

Notes

iple Linear gression I Mathematical and statistical sciences

status reactions and the second secon

Multiple Regression Analysis

Goal: To model the population relationship between two or more predictors (\mathbf{X} 's) and a response (Y).

Model: $Y = f(\mathbf{x}) + \varepsilon$.

Example: Species diversity on the Galapagos Islands. We are interested in studying the relationship between the number of plant species (Species) and the following geographic variables: Area, Elevation, Nearest, Scruz, Adjacent.

ata: Spec	ies Div	vers	ity on	the Ga	lapa	gos	Island	s
S	pecies En	demics	Area	Elevation	Nearest	Scruz	Adjacent	
Baltra	58		25.09	346	0.6	0.6	1.84	
Bartolome	31		1.24	109	0.6	26.3	572.33	
Caldwell			0.21	114	2.8	58.7	0.78	
Champion	25		0.10	46	1.9	47.4	0.18	
Coamano			0.05		1.9	1.9	903.82	
Daphne.Major	18		0.34	119	8.0	8.0	1.84	
Daphne.Minor	24	0	0.08	93	6.0	12.0	0.34	
Darwin	10		2.33	168	34.1	290.2	2.85	
Eden	8		0.03	71	0.4	0.4	17.95	
Enderby			0.18	112	2.6	50.2	0.10	
Espanola	97	26	58.27	198	1.1	88.3	0.57	
Fernandina	93	35	634.49	1494	4.3	95.3	4669.32	
Gardner1	58		0.57	49	1.1	93.1	58.27	
Gardner2			0.78	227	4.6	62.2	0.21	
Genovesa	40	19	17.35	76	47.4	92.2	129.49	
Isabela	347	89	4669.32	1707	0.7	28.1	634.49	
Marchena			129.49	343	29.1	85.9	59.56	
Onslow			0.01	25	3.3	45.9	0.10	
Pinta	104		59.56	777	29.1	119.6	129.49	
Pinzon	108	33	17.95	458	10.7	10.7	0.03	
Las.Plazas			0.23	94	0.5	0.6	25.09	
Rabida	70	30	4.89	367	4.4	24.4	572.33	
SanCristobal	280	65	551.62	716	45.2	66.6	0.57	
SanSalvador	237	81	572.33	906	0.2	19.8	4.89	
SantaCruz	444	95	903.82	864	0.6	0.0	0.52	
SantaFe	62	28	24.08	259	16.5	16.5	0.52	
SantaMaria	285	73	170.92	640	2.6	49.2	0.10	
Seymour	44	16	1.84	147	0.6	9.6	25.09	
Tortuga	16	8	1.24	186	6.8	50.9	17.95	
Wolf	21	12	2.85	253	34.1	254.7	2.33	

Multiple Linear Regression I
MATHEMATICAL AND STATISTICAL SCIENCES
Multiple Linear Regression

Notes

How Do Geographic Variables Affect Species Diversity?

MATHEMATICAL AND STATISTICAL SCIENCI
Multiple Linear Regression

Multiple Linea

Notes

Let's Take a Look at the Correlation Matrix

Here we compute the correlation coefficients between the response (${\tt Species}$) and predictors (all the geographic variables)

> round(c	or(gala[,	, -2]),	3)			
	Species	Area	Elevation	Nearest	Scruz	Adjacent
Species	1.000	0.618	0.738	-0.014	-0.171	0.026
Area	0.618	1.000	0.754	-0.111	-0.101	0.180
Elevation	0.738	0.754	1.000	-0.011	-0.015	0.536
Nearest	-0.014	-0.111	-0.011	1.000	0.615	-0.116
Scruz	-0.171	-0.101	-0.015	0.615	1.000	0.052
Adjacent	0.026	0.180	0.536	-0.116	0.052	1.000

Multiple Linea Regression I

Combining Two Pieces of Information in One Plot

Multiple Linear Regression I
MATHEMATICAL AND STATISTICAL SCIENCES
Multiple Linear Regression

Itiple Linea

MATHEMATICAL AND STATISTICAL SCIENCE

Notes

Multiple Linear Regression Model

- $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{p-1} X_{p-1} + \varepsilon$
- The above relationship holds for every individual in the population, and $\mathbb{E}(\varepsilon)=0$ and $\mathrm{Var}(\varepsilon)=\sigma^2$
- The population of individual error terms (ε 's) follows normal distribution
- Observations are independent (true if individuals are selected randomly)

 $\Rightarrow \varepsilon \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$

Notes

Model 1: Species \sim Elevation

Call:
lm(formula = Species ~ Elevation, data = gala)
2. 문화 : 그렇지 않았는 것, 만, 것,
Residuals:
Min 1Q Median 3Q Max
-218.319 -30.721 -14.690 4.634 259.180
생활 승규는 방법을 받는 것이 좀 가지 않는 것이 없는 것이 같이 많이 많이 많이 없다.
Coefficients:
Estimate Std. Error t value Pr(> t)
(Intercept) 11.33511 19.20529 0.590 0.56
Elevation 0.20079 0.03465 5.795 3.18e-06 ***
승규님 화가 이 있는 것 같아. 같은 것 같은 것 같아. ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
상품 집 방법은 걸렸는 것, 방법은 방법은 방법은 것, 방법은 것 같은 것이라.
Residual standard error: 78.66 on 28 degrees of freedom
Multiple R-squared: 0.5454, Adjusted R-squared: 0.529
F-statistic: 33.59 on 1 and 28 DF, p-value: 3.177e-06

Multiple Line Regression

Model 1 Fit

Notes

Model 2: Species $\sim \texttt{Elevation} + \texttt{Area}$

Call:
<pre>lm(formula = Species ~ Elevation + Area, data = gala)</pre>
Residuals:
Min 1Q Median 3Q Max
-192.619 -33.534 -19.199 7.541 261.514
Coefficients:
Estimate Std. Error t value Pr(> t)
(Intercept) 17.10519 20.94211 0.817 0.42120
Elevation 0.17174 0.05317 3.230 0.00325 **
Area 0.01880 0.02594 0.725 0.47478
Signif. codes:
0 **** 0.001 *** 0.01 ** 0.05 *. 0.1 * 1
Residual standard error: 79.34 on 27 degrees of freedom
Multiple R-squared: 0.554, Adjusted R-squared: 0.52
E-statistic: 16 77 on 2 and 27 DE n-value: 1 843e-05

Multiple Linea Regression

Notes

Model 2 Fit

Multiple Linea Regression I

3.11

Model 3: Species $\sim \texttt{Elevation} + \texttt{Area} + \texttt{Adjacent}$

Call:
lm(formula = Species ~ Elevation + Area + Adjacent, data = gala)
Residuals:
Min 1Q Median 3Q Max
-124.064 -34.283 -8.733 27.972 195.973
Coefficients:
Estimate Std. Error t value Pr(> t)
(Intercept) -5.71893 16.90706 -0.338 0.73789
Elevation 0.31498 0.05211 6.044 2.2e-06 ***
Area -0.02031 0.02181 -0.931 0.36034
Adjacent -0.07528 0.01698 -4.434 0.00015 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 61.01 on 26 degrees of freedom
Multiple R-squared: 0.746, Adjusted R-squared: 0.7167
F-statistic: 25.46 on 3 and 26 DF, p-value: 6.683e-08

Regression I		
2	MATHEMATICAL AND Statistical sciences	

Multiple Linear Regression

1

Notes

"Full Model"

lm(formula = Species ~ Area + Elevation + Nearest + Scruz + Adjacent,
data = gala)
Deniduala
Nin 10 Median 20 May
Min LU Median SU Max
=111.0/3 =34.030 =7.002 33.400 102.304
Coefficients
Estimate Std Error t value Pr(> t)
(Intercent) 7 068221 19 154198 0 369 0 715351
Area -0.023938 0.022422 -1.068 0.296318
Elevation 0.319465 0.053663 5.953 3.82e-06
Nearest 0.009144 1.054136 0.009 0.993151
Scruz -0.240524 0.215402 -1.117 0.275208
Adjacent -0.074805 0.017700 -4.226 0.000297
승규는 방법에 가지 않는 것을 알려야 하는 것이 없는 것이 가지 않는 것이 없는 것을 많이 없다. 것이 없는 것이 없 않는 것이 없는 것이 않는 것이 않는 것이 않는 것이 않는 것이 않는 것이 없는 것이 않는 것이 않는 것이 없는 것이 않는 것이 같이 않는 것이 없는 것이 없는 것이 같이 않는 것이 않이 않는 것이 않는 것이 않는 것이 않는 것이 않이
(Intercept)
Area
Elevation ***
Nearest
Scruz
Adjacent ***
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 60.98 on 24 degrees of freedom
Multiple K-Squarea: 0.7056, Adjusted K-Squarea: 0.7171
r-statistic: 15.7 on 5 and 24 pr, p-value: 6.838e-07

# Huttiple Linear Regression Regression Rithrenne B. Assessing Model Rithrenne B.

3.13

#### Notes

## **MLR Topics**

Similar to SLR, we will discuss

- Estimation
- Inference
- Diagnostics and Remedies

We will also discuss some new topics

- Model Selection
- Multicollinearity





3.15

#### **Multiple Linear Regression in Matrix Notation** Given the actual data, we can write MLR model as:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{1,1} & x_{2,1} & \cdots & x_{p-1,1} \\ 1 & x_{1,2} & x_{2,2} & \cdots & x_{p-1,2} \\ \vdots & \cdots & \ddots & \vdots & \vdots \\ 1 & x_{1,n} & x_{2,n} & \cdots & x_{p-1,n} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

It will be more convenient to put this in a matrix representation as:

$$\begin{split} \boldsymbol{y} &= \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \\ \text{Error Sum of Squares (SSE)} \\ &= \sum_{i=1}^{n} \left( y_i - \left( \beta_0 + \sum_{j=1}^{p-1} \beta_j x_{j,i} \right) \right)^2 \text{ can be expressed as:} \\ & (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}) \end{split}$$

Next, we are going to find  $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1, \cdots, \hat{\beta}_{p-1})$ to minimize SSE as our estimate for  $\beta$  =  $(\beta_0, \beta_1, \cdots, \beta_{p-1})$ 

#### **Estimating Regression Coefficients**

We apply method of least squares to minimize  $(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})$  to obtain  $\hat{\boldsymbol{\beta}}$ 

What is important is the orthogonality, which leads to the following:

• 
$$\sum_{i=1}^{n} (y_i - \hat{y}_i) = 0$$

- $\sum_{i=1}^{n} (y_i \hat{y}_i) x_{1,i} = 0$
- :

•  $\sum_{i=1}^{n} (y_i - \hat{y}_i) x_{p-1,i} = 0$ 

Note: The first equation states that the mean of the residuals is 0, while the other equations indicate that the residuals are uncorrelated with the independent variables The resulting least squares estimate is

 $\hat{\boldsymbol{\beta}} = \left( \boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{y}$ 

(see LS_MLR.pdf for the derivation)

#### Notes

ple Lin

MATHEMATICAL AND STATISTICAL SCIENC

Notes

Residuals:

Estimation of  $\sigma^2$ 

• Fitted values:

 $e = y - \hat{y} = (I - H)y$ 

• Similar as we did in SLR

$$\hat{\sigma}^2 = \frac{e^T e}{n-p}$$
$$= \frac{(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})^T (\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})}{n-p}$$
$$= \frac{\text{SSE}}{n-p}$$
$$= \text{MSE}$$





#### Geometric Representation of Least Squares Estimation

Projecting the observed response y into a space spanned by X



Source: Linear Model with R 2nd Ed, Faraway, p. 15

Л	Regression I
	MATHEMATICAL AND STATISTICAL SCIENCES
	Estimation & Inference

Aultiple Linea

MATHEMATICAL AND STATISTICAL SCIENCES

Estimation &

Multiple Lin

#### Notes



#### **Regression with Numerical and Categorical Predictors**

What if some of the predictors are categorical variables?

# Example: Salaries for Professors Data Set

1	neuu(Jurui	Les)				
	rank	discipline	yrs.since.phd	yrs.service	sex	salary
1	Prof	В	19	18	Male	139750
2	Prof	В	20	16	Male	173200
3	AsstProf	В	4	3	Male	79750
4	Prof	В	45	39	Male	115000
5	Prof	В	40	41	Male	141500
6	AssocProf	В	6	6	Male	97000
	-					

We have three categorical variables, namely, rank, discipline, and sex.

 $\Rightarrow$  We will need to create  $\mbox{dummy}$  (indicator) variables for those categorical variables

#### Notes

#### Dummy Variable

For binary categorical variables:

$$x_{\text{sex}} = \begin{cases} 1 & \text{if sex = male,} \\ 0 & \text{if sex = female.} \end{cases}$$

$$x_{\text{discip}} = \begin{cases} 0 & \text{if discip} = A, \\ 1 & \text{if discip} = B. \end{cases}$$

For categorical variable with more than two categories:

$$x_{\text{rank1}} = \begin{cases} 0 & \text{if rank} = \text{Assistant Prof,} \\ 1 & \text{if rank} = \text{Associated Prof.} \end{cases}$$
$$x_{\text{rank2}} = \begin{cases} 0 & \text{if rank} = \text{Associated Prof,} \\ 1 & \text{if rank} = \text{Full Prof.} \end{cases}$$

#### Multiple Linea Regression I



#### **Design Matrix**

#### > head(X) (Intercept) rankAssocProf rankProf disciplineB yrs.since.phd 45 4 yrs.service sexMale 5 With the design matrix X, we can now use method

of least squares to fit the model  $Y = X\beta + \varepsilon$ 

e.	MATHEMATICAL AND STATISTICAL SCIENCES
Estima Inferei	ation & nce

Itiple Lir

#### Notes

## Model Fit: $lm(salary \sim$ rank + sex + discipline + yrs.since.phd) Coefficients: Estimate Std. Error t value Pr(>|t|)

(Intercept)	67884.32	4536.89	14.963	< 2e-16	***
disciplineB	13937.47	2346.53	5.940	6.32e-09	***
rankAssocProf	13104.15	4167.31	3.145	0.00179	**
rankProf	46032.55	4240.12	10.856	< 2e-16	***
sexMale	4349.37	3875.39	1.122	0.26242	
yrs.since.phd	61.01	127.01	0.480	0.63124	
Signif. codes:					

0 (**** 0.001 (*** 0.01 (** 0.05 (. 0.1 ( 1

Residual standard error: 22660 on 391 degrees of freedom Multiple R-squared: 0.4472, Adjusted R-squared: 0.4401 F-statistic: 63.27 on 5 and 391 DF, p-value: < 2.2e-16

Question: Interpretation of the slopes of these dummy variables (e.g.  $\hat{\beta}_{rankAssocProf}$ )? Interpretation of the intercept?

Multiple Linear Regression I		
2	MATHEMATICAL AND STATISTICAL SCIENCES	



# Notes

Color Line Type Red: Female ---: Applied (discipline B) Blue: Male - - -: Theoretical (discipline A) 9-month salary 91.8 k

Model Fit for Assistant Professors



# ple Line



# Other Type of Predictor Variables: Polynomial regression

Suppose we would like to model the relationship between response Y and a predictor x as a  $p_{th}$  degree polynomial in x:

$$Y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_p x^p + \varepsilon$$

Polynomial regression can be treated as a special case of multiple linear regression, with the design matrix taking the following form:

$$\boldsymbol{X} = \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^p \\ 1 & x_2 & x_2^2 & \cdots & x_2^p \\ \vdots & \cdots & \ddots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^p \end{pmatrix}$$

One can also include the interaction terms; for example:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \beta_5 x_1 x_2 + \varepsilon$$



Estimation & nference

#### Notes

Notes



#### **Transformed Response Variables**

Consider the following models:

$$\begin{split} \log(Y) &= \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon; \\ Y &= \frac{1}{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon}, \end{split}$$

both of which can be expressed as follws

$$\begin{split} Y^* &= \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon; \\ Y^{**} &= \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon, \end{split}$$

respectively, where  $Y^* = \log(Y)$ , and  $Y^{**} = 1/Y$ .



iple Line

#### Analysis of Variance (ANOVA) Approach to Regression

**Partitioning Sums of Squares** 

• Total sums of squares in response

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

 $\bullet~$  We can rewrite  ${\rm SST}$  as

$$\begin{split} \sum_{i=1}^{n} (y_i - \bar{y})^2 &= \sum_{i=1}^{n} (y_i - \hat{y}_i + \hat{y}_i - \bar{y})^2 \\ &= \underbrace{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}_{\text{"Error": SSE}} + \underbrace{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}_{\text{Model: SSR}} \end{split}$$

Multiple Linear Regression I		
÷	MATHEMATICAL AND STATISTICAL SCIENCES	

Partitioning Total Sums of Squares: A Graphical Illustration



Multiple Linear Regression I	Multiple Linear Regression I	
MATHEMATICAL ANI STATISTICAL SCIENC	1	
Estimation & Inference		

#### Notes

#### **ANOVA Table &** *F***-Test**

To answer the question: Is **at least** one of the predictors  $x_1, \dots, x_{p-1}$  useful in predicting the response *y*?

5	MATHEMATICAL A Statistical scien

ple Lir

Source	df	$\mathbf{SS}$	MS	F-Value
Model	p - 1	SSR	MSR = SSR/(p-1)	MSR/MSE
Error	n-p	SSE	MSE = SSE/(n - p)	
Total	n-1	SST		

- F-test: Tests if the predictors  $\{x_1,\cdots,x_{p-1}\}$  collectively help explain the variation in y
  - $H_0: \beta_1 = \beta_2 = \dots = \beta_{p-1} = 0$
  - $H_a$ : at least one  $\beta_k \neq 0$ ,  $1 \leq k \leq p-1$
  - $F^* = \frac{\text{MSR}}{\text{MSE}} = \frac{\text{SSR}/(p-1)}{\text{SSE}/(n-p)} \overset{H_0}{\sim} F_{p-1,n-p}$
  - Reject  $H_0$  if  $F^* > F_{1-\alpha,p-1,n-p}$

#### Notes



#### **Testing Individual Predictor**

- We can show that  $\hat{\boldsymbol{\beta}} \sim N_p \left( \boldsymbol{\beta}, \sigma^2 \left( \boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \right) \Rightarrow \hat{\beta}_k \sim N(\beta_k, \sigma_{\hat{\beta}_k}^2)$
- Perform *t*-Test:
  - $H_0: \beta_k = 0$  vs.  $H_a: \beta_k \neq 0$
  - $\bullet \ \ \frac{\hat{\beta}_k \beta_k}{\hat{\mathrm{se}}(\hat{\beta}_k)} \sim t_{n-p} \Rightarrow t^* = \frac{\hat{\beta}_k}{\hat{\mathrm{se}}(\hat{\beta}_k)} \overset{H_0}{\sim} t_{n-p}$
  - Reject  $H_0$  if  $|t^*| > t_{1-\alpha/2,n-p}$
- Confidence interval for  $\beta_k$ :

 $\hat{\beta}_k \pm t_{1-\alpha/2,n-p} \hat{\operatorname{se}}(\hat{\beta}_k)$ 

MATHEMATICAL AND STATISTICAL SCIENCES
Estimation & Inference

Multiple Linear

#### **Confidence Intervals and Confidence Ellipsoids**

Comparing with individual confidence interval, confidence ellipsoids can provide additional information when inference with multiple parameters is of interest. A  $100(1-\alpha)\%$  confidence ellipsoid for  $\beta$  can be constructed using:

$$(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^T \boldsymbol{X}^T \boldsymbol{X} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \le p \hat{\sigma}^2 F_{p,n-p}^{\alpha}.$$



、	negression
	MATHEMATICAL AND STATISTICAL SCIENCES
	Estimation & Inference
	3.31

Multiple Linea

# Quantifying Model Fit using Coefficient of Determination ${\it R}^2$

• **Coefficient of determination**  $R^2$  describes proportional of the variance in the response variable that is predictable from the predictors

 $R^2 = \frac{\mathrm{SSR}}{\mathrm{SST}} = 1 - \frac{\mathrm{SSE}}{\mathrm{SST}}, \quad 0 \leq R^2 \leq 1$ 

- $R^2$  increases with the increasing p, the number of the predictors
  - Adjusted  $R^2,$  denoted by  $R^2_{\rm adj} = 1 \frac{{\rm SSE}/(n-p)}{{\rm SST}/(n-1)}$  attempts to account for p

*	MATHEMATICAL AND STATISTICAL SCIENCES

# $R^2$ vs. $R^2_{adj}$ Example

Suppose the true relationship between response Y and predictors  $(\boldsymbol{x}_1,\boldsymbol{x}_2)$  is

$$y = 5 + 2x_1 + \varepsilon,$$

where  $\varepsilon \sim N(0,1)$  and  $x_1$  and  $x_2$  are independent to each other. Let's fit the following two models to the "data"

#### **Question:** Which model will "win" in terms of $R^2$ ?

Let's conduct a Monte Carlo simulation to study this

#### Itiple Linear egression I



#### Notes

#### Notes

#### **Outline of Monte Carlo Simulation**

- **(**) Generating a large number (e.g., M = 500) of "data sets", where each has exactly the same  $\{x_{1,i}, x_{2,i}\}_{i=1}^n$ but different values of response  $\{y_i = 5 + 2x_{1,i} + \varepsilon_i\}_{i=1}^n$
- **2** Fitting model 1:  $y = \beta_0 + \beta_1 x_1 + \varepsilon^1$  (true model) and model 2:  $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon^2$ , respectively for each simulating data set and calculating their  $\mathbb{R}^2$  and  $R^2_{adj}$
- O Summarizing  $\{R_{j}^{2}\}_{j=1}^{M}$  and  $\{R_{adj,j}^{2}\}_{j=1}^{M}$  for model 1 and model 2

Mult	iple Linear
Re	gression I
*	MATHEMATICAL AND STATISTICAL SCIENCE

tiple Linea

MATHEMATICAL AND STATISTICAL SCIENCE

#### Notes


#### An Example of Model 1 Fit

#### > summary(fit1)

Call:  $lm(formula = y \sim x1)$ 

Residuals: Min 1Q Median 3Q Max -1.6085 -0.5056 -0.2152 0.6932 2.0118

#### Coefficients:

 
 Estimate Std. Error t value Pr(>|t|)

 (Intercept)
 5.1720
 0.1534
 33.71
 < 2e-16</td>
 ***

 x1
 1.8660
 0.1589
 11.74
 2.47e-12
 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8393 on 28 degrees of freedom Multiple R-squared: 0.8313, Adjusted R-squared: 0.8253 F-statistic: 138 on 1 and 28 DF, p-value: 2.467e-12

#### Notes

#### An Example of Model 2 Fit

> summary(fit2)

Call:  $lm(formula = y \sim x1 + x2)$ 

Residuals: Min 1Q Median 3Q Max -1.3926 -0.5775 -0.1383 0.5229 1.8385

#### Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 5.1792 0.1518 34.109 < 2e-16 *** 0.1593 11.923 2.88e-12 *** 0.1797 -1.274 0.213 x1 1.8994 x2 -0.2289 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8301 on 27 degrees of freedom Multiple R-squared: 0.8408, Adjusted R-squared: 0. F-statistic: 71.32 on 2 and 27 DF, p-value: 1.677e-11 Adjusted R-squared: 0.8291 MATHEMATICAL AND STATISTICAL SCIENCE

iple Linea

 $R^2$ : Model 1 vs. Model 2





#### Notes



# $R_{adj}^2$ : Model 1 vs. Model 2





tiple Line

#### Takeaways:

- $R^2$  always pick the more "complex" model (i.e., with more predictors), even the simpler model is the true model
- $R^2_{adj}$  has a better chance to pick the "right" model

#### Notes

#### Summary

These slides cover:

- Multiple Linear Regression: Model and Parameter Estimation
- Inference: *F*-test and *t*-test; Confidence intervals/ellipsoids
- Assessing Model Fit:  $R^2$  and  $R^2_{adj}$
- Monte Carlo Simulation

#### R functions to know:

- image.plot in the fields library and scatter3D in the plot3D library for visualization
- anova for computing the ANOVA table

tiple Lir