Lecture 14
Regression with Time Series Errors,
Unit Root Tests, Spurious

Correlations, and Prewhitening

Reading: Cryer and Chen (2008): Chapter 3.3-3.4;
Chapter 6.4; Chapter 11.3-11.4

MATH 4070: Regression and Time-Series Analysis

Whitney Huang
Clemson University

Agenda

@ Time Series Regression Models
O Generalized Least Squares Regression
Q Unit Root Tests in Time Series Analysis

0 Spurious Correlation and Prewhitening

Time Series Regression

Suppose we have the following time series model for

{vi}:

Y =my +me,

where
@ my captures the mean of {Y;}, i.e., E(Y;) = my

o {n:} is a zero mean stationary process with ACVF
'Yn(')

The component {m,} may depend on time ¢, or possibly
on other explanatory series
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Regression with

Example Models for m,: Trends and Seasonality T oo Sorics
@ Constant trend model: For each ¢ let m; = 3, for e
some unknown parameter S, e
@ Simple linear regression: For unknown parameters “‘9 SHTSTEA soPes
Bo and 1,
Time Series

me = o + Prt,
where {z;} is some explanatory variable indexed in
time (may just be a function of time or could be other

series)

@ Harmonic regression: For each ¢ let

my = Acos(2mwt + ¢),

where A > 0 is the amplitude (an unknown
parameter), w > 0 is the frequency of the sinusoid
(usually known), and ¢ € (-, 7] is the phase (usually
unknown). We can rewrite this model as

my = fox1s + Prrag,

where z1; = cos(2nwt) and xa ¢ = sin(2nwt)

Multiple Linear Regression Model eotsss ity

Errors, Unit Root

Suppose there are p explanatory series {zj,t};’:l, the time S5 o000

Correlations, and

series model for {Y;} is Prewhitening
Yi=my +
£=me - Fe
where
p Time Series
my = fo + Z Bjaj]}lﬂ Models.
& ode
and {7} is a mean zero stationary process with ACVF
(")
We can write the linear model in matrix notation:

Y=XB+n,
where Y = (Y7,-+,Y,,)T is the observation vector, the

coefficient vector is B = (80, 81, Bp) T m = (1, nn) 7T is
the error vector, and the design matrix is

1 @1 w21 Tpa
x|l T2 @22 Tp2
S S aee M 145
1 Tin T2m " Tpn
Model Estimates & Distribution for i.i.d. Errors e
Suppose {7} is i.i.d. N(0,02). Then the ordinary least TG
squares (OLS) estimate of 3 is i
fows = (XTX) ' X7y, @ s,

with

2 _ (Y_X,éOLS)T (Y - XBors)
n-(p+1)

o Gauss-Markov theorem: BoLs is the best linear
unbiased estimator (BLUE) of 8

@ We have A .
Bors ~N(B,0” (X' X))
is independent of

(n-(p+1))é®

2
52 ~ Xn—(p+1)
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Temperatures and Tree Ring Proxies [Jones & Mann,
2004]

2 4

NH temperatures (C) and climate proxies.
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Residuals from a linear regression fit are correlated in
time = OLS is not appropriate here @

Generalized Least Squares Regression

When dealing with time series the errors {,} are typically
correlated in time

@ Assuming the errors {n;} are a stationary Gaussian
process, consider the model

Y=XgB+n,

where n has a multivariate normal distribution, i.e.,
n~N(0,X%)

@ The generalized least squares (GLS) estimate of 3 is
Bas = (XT2'x) " xTv ly,

with

o (Y- XBGLS)T (Y - XfcLs)
7 n-(p+1)

Distributional Properties of Estimators

Gauss-Markov theorem: B¢ is the best linear unbiased
estimator (BLUE) of 3

@ We have
~ _ T
Bors ~N(B,0% (XTE1 X))
@ The variance of linear combinations of BGLS is less

than or equal to the variance of linear combinations
of BoLs, that is:

Var (cTﬁGLs) < Var (CTL:]OLS)
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Applying GLS in Practice

The main problem in applying GLS in practice is that ©
depends on ¢, 6, and o2 and we have to estimate these

@ A two-step procedure

@ Estimate Bhby OLS, calculating the residuals
N =Y - XBoLs, and fit an ARMA to 7} to get &

@ Re-estimate 3 using GLS

o Alternatively, we can consider one-shot maximum
likelihood methods

Likelihood-Based Regression Methods

Model:
Y=XB+n,

where n ~ N(0,X%)

=Y ~N(X3,%)
We maximum the Gaussian likelihood

Ln(B,,0,07)
- 2n) " exp -2 (v - XB) 2 (v - X6)|

with respect to the regression parameters 3 and ARMA
parameters ¢, 8, o simultaneously

Comparison of Two-Step and One-Step Estimation
Procedures

Let’s conduct a Monte Carlo simulation with the following
data-generating mechanism:

Y, =3+ 0.5z + 1y,
where n, = 0.8n_1 + Z, — 0.4Z,_1, Z; ~ N(0,1).

@ Simulate 500 replications, each with 200 data points

@ Apply the two-step procedure: fit OLS, extract
residuals, estimate ARMA model for %, then refit
using GLS.

© Apply the one-step procedure to jointly estimate
regression and ARMA parameters

@ Compare the estimation performance
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Regression with

Comparing Regression Slope Estimates e

Errors, Unit Root

Tests, Spurious

0.65 °
A Correlations, and
B4 T 8 8 Prewhitening
0.60 | i
‘ | 1 &5 i,
0.55 ! !
0.50 -
045 ' ; g;;r:!/m Least
' : ! Regression
0.40 | '
. ‘ ‘
oLs GLS MLE
Method |OLS | GLS | MLE
Bias -4e-4 | 9e-4 9e-4
Sd 0.046 | 0.035 | 0.035
Cl coverage | 90.8% | 93.6% | 93.6%
Cl width 0.162 | 0.129 | 0.129
Comparing ARMA Estimates AL
Errors, Unit Root
—_— —_— Te , S
A . ‘ St
0.9 A [ i \ Prewhitening
0.7 4 T !
06 - :
i | Generalized Least
Squi
05 g E ez
o
04 4 o

T
Two-step (GLS)

One-step (MLE)

Method \ GLS \ MLE
Bias -0.038 | -0.036
Sd 0.090 | 0.089
Cl coverage | 96.6% | 96.2%
Cl width 0.330 | 0.328

An Example: Lake Huron Levels
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Model: Prewhitening
Yi=my+m ‘
@5 G,
where

my = B + Pt

Generalized Least
Squares
Regression

Notes

{n:} is some ARMA(p, ¢) process

@ Scientific Question: Is there evidence that the lake
level has changed linearly over the years
1875-19727?

o Statistical Hypothesis:
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Fitting Result form the Two-Step Procedure

Q OLs:

Im(formula = LakeHuron ~ years)

Residuals:
Min 1Q Median 3Q Max
-2.50997 -0.72726 ©.00083 0.74402 2.53565

Coefficients:

Estimate Std. Error t value
(Intercept) 625.554918 7.764293 80.568
years -0.024201 ©0.004036 -5.996

ar‘im‘a(x = Im$residuals, order = c(2, @, @), include.mean

Coefficients:
arl ar2
1.0050 -0.2925
s.e. 0.0976 0.1002

Q Refit GLS
Will leave it to you as an exercise

Fitting Result from One-Step MLE

> mle <- arima(LakeHuron, order = c(2, 0, 0),

+ xreg = cbind(rep(1,length(LakeHuron)), years),
+ include.mean = FALSE)

> mle

Call:

arima(x = LakeHuron, order = c(2, @, @), xreg = cbind(rep(1, length(LakeHuron)),

years), include.mean = FALSE)

Coefficients:
arl ar2 rep(1, length(LakeHuron))
1.0048 -0.2913 620.5115
s.e. 0.0976 0.1004 15.5771
years
-0.0216
s.e. 0.0081

sigmaA2 estimated as ©.4566: log likelihood = -101.2, aic = 212.4

MLE Fit Diagnostics
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> plot.residuals(years, resid(mle), xlab = "Year", ylab = "Residuals")

Box-Ljung test

data: y
X-squared = 6.2088, df = 19, p-value = 0.9974
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i i Ri h
Comparing Confidence Intervals SR I

Errors, Unit Root

Regression Slope f;: Conolations, and
Prewhitening
Method | 2.5% Point Est. | 97.5% .
O5@ athewaTIcaL A
OoLSs -0.0322 | -0.0242 -0.0162 @O s
MLE -0.0374 | -0.0216 -0.0057
AR b1:
Method | 2.5% | Point Est. | 97.5%
GLS 0.813 | 1.005 1.196
MLE 0.813 | 1.005 1.196
AR @2
Method | 2.5% | Point Est. | 97.5%
GLS -0.489 | -0.293 -0.096
MLE -0.488 | -0.291 -0.095
Unit Root Tests: Tests for Non-Stationarity e
Suppose we have X1, -, X, that follow the model e

Correlations, and
Prewhitening

(Xi =) = 9(Xp1 — 1) + Zy,

where {Z,} is a WN(0,?) process
@ A unit root test considers the following hypotheses:

0% iiicwon o
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Hy:¢=1versus Hy:|¢| <1

Unit Root Tests in

o Note that where |¢| < 1 the process is stationary (and Time S
causal) while ¢ = 1 leads to a nonstationary process e

o Exercise: Letting Y; = VX; = X; - X;_1, show that

Yi=(1-d)p+(d-1)Xi-1+ 2
=¢o+ D1 X1+ Zy,

where ¢ = (1-¢)p and ¢} = (¢ - 1)

1420

Unit Root Tests via Ordinary Least Squares Argument gedicasloniity

Time Series

@ We can estimate ¢3 and ¢} using ordinary least e
Correlations, and
squares rewniening.
@ Using the estimate of ¢7, ¢, and its standard error,
SE(¢?), the Dickey-Fuller statistics is
__ %
SE(¢7)
Unit Re
Time S

o Under H this statistic follows a Dickey-Fuller
distribution. For a level « test we reject if the
observed test statistic is smaller than a critical value

Ca
o | 001 005 0.10
Co | -343 -286 -257
@ We can extend to other processes (AR(p), 1021

ARMA(p, q), and MA(g))—see Brockwell and Davis
[2016, Section 6.3] for further details
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Unit Root Test: Simulated Examples et Notes
Recall festonnat)
VXt = @)+ ¢1 Xeo1 + Zt, R T
where ¢ = (1 - nd ¢} = (-1 [
ere g5 = (1-p)pand ¢7 = (¢-1) &5 b,

Let's demonstrate the test with a simulated random walk

(¢ = 1) and a simulated white noise (¢ = 0)

20
5
15 4
I
10 4
H g 0
5
14
04
o
-5
T T T T T T 3 T T T T T
0 100 200 300 400 500 0 100 200 300 400 500

Time Time
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> diff.rw <- diff(rw); n <- length(rw) Prewhitening

> ys <- diff.rw; xs <- rw[1:(n-1)]

> ols.rw <- ImCys ~ xs); summary(ols.rw) “‘%f‘q“ﬁﬁ?}@é@ﬁgm
Coefficients:
Estimate Std. Error t value Pr(>I1tl)
(Intercept) 0.10125 0.05973 1.695 0.0906 .
xS -0.01438 0.00899 -1.600 0.1102
Unit Root Tests in

Time Series
Analysis

> diff.wn <- diff(wn)
> ys <- diff.wn; xs <- wn[1:(n-1)]

> ols.wn <- ImCys ~ xs); summary(ols.wn)

Coefficients:

Estimate Std. Error t value Pr(>1tl)
(Intercept) -0.001138 ©0.045329 -0.025 0.98
XS -1.002420 0.044843 -22.354 <2e-16

1423

H - H Regression with

Augmented Dickey-Fuller Test in R B
Errors, Unit Root Notes

Tests, Spurious

Correlations, and

Augmented Dickey-Fuller (ADF) Test: to check for the Zetiesa

presence of a unit root in a time series and determine if
the series is stationary

0% usiiowon o
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H, : The time series has a unit root (non-stationary)
H, : The time series is stationary

If p-value < significance level (e.g., 0.05), reject Hy =

> library(tseries) L st testonm)

> adf.test(ru) Warning in adf.test(un) i p-value smaller than printec
Augnented Dickey-Fuller Test Augnented Dickey-Fuller Test

data: rw data: wn

Dickey-Fuller = -1.9203, Lag order = 7. p-value = Dickey-Fuller = -7.8953, Lag order = 7, p-value =

0.612 .01

alternative hypothesis: stationary alternative hypothesis: stationary

1424
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Lagged Regression and Cross-Covariances Time Series Notes
Consider the lagged regression model: e
Correlations, and

Prewhitening

Yy =B+ B1Xi—q+et,

0% iiicwon o
" STATISTICAL SCIENCES

where X's are iid random variables with variance ¢% and
the ¢’s are also white noise with variance 2 and are

independent of the X'’s
The cross-covariance function of {Y;} and {X,} is

Yxy (h) = E[(Xpen = px) (Yo - py)]

and the cross-correlation function (CCF) is

xvy (h)

h)= —/——~-—.
P = O (®

If d >0, we say X, leads Y;, and we have CCF is

identically zero except for lag h = -d, where CCF is

Birox

/5262 452
Biox+o?
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Regression with

Lagged Regression and Its CCF el
Errors, Unit Root Notes

Tests, Spurious

Consider the following reggression model: o s
Prewhitening
Y;f = Xf,,g + &t
’ &

where X, "4 N(0,1), e "4*N(0,0.25), and X’s and ¢’s

are independent to each other. The CCF is

L__ —(.8944 when h = -2, and 0 otherwise

V1+0.25
0.8 -
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04 +
8
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T \ IT T
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Lag
Spurious Correlations pegresslonih
Ti S
Errors, Unit Root Notes

Tests, Spurious

@ The lagged regression discussed earlier may be too :
Correlations, and

restrictive, as X, Y7, and ¢; could be temporally Prewhitening
correlated

0% usiiowon o
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@ Temporal dependence makes the horizon blue
dashed lines (+1.96//n) unreliable

@ This can lead to spurious correlations

Example: X; and Y; are independent, but both follow an

/

Error Rate.
L

v
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Spurious Correlations: An Example with Milk and
Electricity Data

Y V\N'/“w'\‘r\”
A \,,"\,,ﬂ“\v‘f\ﬁ W
Nl bl W

[
WA

o Observed Correlation: Milk production and
electricity usage show a high correlation due to
shared seasonal patterns

@ Temporal Dependence: Both series exhibit
seasonality and autocorrelation, making raw
correlations misleading

o Key Takeaway: Spurious correlations highlight the
need for detrending and deseasonalizing in time
series analysis

Understanding Prewhitening
Prewhitening: A technique to remove autocorrelation in a
time series before analyzing cross-correlations
Steps in Prewhitening:
o Fit a time series model (e.g., ARMA) to {X;} and
filter it to obtain residuals

@ Apply the same model to {Y;} for consistent filtering

@ Compute the cross-correlation of the residuals

X <= arima.sim(n = 160, list(ar = 6.9))

y < arima.sim(n - 100, list(ar = 6.9))

par(las = 1, mgp = c(2.2, 1, 0), mar = c(3.6, 3.6, 0.8, 0.6), mfrow = (1, 2))
ccf(x, y)

prewhiten(x, y)

: s,

’H

Applying Prewhitening to the Milk and Electricity Data
Example

> me.dif = ts.intersect(diff(diff(milk, 12)),
+ diff(diff(log(electricity), 12)))
> prewhiten(as.vector(me.dif[, 1]), as.vector(me.dif[, 2]), ylab = 'CCF')
> par(las = 1, mgp = c(2.2, 1, 0), mar = c(3.6, 3.6, 0.8, 0.6))
> prewhiten(as.vector(me.dif[, 1]), as.vector(me.dif[, 2]), ylab = 'CCF')
0.2 A
0.1 A
w
5 ‘| \‘H\Il‘l\‘
- HI “ |‘ | w ‘ ’I
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