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Lecture 3
Multiple Linear Regression I
Reading: Forecasting, Time Series, and Regression (4th
edition) by Bowerman, O’Connell, and Koehler: Chapter 4

MATH 4070: Regression and Time-Series Analysis

Whitney Huang
Clemson University

Multiple Linear
Regression I

Multiple Linear
Regression

Estimation &
Inference

Assessing Model
Fit

3.2

Agenda

1 Multiple Linear Regression

2 Estimation & Inference

3 Assessing Model Fit
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3.3

Multiple Regression Analysis
Goal: To model the population relationship between two
or more predictors (X’s) and a response (Y ).

Model: Y = f(x) + ε.

Example: Species diversity on the Galapagos Islands.
We are interested in studying the relationship between
the number of plant species (Species) and the following
geographic variables: Area, Elevation, Nearest,
Scruz, Adjacent.

Notes

Notes

Notes
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3.4

Data: Species Diversity on the Galapagos Islands
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3.5

How Do Geographic Variables Affect Species Diversity?

Species
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3.6

Let’s Take a Look at the Correlation Matrix

Here we compute the correlation coefficients between the
response (Species) and predictors (all the geographic
variables)

Notes

Notes

Notes
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3.7

Combining Two Pieces of Information in One Plot

Corr:

0.618***

Corr:

0.738***

Corr:
0.754***

Corr:

−0.014

Corr:
−0.111

Corr:
−0.011

Corr:

−0.171

Corr:
−0.101

Corr:
−0.015

Corr:

0.615***

Corr:

0.026

Corr:
0.180

Corr:
0.536**

Corr:

−0.116

Corr:

0.052

Species Area Elevation Nearest Scruz Adjacent
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3.8

Multiple Linear Regression Model

Y = β0 + β1X1 + β2X2 + · · ·+ βp−1Xp−1 + ε

The above relationship holds for every individual in
the population, and E(ε) = 0 and Var(ε) = σ2

The population of individual error terms (ε’s) follows
normal distribution

Observations are independent (true if individuals are
selected randomly)

⇒ ε
i.i.d.∼ N(0, σ2)
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3.9

Model 1: Species ∼ Elevation

Notes

Notes

Notes
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3.10

Model 1 Fit

ˆSpecies = 11.33511 + 0.20079× Elevation,

σ̂ = 78.66, R2 = 0.5454
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3.11

Model 2: Species ∼ Elevation + Area
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3.12

Model 2 Fit

ˆSpecies = 17.10519+0.17174×Elevation+0.01880×Area,

σ̂ = 79.34, R2 = 0.554
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3.13

Model 3: Species ∼ Elevation + Area + Adjacent
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3.14

“Full Model”
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3.15

MLR Topics

Similar to SLR, we will discuss

Estimation

Inference

Diagnostics and Remedies

We will also discuss some new topics

Model Selection

Multicollinearity

Notes

Notes

Notes
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3.16

Multiple Linear Regression in Matrix Notation
Given the actual data, we can write MLR model as:


y1
y2
...
yn

 =


1 x1,1 x2,1 · · · xp−1,1

1 x1,2 x2,2 · · · xp−1,2
... · · · . . .

...
...

1 x1,n x2,n · · · xp−1,n




β0
β1
...

βp−1

+


ε1
ε2
...
εn


It will be more convenient to put this in a matrix
representation as:

y = Xβ + ε

Error Sum of Squares (SSE)

=
∑n

i=1

(
yi −

(
β0 +

∑p−1
j=1 βjxj,i

))2
can be expressed as:

(y −Xβ)T (y −Xβ)

Next, we are going to find β̂ = (β̂0, β̂1, · · · , β̂p−1)
to minimize SSE as our estimate for β =
(β0, β1, · · · , βp−1)
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3.17

Estimating Regression Coefficients
We apply method of least squares to minimize
(y −Xβ)T (y −Xβ) to obtain β̂

What is important is the orthogonality, which leads to
the following:∑n

i (yi − ŷi) = 0∑n
i (yi − ŷi)x1,i = 0

...∑n
i (yi − ŷi)xp−1,i = 0

Note: The first equation states that the mean of the
residuals is 0, while the other equations indicate that the
residuals are uncorrelated with the independent variables
The resulting least squares estimate is

β̂ =
(
XTX

)−1
XTy

(see LS_MLR.pdf for the derivation)
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3.18

Estimation of σ2

Fitted values:

ŷ = Xβ̂ = X
(
XTX

)−1
XTy = Hy

Residuals:
e = y − ŷ = (I −H)y

Similar as we did in SLR

σ̂2 =
eTe

n− p

=
(y −Xβ̂)T (y −Xβ̂)

n− p

=
SSE

n− p

= MSE

Notes

Notes

Notes
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3.19

Geometric Representation of Least Squares Estimation

Projecting the observed response y into a space
spanned by X

Source: Linear Model with R 2nd Ed, Faraway, p. 15

Multiple Linear
Regression I

Multiple Linear
Regression

Estimation &
Inference

Assessing Model
Fit

3.20

Regression with Numerical and Categorical Predictors

What if some of the predictors are categorical variables?

Example: Salaries for Professors Data Set

We have three categorical variables, namely, rank,
discipline, and sex.

⇒ We will need to create dummy (indicator) variables
for those categorical variables
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3.21

Dummy Variable
For binary categorical variables:

xsex =

{
1 if sex = male,
0 if sex = female.

xdiscip =

{
0 if discip = A,
1 if discip = B.

For categorical variable with more than two categories:

xrank1 =

{
0 if rank = Assistant Prof,
1 if rank = Associated Prof.

xrank2 =

{
0 if rank = Associated Prof,
1 if rank = Full Prof.

Notes

Notes

Notes
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3.22

Design Matrix

With the design matrix X, we can now use method
of least squares to fit the model Y = Xβ + ε
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3.23

Model Fit: lm(salary ∼
rank+ sex+ discipline+ yrs.since.phd)

Question: Interpretation of the slopes of these dummy
variables (e.g. β̂rankAssocProf)? Interpretation of the
intercept?
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3.24

Model Fit for Assistant Professors
Color Line Type
Red: Female —-: Applied (discipline B)
Blue: Male - - -: Theoretical (discipline A)

2 4 6 8 10

9−month salary

Years since PhD

63 k

70.2 k

77.4 k

84.6 k

91.8 k

Notes

Notes

Notes
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3.25

Other Type of Predictor Variables: Polynomial
regression
Suppose we would like to model the relationship between
response Y and a predictor x as a pth degree polynomial
in x:

Y = β0 + β1x+ β2x
2 + · · ·+ βpx

p + ε

Polynomial regression can be treated as a special case of
multiple linear regression, with the design matrix taking
the following form:

X =


1 x1 x21 · · · xp1
1 x2 x22 · · · xp2
... · · · . . .

...
...

1 xn x2n · · · xpn


One can also include the interaction terms; for example:

Y = β0 + β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + β5x1x2 + ε
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3.26

Transformed Response Variables

Consider the following models:

log(Y ) = β0 + β1x1 + β2x2 + ε;

Y =
1

β0 + β1x1 + β2x2 + β3x3 + ε
,

both of which can be expressed as follws

Y ∗ = β0 + β1x1 + β2x2 + ε;

Y ∗∗ = β0 + β1x1 + β2x2 + β3x3 + ε,

respectively, where Y ∗ = log(Y ), and Y ∗∗ = 1/Y.
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3.27

Analysis of Variance (ANOVA) Approach to Regression

Partitioning Sums of Squares
Total sums of squares in response

SST =

n∑
i=1

(yi − ȳ)2

We can rewrite SST as
n∑

i=1

(yi − ȳ)2 =

n∑
i=1

(yi − ŷi + ŷi − ȳ)2

=

n∑
i=1

(yi − ŷi)
2

︸ ︷︷ ︸
“Error”: SSE

+

n∑
i=1

(ŷi − ȳ)2︸ ︷︷ ︸
Model: SSR

Notes

Notes

Notes
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3.28

Partitioning Total Sums of Squares: A Graphical
Illustration
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3.29

ANOVA Table & F -Test
To answer the question: Is at least one of the predictors
x1, · · · , xp−1 useful in predicting the response y?

Source df SS MS F -Value
Model p− 1 SSR MSR = SSR/(p− 1) MSR/MSE
Error n− p SSE MSE = SSE/(n− p)

Total n− 1 SST

F -test: Tests if the predictors {x1, · · · , xp−1}
collectively help explain the variation in y

H0 : β1 = β2 = · · · = βp−1 = 0

Ha : at least one βk ̸= 0, 1 ≤ k ≤ p− 1

F ∗ = MSR
MSE = SSR/(p−1)

SSE/(n−p)

H0∼ Fp−1,n−p

Reject H0 if F ∗ > F1−α,p−1,n−p

Multiple Linear
Regression I

Multiple Linear
Regression

Estimation &
Inference

Assessing Model
Fit

3.30

Testing Individual Predictor

We can show that β̂ ∼ Np

(
β, σ2

(
XTX

)−1
)
⇒

β̂k ∼ N(βk, σ
2
β̂k
)

Perform t-Test:

H0 : βk = 0 vs. Ha : βk ̸= 0

β̂k−βk

ŝe(β̂k)
∼ tn−p ⇒ t∗ = β̂k

ŝe(β̂k)

H0∼ tn−p

Reject H0 if |t∗| > t1−α/2,n−p

Confidence interval for βk:

β̂k ± t1−α/2,n−pŝe(β̂k)

Notes

Notes

Notes
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3.31

Confidence Intervals and Confidence Ellipsoids
Comparing with individual confidence interval, confidence
ellipsoids can provide additional information when
inference with multiple parameters is of interest. A
100(1− α)% confidence ellipsoid for β can be
constructed using:

(β̂ − β)TXTX(β̂ − β) ≤ pσ̂2Fα
p,n−p.
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3.32

Quantifying Model Fit using Coefficient of
Determination R2

Coefficient of determination R2 describes
proportional of the variance in the response variable
that is predictable from the predictors

R2 =
SSR

SST
= 1− SSE

SST
, 0 ≤ R2 ≤ 1

R2 increases with the increasing p, the number of the
predictors

Adjusted R2, denoted by R2
adj = 1− SSE/(n−p)

SST/(n−1)

attempts to account for p
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3.33

R2 vs. R2
adj Example

Suppose the true relationship between response Y and
predictors (x1, x2) is

y = 5 + 2x1 + ε,

where ε ∼ N(0, 1) and x1 and x2 are independent to each
other. Let’s fit the following two models to the “data"

Model 1: Y = β0 + β1x1 + ε1

Model 2: Y = β0 + β1x1 + β2x2 + ε2

Question: Which model will “win” in terms of R2?

Let’s conduct a Monte Carlo simulation to study this

Notes

Notes

Notes
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3.34

Outline of Monte Carlo Simulation

1 Generating a large number (e.g., M = 500) of “data
sets”, where each has exactly the same {x1,i, x2,i}ni=1

but different values of response
{yi = 5 + 2x1,i + εi}ni=1

2 Fitting model 1: y = β0 + β1x1 + ε1 (true model) and
model 2: y = β0 + β1x1 + β2x2 + ε2, respectively for
each simulating data set and calculating their R2 and
R2

adj

3 Summarizing {R2
j}Mj=1 and {R2

adj,j}Mj=1 for model 1
and model 2
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3.35

An Example of Model 1 Fit
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3.36

An Example of Model 2 Fit

Notes

Notes

Notes
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3.37

R2: Model 1 vs. Model 2
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3.38

R2
adj: Model 1 vs. Model 2
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Takeaways:

R2 always pick the more “complex” model (i.e., with
more predictors), even the simpler model is the true
model

R2
adj has a better chance to pick the “right” model
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Summary
These slides cover:

Multiple Linear Regression: Model and Parameter
Estimation

Inference: F -test and t-test; Confidence
intervals/ellipsoids

Assessing Model Fit: R2 and R2
adj

Monte Carlo Simulation

R functions to know:

image.plot in the fields library and scatter3D
in the plot3D library for visualization

anova for computing the ANOVA table

Notes

Notes

Notes
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