS}}\right)$$





# **Applying GLS in Practice**

The main problem in applying GLS in practice is that  $\boldsymbol{\Sigma}$ depends on  $\phi$ ,  $\theta$ , and  $\sigma^2$  and we have to estimate these

- A two-step procedure
  - **O** Estimate  $\beta$  by OLS, calculating the residuals  $\hat{\eta}$  = Y –  $X\hat{eta}_{
    m OLS}$ , and fit an ARMA to  $\hat{\eta}$  to get  $\Sigma$
  - **(2)** Re-estimate  $\beta$  using GLS
- Alternatively, we can consider one-shot maximum likelihood methods

| 5 |
|---|
|   |
|   |
|   |
|   |

# Likelihood-Based Regression Methods

# Model:

 $Y = X\beta + \eta$ ,

where  $\boldsymbol{\eta} \sim N(\boldsymbol{0}, \boldsymbol{\Sigma})$ 

 $\Rightarrow \mathbf{Y} \sim \mathrm{N}(\mathbf{X}\boldsymbol{\beta}, \Sigma)$ 

We maximum the Gaussian likelihood

$$\begin{split} & L_n(\boldsymbol{\beta}, \boldsymbol{\phi}, \boldsymbol{\theta}, \sigma^2) \\ &= (2\pi)^{-n/2} |\Sigma|^{-1/2} \exp\left[-\frac{1}{2} \left(\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta}\right)^T \Sigma^{-1} \left(\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta}\right)\right] \end{split}$$

with respect to the regression parameters  $\boldsymbol{\beta}$  and ARMA parameters  $\phi$ ,  $\theta$ ,  $\sigma^2$  simultaneously



Notes

# Comparison of Two-Step and One-Step Estimation **Procedures**

Let's conduct a Monte Carlo simulation with the following data-generating mechanism:

$$Y_t = 3 + 0.5x_t + \eta_t,$$

where  $\eta_t = 0.8\eta_{t-1} + Z_t - 0.4Z_{t-1}, Z_t \sim N(0, 1).$ 

- Simulate 500 replications, each with 200 data points
- Apply the two-step procedure: fit OLS, extract residuals, estimate ARMA model for  $\hat{\Sigma}$ , then refit using GLS.
- Apply the one-step procedure to jointly estimate regression and ARMA parameters
- Ompare the estimation performance

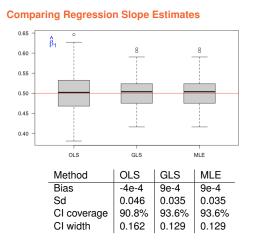




MATHEMATICAL AND STATISTICAL SCIENC





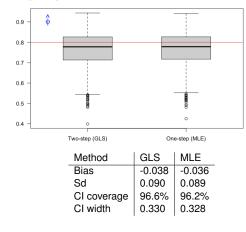




# Notes



# **Comparing ARMA Estimates**



## rrors, Unit Root ests, Spurious prrelations, and Prewhitening

#### ime Series egression lodels eneralized Leas quares egression nit Root Tests ir ime Series

urious rrelation and awhitening

#### Notes

# An Example: Lake Huron Levels

## Model:

 $Y_t = m_t + \eta_t$ 

# where

 $m_t = \beta_0 + \beta_1 t$ 

 $\{\eta_t\}$  is some ARMA(p, q) process

- Scientific Question: Is there evidence that the lake level has changed linearly over the years 1875-1972?
- Statistical Hypothesis:







# Fitting Result form the Two-Step Procedure Introposition of the two-step Procedure Interstantian of two steps of two

# Notes

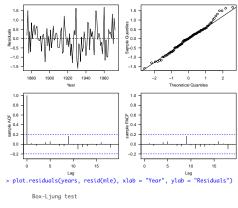
# Fitting Result from One-Step MLE

|            |                                   | ength(LakeHuron)), years),                   |
|------------|-----------------------------------|----------------------------------------------|
| +<br>> ml: | include.mean = FALSE              | )                                            |
| 2 100      | ite                               |                                              |
| Call       | 1:                                |                                              |
| arim       | ma(x = LakeHuron, order = c(2, 0) | , 0), xreg = cbind(rep(1, length(LakeHuron)) |
| 2          | years), include.mean = FALSE)     |                                              |
| Coaf       | fficients:                        |                                              |
| coci       | ar1 ar2 rep(1, lengt              | h(LakeHuron))                                |
|            | 1.0048 -0.2913                    | 620.5115                                     |
|            |                                   |                                              |
| s.e.       | . 0.0976 0.1004                   | 15.5771                                      |
| s.e.       | . 0.0976 0.1004<br>years          | 15.5771                                      |
| s.e.       |                                   | 15.5771                                      |



# Notes

# **MLE Fit Diagnostics**



data: y X-squared = 6.2088, df = 19, p-value = 0.9974



14.17





14.18

# **Comparing Confidence Intervals**

# Regression Slope $\beta_1$ :

|     |         | Point Est.         |         |
|-----|---------|--------------------|---------|
| OLS | -0.0322 | -0.0242            | -0.0162 |
| MLE | -0.0374 | -0.0242<br>-0.0216 | -0.0057 |
|     |         |                    |         |

# AR $\phi_1$ :

| Method | 2.5%  | Point Est. | 97.5% |
|--------|-------|------------|-------|
| GLS    | 0.813 | 1.005      | 1.196 |
| MLE    | 0.813 | 1.005      | 1.196 |

# AR $\phi_2$ :

| Method | 2.5%   | Point Est. | 97.5%  |
|--------|--------|------------|--------|
| GLS    | -0.489 | -0.293     | -0.096 |
| MLE    | -0.488 | -0.291     | -0.095 |



# Notes

| - |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |

# Unit Root Tests: Tests for Non-Stationarity

Suppose we have  $X_1, \dots, X_n$  that follow the model

$$(X_t - \mu) = \phi(X_{t-1} - \mu) + Z_t,$$

where  $\{Z_t\}$  is a  $WN(0, \sigma^2)$  process

• A unit root test considers the following hypotheses:

 $H_0: \phi = 1 \text{ versus } H_a: |\phi| < 1$ 

- Note that where  $|\phi| < 1$  the process is stationary (and causal) while  $\phi = 1$  leads to a nonstationary process
- Exercise: Letting  $Y_t = \nabla X_t = X_t X_{t-1}$ , show that

$$Y_t = (1 - \phi)\mu + (\phi - 1)X_{t-1} + Z_t$$
  
=  $\phi_0^* + \phi_1^* X_{t-1} + Z_t$ ,

where  $\phi_0^* = (1 - \phi)\mu$  and  $\phi_1^* = (\phi - 1)$ 



# Notes

# Notes



Unit Root Tests via Ordinary Least Squares Argument

 ${\ensuremath{\,\circ}}$  We can estimate  $\phi_0^*$  and  $\phi_1^*$  using ordinary least

squares

$$T = \frac{\hat{\phi}_1^*}{\hat{\mathrm{SE}}(\hat{\phi}_1^*)}$$

• Under  $H_0$  this statistic follows a Dickey-Fuller distribution. For a level  $\alpha$  test we reject if the observed test statistic is smaller than a critical value  $C_{\alpha}$ 

• We can extend to other processes (AR(*p*), ARMA(*p*,*q*), and MA(*q*))–see Brockwell and Davis [2016, Section 6.3] for further details eneralized Least quares egression nit Root Tests in ime Series nalysis purious orrelation and

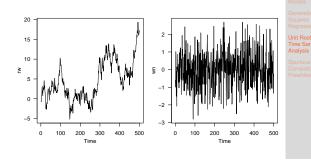
14.21

# **Unit Root Test: Simulated Examples**

# Recall

# $\nabla X_t = \phi_0^* + \phi_1^* X_{t-1} + Z_t,$

where  $\phi_0^* = (1 - \phi)\mu$  and  $\phi_1^* = (\phi - 1)$ Let's demonstrate the test with a simulated random walk  $(\phi = 1)$  and a simulated white noise  $(\phi = 0)$ 



#### Notes





# Unit Root Test: Simulated Examples Cont'd

| > ys <- diff.                                                                                                                     | <pre>&gt; diff.rw &lt;- diff(rw); n &lt;- length(rw) &gt; ys &lt;- diff.rw; xs &lt;- rw[1:(n-1)] &gt; ols.rw &lt;- lm(ys ~ xs); summary(ols.rw)</pre> |               |          |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|--|--|
| Coefficients:                                                                                                                     |                                                                                                                                                       |               |          |  |  |
| E                                                                                                                                 | stimate Std. I                                                                                                                                        | Error t value | Pr(> t ) |  |  |
| (Intercept)                                                                                                                       | 0.10125 0.0                                                                                                                                           | 05973 1.695   | 0.0906 . |  |  |
| xs -                                                                                                                              | 0.01438 0.0                                                                                                                                           | 00899 -1.600  | 0.1102   |  |  |
| <pre>&gt; diff.wn &lt;- diff(wn) &gt; ys &lt;- diff.wn; xs &lt;- wn[1:(n-1)] &gt; ols.wn &lt;- lm(ys ~ xs); summary(ols.wn)</pre> |                                                                                                                                                       |               |          |  |  |
| Coefficients:                                                                                                                     |                                                                                                                                                       |               |          |  |  |
|                                                                                                                                   |                                                                                                                                                       | Error t valu  | • •      |  |  |
| (Intercept) -                                                                                                                     | 0.001138 0.                                                                                                                                           | 045329 -0.02  | 5 0.98   |  |  |
| xs -                                                                                                                              | 1.002420 0.                                                                                                                                           | 044843 -22.35 | 4 <2e-16 |  |  |

# nd I

Notes

# Augmented Dickey-Fuller Test in R

Augmented Dickey-Fuller (ADF) Test: to check for the presence of a unit root in a time series and determine if the series is stationary

 $H_0$ : The time series has a unit root (non-stationary)  $H_1$ : The time series is stationary

If *p*-value < significance level (e.g., 0.05), reject  $H_0 \Rightarrow$  stationary

# > library(tseries) > adf.test(rw)

> adf.test(wn) Warning in adf.test(wn) : p-value smaller than print Augmented Dickey-Fuller Test data: wn

data: rw Dickey-Fuller = -1.9203, Lag order = 7, p-value = 0.612 alternative hypothesis: stationary

Augmented Dickey-Fuller Test

data: wn Dickey-Fuller = -7.8953, Lag order = 7, p-value = 0.01 alternative hypothesis: stationary

#### Time Series rrors, Unit Roof fests, Spurious orrelations, and





# Lagged Regression and Cross-Covariances Consider the lagged regression model:

# $Y_t = \beta_0 + \beta_1 X_{t-d} + \varepsilon_t,$

where X's are iid random variables with variance  $\sigma_X^2$  and the  $\varepsilon$ 's are also white noise with variance  $\sigma_{\varepsilon}^2$  and are independent of the X's

The cross-covariance function of  $\{Y_t\}$  and  $\{X_t\}$  is

$$\gamma_{XY}(h) = \mathbb{E}\left[\left(X_{t+h} - \mu_X\right)\left(Y_t - \mu_Y\right)\right],$$

and the cross-correlation function (CCF) is

$$\rho_{XY}(h) = \frac{\gamma_{XY}(h)}{\sqrt{\gamma_X(0)\gamma_Y(0)}}$$

If d > 0, we say  $X_t$  leads  $Y_t$ , and we have CCF is identically zero except for lag h = -d, where CCF is  $\frac{\beta_1 \sigma_X}{\sqrt{\beta_1^2 \sigma_X^2 + \sigma_{\varepsilon}^2}}$ 



Notes

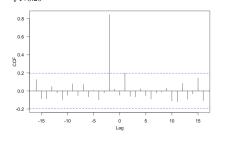
Notes

# Lagged Regression and Its CCF

Consider the following reggression model:

# $Y_t = X_{t-2} + \varepsilon_t,$

where  $X_t \stackrel{i.i.d}{\sim} N(0,1)$ ,  $\varepsilon_t \stackrel{i.i.d}{\sim} N(0,0.25)$ , and X's and  $\varepsilon$ 's are independent to each other. The CCF is  $\frac{1}{\sqrt{1+0.25}} = 0.8944$  when h = -2, and 0 otherwise

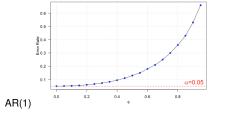




# **Spurious Correlations**

- The lagged regression discussed earlier may be too restrictive, as  $X_t$ ,  $Y_t$ , and  $\varepsilon_t$  could be temporally correlated
- Temporal dependence makes the horizon blue dashed lines  $(\pm 1.96/\sqrt{n})$  unreliable
- This can lead to spurious correlations

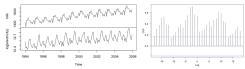
**Example**:  $X_t$  and  $Y_t$  are independent, but both follow an







# Spurious Correlations: An Example with Milk and **Electricity Data**



- Observed Correlation: Milk production and electricity usage show a high correlation due to shared seasonal patterns
- Temporal Dependence: Both series exhibit seasonality and autocorrelation, making raw correlations misleading
- Key Takeaway: Spurious correlations highlight the need for detrending and deseasonalizing in time series analysis

| Regression with<br>Time Series<br>Errors, Unit Root<br>Tests, Spurious<br>Correlations, and<br>Prewhitening |
|-------------------------------------------------------------------------------------------------------------|
| MATHEMATICAL AND<br>STATISTICAL SCIENCE                                                                     |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
| Spurious<br>Correlation and<br>Prewhitening                                                                 |
|                                                                                                             |

# Notes

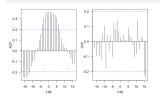
Notes

# **Understanding Prewhitening**

Prewhitening: A technique to remove autocorrelation in a time series before analyzing cross-correlations Steps in Prewhitening:

- Fit a time series model (e.g., ARMA) to  $\{X_t\}$  and filter it to obtain residuals
- Apply the same model to  $\{Y_t\}$  for consistent filtering
- Compute the cross-correlation of the residuals

x <- arima.sim(n = 100, list(ar = 0.9))
y <- arima.sim(n = 100, list(ar = 0.9))
par(las = 1, mgp = c(2.2, 1, 0), mar =
cof(n = 1)</pre> y <- arima.sim(r par(las = 1, mgp ccf(x, y) prewhiten(x, y) c(3.6, 3.6, 0.8, 0.6), mfrow = c(1, 2))



| STATISTICAL SCIENCES                        |
|---------------------------------------------|
| Time Series<br>Regression<br>Models         |
|                                             |
|                                             |
| Spurious<br>Correlation and<br>Prewhitening |

# Applying Prewhitening to the Milk and Electricity Data Example

> me.dif = ts.intersect(diff(diff(milk, 12)), + diff(diff(log(electricity), 12))) > prewhiten(as.vector(me.dif[, 1]), as.vector(me.dif[, 2]), ylab = 'CCF') > par(las = 1, mgp = c(2, 2, 1, 0), mar = c(3, 6, 3, 6, 0, 8, 0, 6)) > prewhiten(as.vector(me.dif[, 1]), as.vector(me.dif[, 2]), ylab = 'CCF')

