Lecture 3
Multiple Linear Regression |

Reading: Forecasting, Time Series, and Regression (4th
edition) by Bowerman, O’Connell, and Koehler: Chapter 4

MATH 4070: Regression and Time-Series Analysis

Agenda

Whitney Huang
Clemson University

0 Multiple Linear Regression

Q Estimation & Inference

0 Assessing Model Fit

Multiple Regression Analysis

Goal: To model the population relationship between two
or more predictors (X'’s) and a response (Y).

Model: Y = f(x) +&.

Example: Species diversity on the Galapagos Islands.
We are interested in studying the relationship between
the number of plant species (Species) and the following
geographic variables: Area, Elevation, Nearest,

Scruz,

Adjacent.
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Data: Species Dlversny on the Galapagos Islands

How Do Geographic Variables Affect Species Diversity?

o 200 4000 o1 % o 200 4000
Species ‘“ ‘" “’ Eg
B s Te
‘ ‘ frea ‘ ‘ ‘
- ‘ ‘-,:' Elevation ; EE
i A Jliz .
‘ ‘f ‘ Nearest N ‘
J lie. Jbes . NEH = E
F S B 2
ol & Scruz | |. s
v B e v -
Wt e o * 1 o ", ©
% ‘ \‘ ‘ ‘ ‘ Adjacent
o w0 a0 o s0 1500 o 100 200 300

Let’s Take a Look at the Correlation Matrix

Here we compute the correlation coefficients between the

response (Species) and predictors (all the geographic

variables)

> round(cor(galal,
Species
1.000
0.618

-2, 3)

0.618
1.000
0.754

0.738
-0.014 -0.111
-0.171 -0.101

0.026 0.180

0.738
0.754
1.000
-0.011
-0.015
0.536

Area Elevation Nearest

-0.014
-0.111
-0.011
1.000
0.615
-0.116

Scruz
-0.171
-0.101
-0.015

0.615

1.000

0.052

Adjacent
0.026
0.180
0.536

-0.116
0.052
1.000
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Combining Two Pieces of Information in One Plot Wultiple Linear

Regression | NOteS
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Multiple Linear Regression Model e Notes
Y =00+pX1+FXo+ -+ fp1Xp1+e
@ The above relationship holds for every individual in
the population, and E(¢) = 0 and Var(¢) = o2
@ The population of individual error terms (¢’s) follows
normal distribution
o Observations are independent (true if individuals are
selected randomly)
i.4.d. 9
= ¢ "K' N(0,0%)
s
Model 1: Species ~ Elevation e Notes
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Call:

Im(formula = Species ~ Elevation, data = gala)

Residuals:

Min 1Q Median 3Q Max
-218.319 -30.721 -14.690 4.634 259.180

Coefficients:
Estimate Std. Error t value Pr(>Itl)
(Intercept) 11.33511 19.20529 0.590 0.56

Elevation 0.20079 0.03465 5.795 3.18e-06 ***

Signif. codes:

0 ‘***> 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1

Residual standard error: 78.66 on 28 degrees of freedom

Multiple R-squared: 0.5454, Adjusted R-squared: 0.5291
F-statistic: 33.59 on 1 and 28 DF, p-value: 3.177e-06




Model 1 Fit Multiple Linear

Regression |

Species = 11.33511 + 0.20079 x Elevation,
& = 78.66, R? = 0.5454
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Model 2: Species ~ Elevation + Area 'V'H“e“g'lr’;;!‘:?’
o8,

Call:
Im(formula = Species ~ Elevation + Area, data = gala)

Residuals:
Min 1Q Median 3Q Max
-192.619 -33.534 -19.199 7.541 261.514

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 17.10519 20.94211 0.817 0.42120
Elevation 0.17174 0.05317 3.230 0.00325 **
Area 0.01880 0.02594 0.725 0.47478
Signif. codes:
Q ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1

Residual standard error: 79.34 on 27 degrees of freedom
Multiple R-squared: @.554, Adjusted R-squared: 0.521
F-statistic: 16.77 on 2 and 27 DF, p-value: 1.843e-05

Model 2 Fit Multiple Linear

Regression |
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Species = 17.10519 +0.17174 x Elevation + 0.01880 x Area,
& =79.34, R? = 0.554
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Model 3: Species ~

Call:
lm(formula = Species ~ Elevation + Area + Adjacent, data = gala)

1Q Median 3Q

-34.283

Coefficients:

Elevation + Area + Adjacent

Max

-8.733  27.972 195.973

Estimate Std. Error t value Pr(>Itl)

16.90706
0.05211
0.02181
0.01698

(Intercept) -5.71893
Elevation 0.31498
[Area -0.02031

-0.07528

Signif. codes: @ ‘***’ 9. Q@1 ‘**’

-0.338

6.044
-0.931
-4.434

0.73789
232e-06REES
0.36034
0.00015 ***

0.01 ‘*> .05 .’ 0.1 “ ’ 1

Residual standard error: 61.01 on 26 degrees of freedom

Multiple R-squared: 0.746,
F-statistic: 25.46 on 3 and 26 DF,

‘Full Model”

[Lm(formul
data = gala)

1Q Median

3Q
-34.898 -7.862 33.460 182.

Estimate Std. Error t value
7.068221 19.154198  0.369
-0.023938 0.022422 -1.068
0.319465 ©0.053663 5.953
0.009144 1.054136 0.009
-0.240524 0.215402 -1.117
-0.074805 ©0.017700 -4.226

Adjusted R-squared:

0.7167
p-value: 6.683e-08

= Species ~ Area + Elevation + Nearest + Scruz + Adjacent,

PrC>1t1)

0.
0.
o
0.
0.
0.

715351
296318
82e-06
993151
275208
000297

Residual standard error: 60.98 on 24 degrees of freedom

ultiple R-squared: 0.7658,
F-statistic: 15.7 on 5 and 24 DF,

MLR Topics

Adjusted R-squared:
p-value: 6.838e-07

0.7171

Similar to SLR, we will discuss

@ Estimation

o Inference

o Diagnostics and Remedies

We will also discuss some new topics

@ Model Selection

@ Multicollinearity
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Multiple Linear Regression in Matrix Notation Wultiple Linear

Regression |
Given the actual data, we can write MLR model as: Notes

.‘ MATHEMATICAL AND
Q7 g

Y1 1 211 w21 - Tpo11 Bo €1
Y2 1 w9 w22 - Tpo1p B1 N €2

Multiple Linear
Reg N

Yn 1 @ Zom - Tpoan Bp-1 En

It will be more convenient to put this in a matrix
representation as:

y=XpB+e
Error Sum of Squares (SSE)

=y, (yl - (ﬁo +30 ﬁjxjo)? can be expressed as:
(y—XB)"(y-XB)

Next, we are going to find 8 = (B0, 51, »Bp-1)

to minimize SSE as our estimate for 8 =
(Bo, B1,- -+, Bp—1) om

Estimating Regression Coefficients Multiple Linear

Regression |
\(Ne ag{plﬂy) qrﬂn(ethog( (g)lt-iast bstqlijagas to minimize .‘, ro—
Y- Y- 0 obtain

Notes

What is important is the orthogonality, which leads to
the following: N

° Z:’(% -3;)=0 Inference
o Y (yi—9i)r1:=0

0!
0 > (Wi — Ui)rp1:=0

Note: The first equation states that the mean of the

residuals is 0, while the other equations indicate that the
residuals are uncorrelated with the independent variables

The resulting least squares estimate is

B=(x"x)"' xTy

(see Ls_MLR.pdf for the derivation)

Estimation of o2 Mhegrossion]’
o Fitted values: o
. MATHEMATICAL AND
R 4 T\l T Q@ s s
y=Xﬂ=X(X X) X'y=Hy

Notes

Estimation &
Inference

@ Residuals:
e=y—9=(-Hy

@ Similar as we did in SLR

6’2 _ ETE
n—p
_w-XH)"(y - Xp)
n—p
_ SSE
- n—p

= MSE




Geometric Representation of Least Squares Estimation

Projecting the observed response y into a space
spanned by X

Space spanned by X

Source: Linear Model with R 2nd Ed, Faraway, p. 15

Regression with Numerical and Categorical Predictors
What if some of the predictors are categorical variables?
Example: Salaries for Professors Data Set

> head(Salaries)
rank discipline yrs.since.phd yrs.service sex salary

1 Prof B 19 18 Male 139750
2 Prof B 20 16 Male 173200
3 AsstProf B 4 3 Male 79750
4 Prof B 45 39 Male 115000
5 Prof B 40 41 Male 141500
6 AssocProf B 6 6 Male 97000

We have three categorical variables, namely, rank,
discipline, and sex.

= We will need to create dummy (indicator) variables
for those categorical variables

Dummy Variable
For binary categorical variables:

1 if sex =male,
0 if sex =female.

Tsex =

0 ifdiscip=A,

diseip 1 ifdiscip=B.

For categorical variable with more than two categories:

0 if rank = Assistant Prof,

€T =
rankl 1 if rank = Associated Prof.

0 if rank = Associated Prof,

x =
T2 )1 if rank = Full Prof.

Multiple Linear
Regression |

0% o

STATISTICAL SCIENCES

Estimation &
Inference

Multiple Linear
Regression |

.‘ MATHEMATICAL AND
@ gmmoses

Estimation &
Inference

Multiple Linear
Regression |

.‘ MATHEMATICAL AND
Q7 g

Estimation &
Inferel

Notes

Notes

Notes




Design Matrix

> head(X)

(Intercept) rankAssocProf rankProf disciplineB yrs.since.phd

1

oOu s WN P
PR R

1
yrs.service s
18
16

3
39
41

6

oOu A WN R

exMale

=

0

P

1

Sr PR

1

R R R R e

19
20
4
45
40
6

With the design matrix X, we can now use method
of least squares to fit the model Y = X3 + ¢

Model Fit: 1m(salary ~
discipline

rank + sex

Coefficients:

(Intercept)
disciplineB
rankAssocProf
rankProf
sexMale
yrs.since.phd
Signif. codes:
0 “***’ 0.001

yrs.since.phd)

Estimate Std. Error t value Pr(>ltl)

67884.32
13937.47
13104.15
46032.55
4349.37
61.01

4536.

2346
4167
4240

3875.
127.

89
.53
31
.12
39
o1

14.963 < Ze-16
5.940 6.32e-09
3.145 0.00179

10.856 < Z2e-16
1.122 0.26242
0.480 0.63124

¥4 0.01 ‘*?0.05 ‘. 0.1 <1

Residual standard error: 22660 on 391 degrees of freedom
Adjusted R-squared: 0.4401
p-value: < 2.2e-16

Multiple R-squ

ared:

0.4472,
F-statistic: 63.27 on 5 and 391 DF,

Question: Interpretation of the slopes of these dummy
variables (e.9. Brankassocrros)? Interpretation of the

intercept?

Model Fit for Assistant Professors
| Line Type

Color

Red: Female

Blue: Male

—-: Applied (discipline B)

- - -t Theoretical (discipline A)

9-month salary

91.8k -

84.6k -

774k o

70.2k o

63k -

Years since PhD

10
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Other Type of Predictor Variables: Polynomial
regression
Suppose we would like to model the relationship between
response Y and a predictor = as a py, degree polynomial
in x:

Y=60+51I+52I2+"'+ﬁpfp+6
Polynomial regression can be treated as a special case of
multiple linear regression, with the design matrix taking
the following form:

1z a? z)

1 a2 ZL% ;Lg
X = i .

1z, 22 xh

One can also include the interaction terms; for example:

Y = Bo + Pr1a1 + Bowz + Bsaf + Bazh + Bswriaa + €

Transformed Response Variables

Consider the following models:

log(Y) = Bo + Prx1 + farz +€;
1
Y = 9
Bo + B1o1 + Bowa + B3ws + €

both of which can be expressed as follws

Y™ = Bo+ fra1 + fawa +€;
Y™ = fo + 11 + Paxa + P313 + ¢,

respectively, where Y* = log(Y), and Y** = 1/Y.

Analysis of Variance (ANOVA) Approach to Regression

Partitioning Sums of Squares
@ Total sums of squares in response

SST = (v — )°
i=1

@ We can rewrite SST as

n n

Z(l/i —9)? = Z(’yi — 9+ 9 —9)°

i=1 i=1
n n
= wi— )+ G —9)’
i=1 i=1

“Error”: SSE Model: SSR
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Partitioning Total Sums of Squares: A Graphical
lllustration
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ANOVA Table & F'-Test

To answer the question: Is at least one of the predictors
x1,- -, xp—1 useful in predicting the response y?

Source df SS MS F-Value

Model p—1 SSR MSR=SSR/(p—1) MSR/MSE
Error n—p SSE MSE = SSE/(n — p)

Total n—1 SST

o F-test: Tests if the predictors {z1,--- ,zp—1}
collectively help explain the variation in y

o Hy:pr=pa=-=0p-1=0
o H,: atleastone B, #0, 1<k<p-1
° F*:MSRisSR/(p—I) Ho

~

MSE ~ SSE/(n—p) Fp1np

o Reject Hy if F* > Fi_qp—1n—p

Testing Individual Predictor
@ We can show that 3 ~ N, (6,02 (XTX)’1>:>
By ~ N(ﬁkﬂgk)
o Perform ¢-Test:

o Hy:Br=0vs. Hy: B #0

Br—Bs ~ B Hy
° se(Br) tnp = 1" = se(Br) tn—p

o Reject Hy if [t*| > t1_a/2,n—p

@ Confidence interval for 8;:

31@ + tlfa/z,nfpSAe(/gk)
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Confidence Intervals and Confidence Ellipsoids i
Comparing with individual confidence interval, confidence Notes
. . . . . . 0% i
ellipsoids can provide additional information when Q@

inference with multiple parameters is of interest. A

TICAL AND
ALSCIENCES

100(1 — «r)% confidence ellipsoid for 3 can be

constructed using: Esimaton
(/é - B)TXTX(B - ﬂ) < pé—zF;tn—p'
-0.04 +
g—nna - :
-0.10 o
70‘06 fD‘.DA 70‘,02 0,‘00 0. ‘02
Quantifying Model Fit using Coefficient of B
] 4 ; Regression | NOteS
Determination R~
.‘ MATHEMATICAL AND
Q@ s soeices
o Coefficient of determination R? describes
proportional of the variance in the response variable
that is predictable from the predictors
SSR SSE
2 2
= =1— 5=, 0<R°<1
SST SST’ -
@ R?increases with the increasing p, the number of the
predictors
o Adjusted R?, denoted by Ry =1 — %
attempts to account for p
R? vs. R2, Example Multiple Linear
adj A Notes

0% e

Suppose the true relationship between response Y and Q@@ st
predictors (z1, x2) is

y=5+2x +e¢,

Assessing Model

where ¢ ~ N(0,1) and z; and x, are independent to each  +:
other. Let’s fit the following two models to the “data”

Model 1: Y = By + Bz + ¢!
Model 2: Y = By + f1x1 + Boxa + g2

Question: Which model will “win” in terms of R2?

Let’s conduct a Monte Carlo simulation to study this




Outline of Monte Carlo Simulation LD
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@ Generating a large number (e.g., M = 500) of “data
sets”, where each has exactly the same {1, 22},
but different values of response
{yi =5+ 2x1; + e}y

Q Fitting model 1: y = Bg + f1a1 + €' (true model) and
model 2: y = By + Bix1 + Pox2 + €2, respectively for
each simulating data set and calculating their R? and

2
Radj

Q Summarizing {R?}}Z, and {R2,, ;}}£, for model 1

adj,j
and model 2
An Example of Model 1 Fit HRocoasion]
Pr?

> summary(fitl) "MNEMW:ADL\M?B
Call:
Im(formula = y ~ x1)

Residuals:
Min 1Q Median 3Q Max
-1.6085 -0.5056 -0.2152 0.6932 2.0118

Coefficients:

Estimate Std. Error t value Pr(>1tl)
(Intercept) 5.1720 0.1534  33.71 < 2e-16 ***
x1 1.8660 0.1589  11.74 2.47e-12 ***
Signif. codes:
0 *** 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 <’ 1

Residual standard error: ©.8393 on 28 degrees of freedom
Multiple R-squared: 0.8313, Adjusted R-squared: 0.8253
F-statistic: 138 on 1 and 28 DF, p-value: 2.467e-12

An Example of Model 2 Fit Wultiple Linear

Regression |

> summary(fit2) 1!
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Call:
Im(formula = y ~ x1 + x2)

Residuals:
Min 1Q Median 3Q Max
-1.3926 -0.5775 -0.1383 0.5229 1.8385

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 5.1792 0.1518 34.109 < 2e-16 ***
x1 1.8994 0.1593 11.923 2.88e-12 ***
x2 -0.2289 0.1797 -1.274 0.213
Signif. codes:
Q “¥¥%7 9,001 ‘**’ 0.01 ‘*’ 0.05 ‘. 0.1 <’ 1

Residual standard error: 0.8301 on 27 degrees of freedom
Multiple R-squared: 0.8408, Adjusted R-squared: 0.8291
F-statistic: 71.32 on 2 and 27 DF, p-value: 1.677e-11
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R?: Model 1 vs. Model 2

Model 2: R?

0.7

0.6 -

T T T T
0.6 0.7 0.8 0.9

Model 1: R?

R? ..: Model 1 vs. Model 2

0.9 o 0.9 4
% os WF 087
& &
z T
B8 o
k<3 0.7 4
= 07 s
06 4
0.6 -
T T T T
0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9
Model 1: R Model 1: R%;
Takeaways:

@ R? always pick the more “complex” model (i.e., with
more predictors), even the simpler model is the true
model

@ R?, has a better chance to pick the “right” model

Summary
These slides cover:

@ Multiple Linear Regression: Model and Parameter
Estimation

o Inference: F-test and ¢-test; Confidence
intervals/ellipsoids

o Assessing Model Fit: R* and RZ

@ Monte Carlo Simulation
R functions to know:
@ image.plot inthe fields library and scatter3D
in the plot 3D library for visualization

@ anova for computing the ANOVA table
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