Lecture 2
Simple Linear Regression

Reading: Forecasting, Time Series, and Regression (4th
edition) by Bowerman, O’Connell, and Koehler: Chapter 3

MATH 4070: Regression and Time-Series Analysis

Whitney Huang
Clemson University

Agenda

o Simple Linear Regression

Q Parameter Estimation

© Residual Analysis

o Confidence/Prediction Intervals
0 Hypothesis Testing

o Analysis of Variance (ANOVA) Approach to
Regression

What is Regression Analysis?
Regression analysis: A set of statistical procedures for
estimating the relationship between a (numerical)
response variable and predictor variable(s), at least one
of which is numerical
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Max heart rate (opm)

Simple linear regression: The relationship between
the response variable and the predictor variable is
approximately linear
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Simple Linear Regression (SLR)
Y': response variable; X: predictor variable
@ In SLR we assume there is a linear relationship
between X and Y:

Y=0+pX+e

@ We need to estimate j; (intercept) and 3; (slope)
based on observed data {z;, y;}’,

@ We can use the estimated regression equation to
o make predictions

o study the relationship between response and
predictor

e control the response

o Yet we need to quantify our estimation uncertainty

regarding the linear relationship

Regression equation: Y = ) + 51 X

Data points
—— Regression line

@ fo: E[Y]when X =0

o (i E[AY] when X increases by 1

Assumptions about the Random Error ¢

In order to estimate 8y and 31, we make the following
assumptions about ¢

0 E[5]=0

@ Var[g;] = o2

@ Covlej,ejl =0, i#j
Therefore, we have

ED/?] = B + f1X;, and
VarlY;] = o

The regression line 8y + 51 X represents the condi-
tional mean curve whereas > measures the mag-
nitude of the variation around the regression curve
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Parameter Estimation: Method of Least Squares
For given observations {x;, y;}7_,, choose S, and 3; to
minimize the sum of squared errors:

n

{(Bo, B1) = Z (yi — (Bo + frz:))?

i=1
Solving the above minimization problem requires some
knowledge from Calculus (see notes LS_SLR.pdf)

Bo=9y— pz
b, = 2z (@i~ D)y —7)
“ i (zi — 7)?

We also need to estimate o2

52 = S (v — 9i)?
n—2 ’

where g; = Bo + lei

Properties of Least Squares Estimators

@ The estimators 3, and 3; are unbiased. That is

@ The estimator 62 = is unbiased. That is

n—2
E(6%) = o>
We can write 5% = X3 where y = (4, ,ya)",
¥ =(Bo+ bz, , o+ Pren)T.

Since y has a dimension of 2 (regression slope and
intercept), this leads to n — 2 in the denominator

Connection to Calculus: Derivation of 3;
Note that E[Y'|X] = o + 51X = puy + B1(X — pz). Now
consider minimizing

9(b) = E [(¥ =y = b(X — ux))’]

Note
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9(b) = E[(Y — uy)?] + V°E [(X — pux)?] = 2DE [(Y — pay) (X = pax)]

= 0% + b0 — 20Cov(X,Y)
Taking the derivative with respect to b:
g (b) = 2b0% — 2Cov(X,Y)

Let 1 solve ¢/(b) = 0 = 7 = SN
X

B = T @) wi=g) _ Xl (@i—D)(%i—7)/(n=1)
L Y (@i—2)? S @i—2)?/(n-1)

sample counterpart

is the
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Best Linear Predictor and Its Mean Square Error
Consider the mean square error (MSE) of the least
square predictor

E[(V = fo = BiX)?] = Var (¥ = o — i X)
= Cov[(Y = B1X) (Y — B X)]
= cr)z, —23,Cov(X,Y) + ﬁlzag(

Now plug in 8, = % we have
X

MSE = ¢% — QMCOV()Q Y)+ (M)%%
oXx oX
2 Cov(X,Y)? Cov(X,Y)?
=oy -2 2 + 2
a g
X X
5 Cov(X,Y)?
=0} -
ox
=0y (1—p%)

Geometric View of Least Squares Model Fit

-

y
Space spanned by X

Figure courtesy of Faraway’s Linear Models with R (2015, p.
15)

o y=(y1, - ,ys)": The data vector

0 ¥ = (1 = Bo+Prar, -+, Gn = fo+ Praa)”: The least
squares fitted vector

@ é=(y1— 9, ,yn — a)T: The residual vector

Example: Maximum Heart Rate vs. Age

The maximum heart rate MaxHeartRate of a person is
often said to be related to age Age by the equation:

MaxHeartRate = 220 — Age.

Suppose we have 15 people of varying ages are tested
for their maximum heart rate (bpm) (link to the “dataset":
http://whitneyhuang83.github.io/
maxHeartRate.csv)

@ Compute the estimates for the regression coefficients
© Compute the fitted values

© Compute the estimate for o
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http://whitneyhuang83.github.io/maxHeartRate.csv
http://whitneyhuang83.github.io/maxHeartRate.csv

Estimate the Parameters 3, /3, and o

Simple Linear

Regression Notes
y; and z; are the Maximum Heart Rate and Age of the it"
. P .‘ MATHEMATICAL AND
individual Q@O SHISTOALSENES
o To obtain 3,
@ Compute j =
Parametel
, S
@ Compute y; — 7, #; — 7, and (z; — 7)? for each
observation
© Compute 37 (; — 2)(y; — ) divided by Y- (z; — 7)?
@ f[y: Compute §y — /1%
0 52
@ Compute the fitted values:
Ui = Po+ Pz, i=1,---,n
@ Compute the residuals ¢; = y; —;, i=1,---,n
© Compute the residual sum of squares (RSS)
=Y"" (v — 9:)? and divided by n — 2 (why?)
: 213
?, i Si le Linea
Let’s Do the Calculations ey Notes
0,
5 @ e,
_ 18 +23+---+39+37
T = =37.33
‘ 15
i=1
15 Parameter
_ 202+ 186 + --- + 183 4+ 178 stimation
y= = 180.27
. 15
i=1
X 18 23 25 35 65 54 34 56 72 19 23 42 18 39 37
Y 202 186 187 180 156 169 174 172 153 199 193 174 198 183 178
-19.33 14.33 -12.33 233 27.67 16.67 -3.33 18.67 34.67 18.33  -14.33 467 19.33 167 0.33
2173 573 675 007 2427 n2r 627 8 2ier a7 127 2 1773 273 28
420.18 -82.18 -83.04 062 671.38 -187.78 2089 -154.31 -94524 -343.44 -18251 -29.24 -34284 4.56 0.76
Sia78 20544 15211 544 76544 27778 111 o844 12017 SN 0544 2178 7a78 278 041
19569 19170 19011 16213 15520 16097 18393 16558 15261 10483 19170 17654 19569 17554 18053
o ‘fl
o 5o
15 _ A2 .
0 62 = LB _ 90,9563 = & — 4.5778
210
I, Si le Linear
Let’s Double Check e Notes
0,
Output from ‘R (&studio) " SR Shes
> fit <- Im(MaxHeartRate ~ Age)
> summary(fit)
Parameter

Call:
Im(formula = MaxHeartRate ~ Age)

Residuals:
Min 1Q Median 3Q Max
-8.9258 -2.5383 0.3879 3.1867 6.6242

Coefficients:

Estimate Std. Error t value Pr(>1tl)
(Intercept) 210.04846 2.86694 73.27 < 2e-16 ***
Age -0.79773 0.06996 -11.40 3.85e-08 ***

Signif. codes: @ ‘***’ 9.Q01 ‘**’ 9.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.578 on 13 degrees of freedom

Adjusted R-squared: 0.9021
p-value: 3.848e-08

Multiple R-squared: ©.9091,
F-statistic: 130 on 1 and 13 DF,
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Assessing Linear Regression Fit

Question: Is linear relationship between max heart rate

200 4
190
£
5
s
P
s 180
E
g
2
& 170
=
160 -
T
20

30

40

Age

50

60

and age reasonable? = Residual Analysis

Residuals

@ The residuals are the differences between the
observed and fitted values:

€ =Yi — Yi,

where §; = B + P

@ Note that estimates aren’t parameters, and residuals

aren’t random errors
Yi=Po+ b1 Xi+e

o Nonetheless, residuals are very useful in assessing
the appropriateness of the assumptions on ¢;. Recall

o E[g;] =0

o Varlg;]) =0

o Covlej,egj] =0,

2

i = Bo + P + e

i

Residuals Against Predictor Plot

Residuals
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Interpreting Residual Plots

No problem

Heteroscedasticty Noninear

Figure courtesy of Faraway’s Linear Models with R (2005, p.

59).

Diagnostic Plots in R
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- .
5 - e .
N
) . 4
g e g
Y N / g 0
& : H
-5 g -1
@
o
-10 | 2.7
T T T T T T T
160 170 180 190 -1 0 1
Fited values Theoretical Quantiles
Scale-Location Residuals vs Leverage
14 o ™ 2
Z 4 e 0
g 12 ER
S 10 2 /
8 L 4 -/
P 5 04 /
< 06 5 £
g
Kl il g -1
g o4, g
2 024 e,
00 ~-- Cobks distance
T T T T L e B B AL
160 170 180 190 000 005 010 015 020 025 0.30 035
Fited values Leverage

How (Un)certain We Are?
Remember: estimates (e.g., 3;) are not parameters (e.g,

B1)
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Max heart rate (bpm)

160 -
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Age

Can we formally quantify our estimation uncertainty?
= We need additional (distributional) assumption on ¢
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Normal Error Regression Model
Recall the SLR model:
Yi=fo+ 81 Xi+e;

° Fuﬁr’t}}er assume
ei '~ N(0,0%) = Yi|X; ~ N(fo + £1X;,0%)

@ With normality assumption, we can derive the
sampling distribution of 3, and 5y =

ELPL vt o, se(fr) 72,,;1%17'?)2

~ 2, SE(S()) =0

1 z2
G+ srar)

where t,,_, denotes the Student’s t distribution with
n — 2 degrees of freedom

Deviation of se(5)

Recall 3, = 72?221&”#)(“7@

1 (zi—2)?

Var(fy) = Var (ZH(Z@? (;3 - a’t))

:<;>2 i(ayfa’:)z Var(Y;)
Shwoo) (& ’
0.2

T @2

se(B1) = 4/ Var(B) = ﬁ Replacing ¢ by 6 to

get se(51)

Deviation of se(5))

Recall By = Y — 412

Taking the square root and replacing o with & yields
se(fBo)
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Assessing Normality Assumption on ¢

Frequency

Histogram of fit$residuals Normal Q-Q Plot

6 -
5
?
4 - 2
H
g
g
3 o
2
2
14
o
T T T
-0 -5 0 5 10 -1 0 1

fit$residuals Theoretical Quantiles

The Q-Q plot is more effective in detecting subtle
departures from normality, especially in the tails.

Confidence Intervals

o Recall 2251 1, _,, we use this fact to construct
55,
confidence intervals (Cls) for 3;:

Br—ti—aj2n—20p, 01+ ti—a/2n—20z |,
where a is the confidence level and ;2,2

denotes the 1 — a/2 percentile of a student’s
t-distribution with n — 2 degrees of freedom

o Similarly, we can construct Cls for 5:

Bo = ti—a/2,n—204,: B0 + ti—a/2,n—205,

Understanding Confidence Intervals

@ Suppose Y = By + /1 X +¢, where By =3, 81 = 1.5
and e ~ N(0,1)

@ We take 100 random sample each with sample size
20

@ We then construct the 95% Cl of 3, for each random
sample (= 100 Cls)

Y =3+ 15X + error

By
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Interval Estimation of E(Y},) Simple Linear

Regression NOteS
.‘ MATHEMATICAL AND
gﬁT[S[IFﬁl}E\ENEB
@ We often interested in estimating the mean response
for a particular value of predictor, say, X;. Therefore
we would like to construct Cl for E[Y3]
@ We need sampling distribution of Y}, to form Cl: celPrediction
o Vi vy, Gy =5 (l +
oy, h n
o Cl:
Vi = t1-ajam-20y, . Vi + tlfa/2,n725'f/~}
@ Quiz: Use this formula to construct Cl for 3,
Prediction Intervals e
Notes
@0
@ Suppose we want to predict the response of a future
observation given X = X,
@ We need to account for added variability as a new e
observation does not fall directly on the regression
line (i.e., Yh(new) = E[Yh] + S;L)
A . _ 1 (Xn—X)?
@ Replace oy, by Uyh(new) = O’\/(l + 5+ m)
to construct Cls for Y new)
Confidence Intervals vs. Prediction Intervals e
Notes
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Maximum Heart Rate vs. Age Revisited Simple Linear

Regression

The maximum heart rate MaxHeartRate (HR,,.) of a
person is often said to be related to age Age by the
equation:

HR oz = 220 — Age.

Suppose we have 15 people of varying ages are tested
for their maximum heart rate (bpm)

Prediction

Age 18 23 25 35 65 54 34 56 72 19 23 42 18 39 37
HR,.. 202 186 187 180 156 169 174 172 153 199 193 174 198 183 178

o Construct the 95% Cl for 3,

o Compute the estimate for mean MaxHeartRate
given Age = 40 and construct the associated 90% Cl

@ Construct the prediction interval for a new
observation given Age = 40

Maximum Heart Rate vs. Age: Hypothesis Test for S

Regression
Slope

.‘ MATHEMATICAL AND
@ gmmoses

Q Hy:B1=0vs. H,: f1 #0

Q Compute the test statistic:

« _ B1=0 _ —07977 _
v = G5, 006996 11.40

@ Compute p-value: P([t*| > [tos]) = 3.85 x 1078 petiess e

© Compare to a and draw conclusion:

Reject Hy at o« = .05 level, evidence sug-
gests a negative linear relationship between
MaxHeartRate and Age

Maximum Heart Rate vs. Age: Hypothesis Test for e
Intercept

O i
@ s,

Q Hy:Bo=0vs. Hy: Bp #0

Q Compute the test statistic:

* _ Bo=0 _ 210.0485 _
tr= G5, | 2.86694 73.27

© Compute p-value: P([t*| > [tops]) =~ 0 Hypothesis Testing

© Compare to a and draw conclusion:

Reject Hy at o = .05 level, evidence suggests
evidence suggests the intercept (the expected
MaxHeartRate at age 0) is different from 0
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Hypothesis Tests for Sage = —1 Simple Linear

Regression
Hy : Bage = —1VS. Hy : fage # —1 ¥

MATHEATICAL AND
ALSCIENCES

ierine Bage—(=1) _ —0.79773—(=1) _
Test Statistic: g‘i%age = —ooeo0s = 2-8912

Hypothesis Testing

Density
°
9
|

T T T T T T T
-4 “lons -2 0 2 Toos 4

Test statistic

p-value: 2 x P(t* > 2.8912) = 0.013, where t* ~ tg—13

Analysis of Variance (ANOVA) Approach to Regression Simple Linear

Regression
Partitioning Sums of Squares 0% iiewmon
Q@ s soeices

o Total sums of squares in response

SST =Y (¥; - ¥)?
=1

@ We can rewrite SST as

S92 N ~ o Regression
D=V =) (Vi-Yit YY)
i=1 i=1
n n
=) (Vi-¥i)’+) (Vi-Y)?
i=1 i=1
Error Model
iti i Si le Li
Partitioning Total Sums of Squares e
O i
@ s,
200 + i
190 +
)
8
€ 180
g
H Analysis of
= Variance (ANOVA)
170 Apo‘:icch to
Regression
160
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Total Sum of Squares: SST Simple Linear

Regression NOteS
@ .
o If we ignored the predictor X, the Y would be the
best (linear unbiased) predictor
Yi= 0o +e (1)
@ SST is the sum of squared deviations for this
predictor (i.e., Y)
@ The total mean square is SST/(n — 1) and
represents an unbiased estimate of o under the
model (1)
Regression Sum of Squares: SSR e
Notes
@0
© SSR: YL, (4 — 9)°
@ Degrees of freedom is 1 due to the inclusion of the
slope, i.e.,
Yi=Bo+/Xite (2)
Analysis of .
@ “Large” MSR = SSR/1 suggests a linear trend, A A
because
n
E[MSR] = o” + 81 Y (X; - X)?
i=1
Error Sum of Squares: SSE e
Notes
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@ SSE is simply the sum of squared residuals

n

SSE = (yi — )

i=1

o Degrees of freedom is n — 2 (Why?)

o SSE large when |residuals| are “large” = Y;’s vary
substantially around fitted regression line

@ MSE = SSE/(n — 2) and represents an unbiased

estimate of o2 when taking X into account




ANOVA Table and F'-Test

Source df SS MS

Simple Linear
Regression
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Model 1 SSR=Y",(¥;-Y)? MSR=SSR/I

Eror  n—2 SSE=37,(¥;i—Y;)?> MSE=SSE/(n—2)

Total n—1 SST=31,(Yi-Y)?
@ Goal: Totest Hy: 31 =0

iati *+ _ MSR
o Test statistics I'* = jop

o If 31 = 0 then F* should be near one = reject H,
when F* “large”

@ We need sampling distribution of F* under Hy =
Fi1 n—2, where Fy, 4, denotes a F distribution with
degrees of freedomd; =1and dy =n — 2

F-Test: Hy: 31 =0vs. H, : 31 #0
fit <- lm(MaxHeartRate ~ Age)
anova(fit)

Analysis of Variance Table

Response: MaxHeartRate
Df Sum Sq Mean Sq F value

Age 1 2724.50 2724.50 130.01
Residuals 13 272.43 20.96

PrG>F)
Age 3.848e-08 ***

Null distribution of F test statistic

12
10

06
04
02
00

0 50 100 150

Density

Test statistic

SLR: F-Test vs. t-Test

ANOVA Table and F-test
Analysis of Variance Table

Response: MaxHeartRate
Df Sum Sq Mean Sq
Age 1 2724.50 2724.50
Residuals 13 272.43 20.96
F value Pr(>F)
Age 130.01 3.848e-08

Parameter Estimation and ¢-test

Coefficients:

Estimate Std. Error t value Pr(>1tl)
(Intercept) 210.04846 2.86694 73.27 < 2e-16
Age -0.79773 0.06996 -11.40 3.85e-08
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Summary

This week, we have learned

@ Simple Linear Regression:
Y =05 +/X+e, Ezflvd

o Method of Least Squares for parameter estimation

N(0,0?)

B = argmin Z (yi — (Bo + Prz:))?

B=(Bo.,B1) =1

@ Residual analysis to check model assumptions

o Confidence/Prediction Intervals and Hypothesis

Testing

R Funcations
@ Fitting linear models

object <- Im(formula,

data) where the formula

is specified via y ~ x = y is modeled as a linear func-

tion of =

@ Diagnostic plots

[ plot (object)

@ Summarizing fits

[ summary (object)

@ Making predictions

[ predict (object, newdata)

@ Confidence Intervals for Model Parameters

[ confint (object)
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