Lecture 2

Simple Linear Regression

Reading: Forecasting, Time Series, and Regression (4th edition) by Bowerman, O'Connell, and Koehler: Chapter 3

MATH 4070: Regression and Time-Series Analysis

Whitney Huang Clemson University

	Notes
AND	
diction	

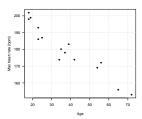
Agenda

- Simple Linear Regression
- 2 Parameter Estimation
- Residual Analysis
- Confidence/Prediction Intervals
- **6** Hypothesis Testing
- 6 Analysis of Variance (ANOVA) Approach to Regression

1	Notes				
-					
-					
_					
_					
_					

What is Regression Analysis?

Regression analysis: A set of statistical procedures for estimating the relationship between a (numerical) response variable and predictor variable(s), at least one of which is numerical



Simple linear regression: The relationship between the response variable and the predictor variable is approximately linear

Simple Linear Regression
MATHEMATICAL AND STATISTICAL SCIENCES
Simple Linear Regression
Confidence/Prediction Intervals

Notes			

Simple Linear Regression (SLR)

Y: response variable; X: predictor variable

 In SLR we assume there is a linear relationship between X and Y:

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- We need to estimate β_0 (intercept) and β_1 (slope) based on observed data $\{x_i,y_i\}_{i=1}^n$
- We can use the estimated regression equation to
 make predictions
 - study the relationship between response and predictor
 - control the response
- Yet we need to quantify our estimation uncertainty regarding the linear relationship

Simple Linear Regression

Simple Linear Regression

Parameter Estimation

Residual Analysis

Confidence/Predictintervals

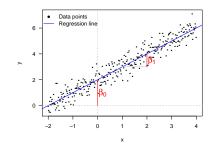
Hypothesis Testing

Analysis of Variance (ANOVA)

Approach to Regression

Notes			

Regression equation: $Y = \beta_0 + \beta_1 X$



- β_0 : $\mathbb{E}[Y]$ when X = 0
- ullet β_1 : $\mathbb{E}[\Delta Y]$ when X increases by 1

Notes			

Assumptions about the Random Error ε

In order to estimate β_0 and $\beta_1,$ we make the following assumptions about ε

- $\mathbb{E}[\varepsilon_i] = 0$
- $Var[\varepsilon_i] = \sigma^2$
- $Cov[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

Therefore, we have

$$\mathbb{E}[Y_i] = \beta_0 + \beta_1 X_i, \text{ and }$$

$$\mathrm{Var}[Y_i] = \sigma^2$$

The regression line $\beta_0 + \beta_1 X$ represents the **conditional mean curve** whereas σ^2 measures the magnitude of the **variation** around the regression curve

Sim Re	ple Linear egression	
la	School of MATHEMATICAL AND	

STATISTICAL SCIEN

Regression
Parameter
Estimation

Residual Analysis
Confidence/Prediction

ypothesis Testing nalysis of ariance (ANOVA)

Notes			

2.

Parameter Estimation: Method of Least Squares

For given observations $\{x_i,y_i\}_{i=1}^n$, choose β_0 and β_1 to minimize the sum of squared errors:

$$\ell(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

Solving the above minimization problem requires some knowledge from Calculus (see notes LS_SLR.pdf)

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

We also need to estimate

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n-2},$$

where $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$

Notes

,			

Properties of Least Squares Estimators

• The estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased. That is

$$\mathbb{E}(\hat{\beta}_0) = \beta_0;$$
$$\mathbb{E}(\hat{\beta}_1 = \beta_1.$$

• The estimator $\hat{\sigma}^2 = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n-2}$ is unbiased. That is

$$\mathbb{E}(\hat{\sigma}^2) = \sigma^2.$$

We can write $\hat{\sigma}^2 = \frac{|\mathbf{y} - \hat{\mathbf{y}}|^2}{n-2}$, where $\mathbf{y} = (y_1, \cdots, y_n)^T$, $\hat{\mathbf{y}} = (\hat{\beta}_0 + \hat{\beta}_1 x_1, \cdots, \hat{\beta}_0 + \hat{\beta}_1 x_n)^T$.

Since $\hat{\mathbf{y}}$ has a dimension of 2 (regression slope and intercept), this leads to n-2 in the denominator

Notes

Connection to Calculus: Derivation of β_1

Note that $\mathbb{E}[Y|X] = \beta_0 + \beta_1 X = \mu_Y + \beta_1 (X - \mu_x)$. Now consider minimizing

$$g(b) = \mathbb{E}\left[(Y - \mu_Y - b(X - \mu_X))^2 \right]$$

Note

$$\begin{split} g(b) &= \mathbb{E}\left[(Y - \mu_Y)^2 \right] + b^2 \mathbb{E}\left[(X - \mu_X)^2 \right] - 2b \mathbb{E}\left[(Y - \mu_Y) \left(X - \mu_X \right) \right] \\ &= \sigma_Y^2 + b^2 \sigma_X^2 - 2b \mathrm{Cov}(X,Y) \end{split}$$

Taking the derivative with respect to b:

$$g'(b) = 2b\sigma_X^2 - 2\operatorname{Cov}(X, Y)$$

Let
$$\beta_1$$
 solve $g'(b)=0\Rightarrow \beta_1=rac{\mathrm{Cov}(X,Y)}{\sigma_X^2}$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})/(n-1)}{\sum_{i=1}^n (x_i - \bar{x})^2/(n-1)}$$
 is the sample counterpart

Best Linear Predictor and Its Mean Square Error

Consider the mean square error ($\mathop{\rm MSE})$ of the least square predictor

$$\begin{split} \mathbb{E}\left[\left(Y-\beta_{0}-\beta_{1}X\right)^{2}\right] &= \operatorname{Var}\left(Y-\beta_{0}-\beta_{1}X\right) \\ &= \operatorname{Cov}\left[\left(Y-\beta_{1}X\right)\left(Y-\beta_{1}X\right)\right] \\ &= \sigma_{Y}^{2}-2\beta_{1}\operatorname{Cov}(X,Y)+\beta_{1}^{2}\sigma_{X}^{2} \end{split}$$

Now plug in $\beta_1 = \frac{\operatorname{Cov}(X,Y)}{\sigma_X^2}$, we have

MSE =
$$\sigma_Y^2 - 2 \frac{\text{Cov}(X, Y)}{\sigma_X^2} \text{Cov}(X, Y) + (\frac{\text{Cov}(X, Y)}{\sigma_X^2})^2 \sigma_X^2$$

= $\sigma_Y^2 - 2 \frac{\text{Cov}(X, Y)^2}{\sigma_X^2} + \frac{\text{Cov}(X, Y)^2}{\sigma_X^2}$
= $\sigma_Y^2 - \frac{\text{Cov}(X, Y)^2}{\sigma_X^2}$
= $\sigma_Y^2 - \frac{\text{Cov}(X, Y)^2}{\sigma_X^2}$
= $\sigma_Y^2 (1 - \rho^2)$

Notes

Geometric View of Least Squares Model Fit

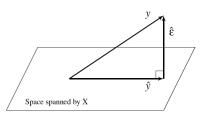


Figure courtesy of Faraway's Linear Models with R (2015, p.

- $\mathbf{y} = (y_1, \cdots, y_n)^T$: The data vector
- $\hat{\mathbf{y}}=(\hat{y}_1=\hat{\beta}_0+\hat{\beta}_1x_1,\cdots,\hat{y}_n=\hat{\beta}_0+\hat{\beta}_1x_n)^T$: The least squares fitted vector
- $\hat{\varepsilon} = (y_1 \hat{y}_1, \cdots, y_n \hat{y}_n)^T$: The residual vector

Notes

Example: Maximum Heart Rate vs. Age

The maximum heart rate MaxHeartRate of a person is often said to be related to age ${\tt Age}$ by the equation:

MaxHeartRate = 220 - Age.

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm) (link to the "dataset": http://whitneyhuang83.github.io/ maxHeartRate.csv)

- Compute the estimates for the regression coefficients
- Compute the fitted values
- **Output Output O**

Estimate the Parameters β_1 , β_0 , and σ^2

 y_i and x_i are the Maximum Heart Rate and Age of the \mathbf{i}^{th} individual

• To obtain $\hat{\beta}_1$

Ompute
$$\bar{y} = \frac{\sum_{i=1}^n y_i}{n}$$
, $\bar{x} = \frac{\sum_{i=1}^n x_i}{n}$

- $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$
- $\bigcirc \hspace{0.5cm} \text{Compute } \textstyle \sum_{i}^{n} (x_i \bar{x})(y_i \bar{y}) \text{ divided by } \textstyle \sum_{i}^{n} (x_i \bar{x})^2$
- $\hat{\beta}_0$: Compute $\bar{y} \hat{\beta}_1 \bar{x}$
- $\hat{\sigma}^2$
 - Ompute the fitted values: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i, \quad i = 1, \dots, n$
 - ② Compute the **residuals** $e_i = y_i \hat{y}_i, \quad i = 1, \dots, n$
 - © Compute the **residual sum of squares (RSS)** = $\sum_{i=1}^{n} (y_i \hat{y}_i)^2$ and divided by n-2 (why?)

Simple Linear Regression

STATISTICAL SCIENCE

Parameter

Residual Analysis

Confidence/Prediction

Analysis of Variance (ANOVA) Approach to

2.13

Notes

Let's Do the Calculations

$$\bar{x} = \sum_{i=1}^{15} \frac{18 + 23 + \dots + 39 + 37}{15} = 37.33$$

$$\bar{y} = \sum_{i=1}^{15} \frac{202 + 186 + \dots + 183 + 178}{15} = 180.27$$

Simple Linear Regression

STATISTICAL SCIENCES

Parameter

Residual Analysis
Confidence/Prediction

X 19 23 25 25 25 65 54 34 56 72 19 23 42 18 39 27/miles Tealing 19 20 19 21 19 23 42 18 39 27/miles Tealing 19 20

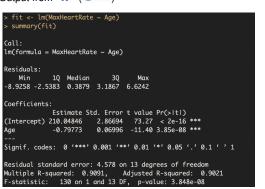
$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = -0.7977$$

- $\hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x} = 210.0485$
- $\hat{\sigma}^2 = \frac{\sum_{i=1}^{15} (y_i \hat{y}_i)^2}{13} = 20.9563 \Rightarrow \hat{\sigma} = 4.5778$

Notes

Notes

Let's Double Check



Simple Linear

Simple Linear Regression

Parameter Estimation

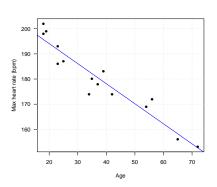
Hesidual Analysis

Confidence/Prediction
Intervals

ypothesis Testing

analysis of fariance (ANOVA) approach to degression

Assessing Linear Regression Fit



Question: Is linear relationship between max heart rate and age reasonable? ⇒ Residual Analysis

Notes

Residuals

• The residuals are the differences between the observed and fitted values:

$$e_i = y_i - \hat{y}_i, \label{eq:ei}$$
 where $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$

• Note that estimates aren't parameters, and residuals aren't random errors

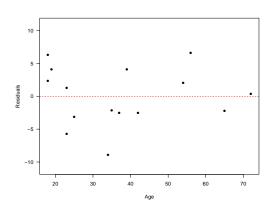
$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$
$$y_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + e_i$$

- Nonetheless, residuals are very useful in assessing the appropriateness of the assumptions on $\varepsilon_i.$ Recall • $\mathrm{E}[\varepsilon_i]=0$

 - $Var[\varepsilon_i] = \sigma^2$
 - $\bullet \ \operatorname{Cov}[\varepsilon_i,\varepsilon_j] = 0, \quad i \neq j$

Notes			

Residuals Against Predictor Plot



Simple	Linear
Regres	esion

Interpreting Residual Plots

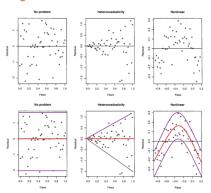
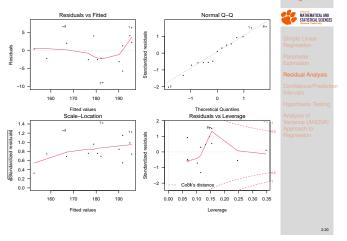


Figure courtesy of Faraway's Linear Models with R (2005, p. 59).

Simple Linear Regression
MATHEMATICAL AND STATISTICAL SCIENCES
Estimation Residual Analysis
Confidence/Prediction Intervals
2.19

١	lotes				
_					
_					

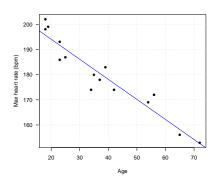
Diagnostic Plots in R



Notes			

How (Un)certain We Are?

Remember: estimates (e.g., $\hat{\beta}_1$) are not parameters (e.g, β_1)



Can we formally quantify our estimation uncertainty? \Rightarrow We need additional (distributional) assumption on ε

Simple Linear
Regression
Parameter
Estimation
Residual Analysis
Confidence/Prediction
Intervals
Hypothesis Testing
Analysis of
Variance (ANOVA)
Approach to
Regression

Notes			

Normal Error Regression Model

Recall the SLR model:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- Further assume $\varepsilon_i \stackrel{i.i.d}{\sim} N(0, \sigma^2) \Rightarrow Y_i | X_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2)$
- With normality assumption, we can derive the sampling distribution of $\hat{\beta}_1$ and $\hat{\beta}_0 \Rightarrow$

$$\begin{array}{ll} \frac{\hat{\beta}_1-\beta_1}{\sin(\hat{\beta}_1)}\sim t_{n-2}, & \hat{\sec}(\hat{\beta}_1)=\frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^n(x_i-\bar{x})^2}}\\ \frac{\hat{\beta}_0-\beta_0}{\sin(\hat{\beta}_0)}\sim t_{n-2}, & \hat{\sec}(\hat{\beta}_0)=\hat{\sigma}\sqrt{(\frac{1}{n}+\frac{\bar{x}^2}{\sum_{i=1}^n(x_i-\bar{x})^2})} \end{array}$$

where t_{n-2} denotes the Student's t distribution with n-2 degrees of freedom

Notes

Deviation of $se(\hat{\beta}_1)$

Recall
$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (Y_i - \bar{Y})(x_i - \bar{x})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$\begin{aligned} \operatorname{Var}(\hat{\beta}_{1}) &= \operatorname{Var}\left(\frac{\sum_{i=1}^{n}(Y_{i} - \bar{Y})(x_{i} - \bar{x})}{\sum_{i=1}^{n}(x_{i} - \bar{x})^{2}}\right) \\ &= \operatorname{Var}\left(\frac{\sum_{i=1}^{n}(x_{i} - \bar{x})Y_{i}}{\sum_{i=1}^{n}(x_{i} - \bar{x})^{2}}\right) \\ &= \left(\frac{1}{\sum_{i=1}^{n}(x_{i} - \bar{x})^{2}}\right)^{2}\left(\sum_{i=1}^{n}(x_{i} - \bar{x})^{2}\right)\operatorname{Var}(Y_{i}) \\ &= \frac{\sigma^{2}}{\sum_{i=1}^{n}(x_{i} - \bar{x})^{2}}\end{aligned}$$

 $\mathrm{se}(\hat{eta}_1)=\sqrt{\mathrm{Var}(\hat{eta})}=rac{\sigma}{\sqrt{\sum_{i=1}^n(x_i-\bar{x})^2}}.$ Replacing σ by $\hat{\sigma}$ to get $\hat{\operatorname{se}}(\hat{\beta}_1)$

Notes

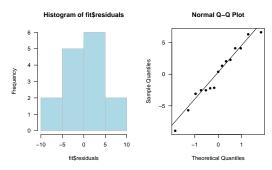
Deviation of $se(\hat{\beta}_0)$

Recall $\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{x}$

$$\begin{aligned} \operatorname{Var}(\hat{\beta}_0) &= \operatorname{Var}\left(\bar{Y} - \hat{\beta}_1 \bar{x}\right) \\ &= \operatorname{Var}(\bar{Y}) + \operatorname{Var}(-\hat{\beta}_1 \bar{x}) - 2\operatorname{Cov}(\bar{Y}, \bar{x}\hat{\beta}_1) \\ &= \frac{\sigma^2}{n} + \bar{x}^2 \left(\frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})}\right) - 2\operatorname{Cov}(\bar{Y}, \bar{x}\hat{\beta}_1) \\ &= \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right) \end{aligned}$$

Taking the square root and replacing σ with $\hat{\sigma}$ yields $\hat{\operatorname{se}}(\hat{\beta}_0)$

Assessing Normality Assumption on ε



The Q-Q plot is more effective in detecting subtle departures from normality, especially in the tails.

Notes

Confidence Intervals

• Recall $\frac{\hat{\beta}_1 - \beta_1}{\hat{\text{se}}_z} \sim t_{n-2}$, we use this fact to construct confidence intervals (CIs) for β_1 :

$$\left[\hat{\beta}_1 - t_{1-\alpha/2,n-2}\hat{\sigma}_{\hat{\beta}_1},\hat{\beta}_1 + t_{1-\alpha/2,n-2}\hat{\sigma}_{\hat{\beta}_1}\right],$$

where α is the confidence level and $t_{1-\alpha/2,n-2}$ denotes the $1 - \alpha/2$ percentile of a student's t-distribution with n-2 degrees of freedom

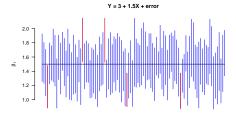
• Similarly, we can construct CIs for β_0 :

$$\left[\hat{\beta}_0 - t_{1-\alpha/2, n-2} \hat{\sigma}_{\hat{\beta}_0}, \hat{\beta}_0 + t_{1-\alpha/2, n-2} \hat{\sigma}_{\hat{\beta}_0}\right]$$

Notes			

Understanding Confidence Intervals

- Suppose $Y=\beta_0+\beta_1X+\varepsilon$, where $\beta_0=3$, $\beta_1=1.5$ and $\varepsilon \sim N(0,1)$
- We take 100 random sample each with sample size 20
- ullet We then construct the 95% CI of eta_1 for each random sample (\Rightarrow 100 CIs)



S	i	m	p	le	Li	n	ea	r
		20	'n	ro	00	ie	m	

Interval Estimation of $\mathrm{E}(Y_h)$

- We often interested in estimating the mean response for a particular value of predictor, say, X_h . Therefore we would like to construct CI for $\mathrm{E}[Y_h]$
- \bullet We need sampling distribution of \hat{Y}_h to form CI:

$$\begin{array}{ll} \bullet & \frac{\hat{Y}_h-Y_h}{\hat{\sigma}_{\hat{Y}_h}} \sim t_{n-2}, & \hat{\sigma}_{\hat{Y}_h} = \hat{\sigma}\sqrt{\left(\frac{1}{n} + \frac{(X_h-\bar{X})^2}{\sum_{i=1}^n(X_i-\bar{X})^2}\right)} \\ \bullet & \text{CI:} \end{array}$$

$$\left[\hat{Y}_h - t_{1-\alpha/2, n-2} \hat{\sigma}_{\hat{Y}_h}, \hat{Y}_h + t_{1-\alpha/2, n-2} \hat{\sigma}_{\hat{Y}_h} \right]$$

• Quiz: Use this formula to construct CI for β_0

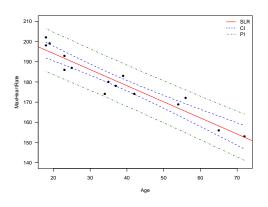
Notes

Prediction Intervals

- Suppose we want to predict the response of a future observation given $X = X_h$
- We need to account for added variability as a new observation does not fall directly on the regression line (i.e., $Y_{\mathsf{h(new)}} = \mathrm{E}[Y_h] + \varepsilon_h$)
- $\bullet \text{ Replace } \hat{\sigma}_{\hat{Y}_h} \text{ by } \hat{\sigma}_{\hat{Y}_{\text{fi(new)}}} = \hat{\sigma} \sqrt{\left(1 + \frac{1}{n} + \frac{(X_h \bar{X})^2}{\sum_{i=1}^n (X_i \bar{X})^2}\right)}$ to construct CIs for $Y_{\text{fi(new)}}$

Notes

Confidence Intervals vs. Prediction Intervals



Simple	Linear
Omipie	Lilleai
Regre	ssion

Maximum Heart Rate vs. Age Revisited

The maximum heart rate ${\tt MaxHeartRate}$ (HR $_{max}$) of a person is often said to be related to age ${\tt Age}$ by the equation:

$$HR_{max} = 220 - Age.$$

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm)

- Construct the 95% CI for β_1
- \bullet Compute the estimate for mean <code>MaxHeartRate</code> given <code>Age=40</code> and construct the associated 90% CI
- Construct the prediction interval for a new observation given Age = 40

Simple Linear

STATISTICAL SCIENCES

Regression
Parameter

Residual Analysis

Confidence/Prediction

ntervals

37 Analysis of 178 Variance (ANOVA) Approach to

Notes

Maximum Heart Rate vs. Age: Hypothesis Test for Slope

- \bullet $H_0: \beta_1 = 0 \text{ vs. } H_a: \beta_1 \neq 0$
- ② Compute the **test statistic**: $t^* = \frac{\hat{\beta}_1 0}{\hat{\sigma}_{\hat{\beta}_1}} = \frac{-0.7977}{0.06996} = -11.40$
- **③** Compute p-value: $\mathbb{P}(|t^*| \ge |t_{obs}|) = 3.85 \times 10^{-8}$
- **③** Compare to α and draw conclusion:

Reject H_0 at α = .05 level, evidence suggests a negative linear relationship between MaxHeartRate and Age

Simple Linear Regression

STATISTICAL SCIENCES

Parameter Estimation

Confidence/Predicti Intervals

Hypothesis Testing

nalysis of ariance (ANOVA)

Notes

Notes

-			

Maximum Heart Rate vs. Age: Hypothesis Test for Intercept

- \bullet $H_0: \beta_0 = 0$ vs. $H_a: \beta_0 \neq 0$
- ② Compute the **test statistic**: $t^* = \frac{\hat{\beta}_0 0}{\hat{\sigma}_{\beta_0}} = \frac{210.0485}{2.86694} = 73.27$
- **o** Compute p-value: $\mathbb{P}(|t^*| \ge |t_{obs}|) \simeq 0$
- **①** Compare to α and draw conclusion:

Reject H_0 at $\alpha=.05$ level, evidence suggests evidence suggests the intercept (the expected <code>MaxHeartRate</code> at age 0) is different from 0

Simple Linear

Simple Linear Regression

Residual Analysis

Hypothesis Testino

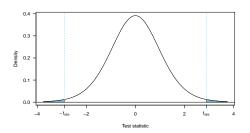
nalysis of ariance (ANOVA) pproach to egression

2.3

Hypothesis Tests for $\beta_{\rm age}=-1$

 $H_0: eta_{\mathrm{age}} = -1 \ \mathrm{vs.} \ H_a: eta_{\mathrm{age}}
eq -1$

Test Statistic: $\frac{\hat{\beta}_{\text{age}}-(-1)}{\hat{\sigma}_{\hat{\beta}_{\text{age}}}}=\frac{-0.79773-(-1)}{0.06996}=2.8912$



p-value: $2 \times \mathbb{P}(t^* > 2.8912) = 0.013$, where $t^* \sim t_{df=13}$

Simple Linear Regression

Simple Linear Regression Parameter Estimation

Estimation
Residual Analysis
Confidence/Predict

Hypothesis Testing

Approach to Regression

2.34

Notes

_			
_			
_			
_			

Analysis of Variance (ANOVA) Approach to Regression

Partitioning Sums of Squares

• Total sums of squares in response

$$SST = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

 \bullet We can rewrite SST as

$$\begin{split} \sum_{i=1}^{n} (Y_i - \bar{Y})^2 &= \sum_{i=1}^{n} (Y_i - \hat{Y}_i + \hat{Y}_i - \bar{Y})^2 \\ &= \underbrace{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}_{\text{Error}} + \underbrace{\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2}_{\text{Model}} \end{split}$$

Simple Linear Regression

STATISTICAL SCIENCES

Parameter
Estimation
Residual Analysis

Confidence/Prediction Intervals

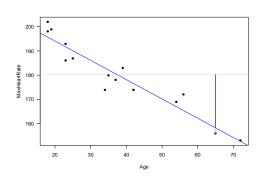
Analysis of Variance (ANOVA) Approach to

2.35

Notes

ı	Notes	
_		
_		
_		
_		
_		

Partitioning Total Sums of Squares



Simple Linear Regression

Simple Linear Regression

Parameter Estimation

Residual Analysis

Confidence/Prediction Intervals

Hypothesis Testing

Analysis of

Total Sum of Squares: SST

 \bullet If we ignored the predictor X, the \bar{Y} would be the best (linear unbiased) predictor

$$Y_i = \beta_0 + \varepsilon_i \tag{1}$$

- $\bullet \ \mathrm{SST}$ is the sum of squared deviations for this predictor (i.e., $\bar{Y})$
- ullet The total mean square is $\mathrm{SST}/(n-1)$ and represents an unbiased estimate of σ^2 under the model (1)

Notes

Regression Sum of Squares: ${ m SSR}$

- SSR: $\sum_{i=1}^{n} (\hat{y}_i \bar{y})^2$
- Degrees of freedom is 1 due to the inclusion of the slope, i.e.,

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \tag{2}$$

 \bullet "Large" $\mathrm{MSR} = \mathrm{SSR}/1$ suggests a linear trend, because

$$E[MSR] = \sigma^2 + \beta_1^2 \sum_{i=1}^{n} (X_i - \bar{X})^2$$

Notes			

Error Sum of Squares: ${ m SSE}$

 $\bullet \ \mathrm{SSE}$ is simply the sum of squared residuals

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- Degrees of freedom is n-2 (Why?)
- ullet SSE large when |residuals| are "large" $\Rightarrow Y_i$'s vary substantially around fitted regression line
- ullet $ext{MSE} = ext{SSE}/(n-2)$ and represents an unbiased estimate of σ^2 when taking X into account

 -			

ANOVA Table and F-Test

- Goal: To test $H_0: \beta_1 = 0$
- Test statistics $F^* = \frac{\text{MSR}}{\text{MSE}}$
- If $\beta_1=0$ then F^* should be near one \Rightarrow reject H_0 when F^* "large"
- We need sampling distribution of F^* under $H_0 \Rightarrow F_{1,n-2}$, where F_{d_1,d_2} denotes a F distribution with degrees of freedom $d_1=1$ and $d_2=n-2$

Notes

F-Test: $H_0: \beta_1 = 0$ vs. $H_a: \beta_1 \neq 0$

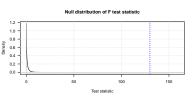
Analysis of Variance Table

Response: MaxHeartRate

Df Sum Sq Mean Sq F value
Age 1 2724.50 2724.50 130.01
Residuals 12 722.43 20.96

Pr(>F)

Age 3.848e-08 ***



Simple Linear Regression

Parameter Estimation Residual Analysis Confidence/Prediction Intervals Hypothesis Testing

Regression 241

Notes

SLR: F-Test vs. t-Test

ANOVA Table and F-test

Analysis of Variance Table

Response: MaxHeartRate

Df Sum Sq Mean Sq
Age 1 2724.50 2724.50
Residuals 13 272.43 20.96

F value Pr(>F)
Age 130.01 3.848e-08

Parameter Estimation and t-test

Coefficients:

| Estimate Std. Error t value Pr(>|t|) |(Intercept) 210.04846 | 2.86694 | 73.27 | < 2e-16 | Age | -0.79773 | 0.06996 | -11.40 | 3.85e-08 Simple Linear Regression

Simple Linear Regression
Parameter
Estimation
Residual Analysis
Confidence/Prediction
Intervals
Hypothesis Testing
Analysis of
Variance (ANOVA)

Summary

This week, we have learned

• Simple Linear Regression:
$$Y = \beta_0 + \beta_1 X + \varepsilon, \ \varepsilon \overset{iid}{\sim} \mathrm{N}(0,\sigma^2)$$

Method of Least Squares for parameter estimation

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta} = (\beta_0, \beta_1)}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

- Residual analysis to check model assumptions
- Confidence/Prediction Intervals and Hypothesis Testing

Notes

Notes

R Funcations

Fitting linear models

object <- lm(formula, data) where the formula is specified via y \sim x \Rightarrow y is modeled as a linear func- $\quad \text{tion of } x$

Diagnostic plots

plot(object)

Summarizing fits

summary(object)

Making predictions

predict(object, newdata)

Confidence Intervals for Model Parameters

confint(object)

Notes			