Lecture 4

Multiple Linear Regression II

Reading: Forecasting, Time Series, and Regression (4th edition) by Bowerman, O'Connell, and Koehler: Chapter 4

MATH 4070: Regression and Time-Series Analysis

Multiple Linear Regression II MITRENATICAL AND STATISCAL SCIENCE Linear (Workson)

Notes

Whitney Huang

Clemson University

Agenda

- General Linear F-Test
- Prediction
- Multicollinearity
- Model Selection
- **6** Model Diagnostics
- 6 Non-Constant Variance & Transformation

ple Line

Notes

Review: *t*-Test and *F*-Test in Linear Regression

- O Reject H_0 if $|t^*| > t_{1-\alpha/2,n-p}$
- Overall *F*-test: Test of all the predictors
 *H*₀: β₁ = β₂ = ··· = β_{p-1} = 0
 - **2** H_a : at least one $\beta_j \neq 0, 1 \leq j \leq p-1$
 - **O Test Statistic:** $F^* = \frac{MSR}{MSE}$
 - **O** Reject H_0 if $F^* > F_{1-\alpha,p-1,n-p}$
- Both tests are special cases of General Linear F-test

iple Linear ression II MATREMICAL AND MATREMICAL SCIENCES

General Linear *F***-Test**

- Comparison of a "full model" and "reduced model" that involves a subset of full model predictors
- Consider a full model with k predictors and reduced model with ℓ predictors ($\ell < k$)
- Test statistic: $F^* = \frac{(\text{SSE}_{\text{reduce}} \text{SSE}_{\text{full}})/(k-\ell)}{\text{SSE}_{\text{full}}/(n-k-1)} \Rightarrow \text{Testing } H_0$ that the regression coefficients for the extra variables are all zero
 - Example 1: $x_1, x_2, \cdots, x_{p-1}$ vs. intercept only \Rightarrow Overall *F*-test
 - Example 2: $x_j, 1 \le j \le p-1$ vs. intercept only \Rightarrow *t*-test for β_j
 - Example 3: x_1, x_2, x_3, x_4 vs. $x_1, x_3 \Rightarrow H_0: \beta_2 = \beta_4 = 0$

Multiple Linear Regression II
MATHEMATICAL AND STATISTICAL SCIENCES
General Linear F-Test

Notes

Geometric Illustration of General Linear F-Test

Source: Faraway, Linear Models with R, 2014, p.34

Ceneral Linear Production Multicollinearity Model Diagnostics Mon-Constant Variance & Transformation

ple Lin

Notes

> summary(g	ala_fit2)				
Call:					
lm(formula	= Species ~	Elevation	+ Area)		
Paciduala					
Min	10 Me	dian	30	Max	
-192.619 -	33.534 -19	.199 7.5	541 261	.514	
Coefficient	s:				
	Estimate S	td. Error t	t value	Pr(>ltl)	
(Intercept)	17.10519	20.94211	0.817	0.42120	
Elevation	0.17174	0.05317	3.230	0.00325	**

Species Diversity on the Galapagos Islands: Full Model

Elevation 0.17174 0.05317 3.230 0.00325 ** Area 0.01880 0.02594 0.725 0.47478 ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 79.34 on 27 degrees of freedom Multiple R-squared: 0.554, Adjusted R-squared: 0.521 F-statistic: 16.77 on 2 and 27 DF, p-value: 1.843e-05

Multiple Li	ine:
Regressio	on l
Should	

Species Diversity on the Galapagos Islands: Reduce Model

> summary(gala_fit1)
Call:
lm(formula = Species ~ Elevation)
Residuals:
Min 1Q Median 3Q Max
-218.319 -30.721 -14.690 4.634 259.180
Coefficients:
Estimate Std. Error t value Pr(> t)
(Intercept) 11.33511 19.20529 0.590 0.56
Elevation 0.20079 0.03465 5.795 3.18e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 78.66 on 28 degrees of freedom Multiple R-squared: 0.5454, Adjusted R-squared: 0.5291

Multiple Linear Regression II
MATHEMATICAL AND STATISTICAL SCIENCES
General Linear F-Test

Notes

Performing a General Linear F-Test

- $H_0: \beta_{\text{Area}} = 0$ vs. $H_a: \beta_{\text{Area}} \neq 0$
- $F^* = \frac{(173254 169947)/(2-1)}{169947/(30-2-1)} = 0.5254$
- *p*-value: $\mathbb{P}[F > 0.5254] = 0.4748$, where $F \sim \mathsf{F}_{\underbrace{1}_{k-\ell}, \underbrace{27}_{k-\ell n-k-1}}$

> anova(gala_fit1, gala_fit2) Analysis of Variance Table

Model	1:	Species	s ~	Elev	/ati	on			
Model	2:	Species	s ~	Elev	/ati	on	+	Area	
Res	.Df	RSS	Df	Sum	of	Sq		F	Pr(>F)
1	28	173254							
2	27	169947	1		33	807	0.	5254	0.4748

Itiple Linea

Notes

Another Example of General Linear F-Test

> anova(fi	л.ι.,)						
Analysis o	٥f١	/arianco	e Table					
Response:	Spe	ecies						
	Df	Sum Sq	Mean Sq	F value	Pr(>F)			
Area	1	145470	145470	39.1262	1.826e-06	***		
Elevation	1	65664	65664	17.6613	0.0003155	***		
Nearest	1	29	29	0.0079	0.9300674			
Scruz	1	14280	14280	3.8408	0.0617324			
Adjacent	1	66406	66406	17.8609	0.0002971	***		
Residuals Signif. co	24 ode	89231 5: 0 ''	3718 ***' 0.0	01'**'	0.01'*'0	.05'.'	0.1''1	
Residuals Signif. co > reduced > anova(r	24 ode: <-	89231 5: 0 '' lm(Sp iced)	3718 ***' 0.0 ecies ~	01 '**' Elevati	0.01 '*' 0 ion + Adja	.05'.' cent)	0.1''1	
Residuals Signif. co > reduced > anova(r Analysis	24 ode: edu of	89231 5: 0 '' lm(Sp iced) Varian	3718 ***' 0.0 ecies ~ ce Table	01 '**' Elevati	0.01 '*' 0 ion + Adja	.05'.' cent)	0.1''1	
Residuals Signif. co > reduced > anova(r Analysis Response:	24 ode: edu of Sp	89231 s: 0 '' (m(Sp (ced) Varian varian	3718 ***' 0.0 ecies ~ ce Table	01 '**' Elevati	0.01 '*' 0	.05'.' cent)	0.1''1	
Residuals Signif. co > reduced > anova(r Analysis Response:	24 ode: edu of Sp	89231 s: 0 '' (n(Sp (ced) Varian vecies Sum S	3718 ***' 0.0 ecies ~ ce Table q Mean !	01 '**' Elevati e Sq F val	0.01 '*' 0 ion + Adja lue Pr(.05'.' cent) >F)	0.1 '' 1	
Residuals Signif. co > reduced > anova(r Analysis Response: Elevation	24 ode: edu of Sr Df	89231 s: 0 '' lm(Sp uced) Varian pecies Sum S 20782	3718 ***' 0.0 ecies ~ ce Table q Mean ! 8 2078	01 '**' Elevati e Sq F val 28 56.1	0.01 '*' 0 ion + Adja lue Pr(112 4.662e	.05 '.' cent) >F) -08 ****	0.1 ' ' 1	
Residuals Signif. co > reduced > anova(r Analysis Response: Elevation Adjacent	24 ode: edu of Sr Df	89231 s: 0 '' (m(Sp (ced) Varian eccies Sum S 20782 7325	3718 ****' 0.0 ecies ~ ce Table q Mean 1 8 2078 1 732	Elevati Elevati Sq F val 28 56.1 51 19.7	0.01 '*' 0 ion + Adja lue Pr(112 4.662e 777 0.0001	.05 '.' cent) >F) -08 **** 344 ***	0.1 ' ' 1	

Multiple Linear Regression II
MATHEMATICAL AND STATISTICAL SCIENCES
General Linear F-Test

tiple Linea

NATHENATICAL AND STATISTICAL SCIENCE

Notes

Performing a General Linear *F*-Test

• Null and alternative hypotheses:

$$\begin{split} H_0: \beta_{\texttt{Area}} &= \beta_{\texttt{Nearest}} = \beta_{\texttt{Scruz}} = 0 \\ H_a: \text{ at least one of the three coefficients } \neq 0 \end{split}$$

- $F^* = \frac{(100003 89231)/(5-2)}{89231/(30-5-1)} = 0.9657$
- *p*-value: $\mathbb{P}[F > 0.9657] = 0.425$, where $F \sim F_{3,24}$

> anova(reduced, full) Analysis of Variance Table

Model 1: Species ~ Elevation + Adjacent Model 2: Species ~ Area + Elevation + Nearest + Scruz + Adjacent Res.Df RSS Df Sum of Sq F Pr(>F) 2 24 89231 3 10772 0.9657 0.425

Notes

Multiple Linear Regression Prediction

Given a new set of predictors, \pmb{x}_0 = $(1,x_{0,1},x_{0,2},\cdots,x_{0,p-1})^{\rm T},$ the predicted response is

$$\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_{0,1} + \hat{\beta}_2 x_{0,2} + \dots + \hat{\beta}_{p-1} x_{0,p-1}.$$

Again, we can use matrix representation to simplify the notation $T\hat{a}$

$$\hat{y}_0 = \boldsymbol{x}_0^{\mathrm{T}} \hat{\boldsymbol{\beta}},$$

where $\boldsymbol{x}_{0}^{\mathrm{T}}$ = $(1, x_{0,1}, x_{0,2}, \cdots, x_{0,p-1})$

We will use this formula to carry out two different kinds of predictions

ultiple Linear Regression II

4.11

Two Kinds of Predictions

There are two kinds of predictions can be made for a given x_0 :

 Predicting a future response: Based on MLR, we have y₀ = x₀^Tβ + ε. Since

 $E(\varepsilon)$ = 0, therefore the predicted value is

 \hat{y}_0 = $oldsymbol{x}_0^{\mathrm{T}} \hat{oldsymbol{eta}}$

• Predicting the mean response: Since $E(y_0) = x_0^T \beta$, there we have the predicted mean response

$$\widehat{E(y_0)} = \boldsymbol{x}_0^{\mathrm{T}} \hat{\boldsymbol{\beta}},$$

the same predicted value as predicting a future response

Next, we need to assess their prediction uncertainties, and then we will identify the differences in terms of these uncertainties

Dradia	ction I	Incorta	intv
ricuit		oncerta	III UY

From page 30 of slides 3, we have $\operatorname{Var}(\hat{\boldsymbol{\beta}}) = \sigma^2 \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \right)^{-1}$. Therefore we have

 $\operatorname{Var}(\hat{y}_0) = \operatorname{Var}(\boldsymbol{x}_0^{\mathrm{T}} \hat{\boldsymbol{\beta}}) = \sigma^2 \boldsymbol{x}_0^{\mathrm{T}} \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \right)^{-1} \boldsymbol{x}_0$

We can now construct $100(1-\alpha)\%$ Cl for the two kinds of predictions:

• Predicting a future response y_0 :

$$\boldsymbol{x}_{0}^{\mathrm{T}} \hat{\boldsymbol{\beta}} \pm \boldsymbol{t}_{1-\alpha/2,n-p} \times \hat{\sigma} \sqrt{\underbrace{1 + \boldsymbol{x}_{0}^{\mathrm{T}} \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{x}_{0}}_{\text{accounting for } \varepsilon}$$

• Predicting the mean response $E(y_0)$:

$$\boldsymbol{x}_{0}^{\mathrm{T}}\hat{\boldsymbol{\beta}} \pm t_{1-\alpha/2,n-p} \times \hat{\sigma} \sqrt{\boldsymbol{x}_{0}^{\mathrm{T}} \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{x}_{0}}$$

Notes

Notes

ta = fat) als: 1 10 Median 30 Max 1 -2.572 -0.097 2.898 9.327	General Line
als: n 10 Median 30 Max 4 -2.572 -0.097 2.898 9.327	General Line
n 10 Meatan 30 Max 4 -2.572 -0.097 2.898 9.327	
Estimate Std. Error t value Pr(sltl)	Prediction
cept) -15,29255 16,06992 -0.952 0.34225	Trediction
0.05679 0.02996 1.895 0.05929 .	
-0.08031 0.04958 -1.620 0.10660	
-0.06460 0.08893 -0.726 0.46830	
-0.43754 0.21333 -2.032 0.04327 -	
0.88543 0.08008 11.057 < 2e-16 ***	
-0.19842 0.13516 -1.468 0.14341	
0.23190 0.13372 1.734 0.08418 .	
-0.01168 0.22414 -0.052 0.95850	
0.15280 0.15851 0.964 0.33605	
n 0.43049 0.18445 2.334 0.02044 *	
-1.47654 0.49552 -2.980 0.00318 **	
. codes: 0 **** 0.001 *** 0.01 ** 0.05 *. 0.1 * 1	
al standard error: 3.988 on 238 degrees of freedom	
le R-squared: 0.749, Adjusted R-squared: 0.7353	
istic: 54.63 on 13 and 238 DF, p-value: < 2.2e-16	
	Estimate Std. Error t value Pr(-1t) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2

Notes

ICAL AND L sciences

Example: Predicting Body Fat Cont'd

- **(**) Calculate the median for each predictor to get $m{x}_0$
- **(2)** Compute the predicted value $\hat{y}_0 = \boldsymbol{x}_0^T \hat{\boldsymbol{\beta}}$
- Quantify the prediction uncertainty

(Intercent)	ane	weight	height	neck	chest	abdo
1.00	43.00	176.50	70.00	38.00	99.65	90.9
hip	thigh	knee	ankle	biceps	forearm	wris
99.30	59.00	38.50	22.80	32.05	28.70	18.3
> (y0 <- sum(x)	0 * coef(lmo	d)))				
[1] 17.49322						
> predict(lmod	. new = data	.frame(t(x0)))			
1						
17.49322						
<pre>> predict(lmod</pre>	, new = data	.frame(t(x0)), interval	= "predicti	on")	
	lwn un	r				
fit	LINI UP					
fit 1 17,49322 9.6	1783 25.3686	1				
fit 1 17.49322 9.6 > predict(lmod	1783 25.3686 , new = data	1 .frame(t(x0)), interval	= "confiden	ce")	
fit 1 17.49322 9.6 > predict(lmod fit	1783 25.3686 , new = data lwr u	1 .frame(t(x0) pr), interval	= "confiden	ce")	

negression II
MATHEMATICAL AND STATISTICAL SCIENC
Prediction

Notes

Multicollinearity

> cor(sim1)

y x1 x2 y 1.0000000 0.7987777 0.8481084 x1 0.7987777 1.0000000 0.9281514 x2 0.8481084 0.9281514 1.000000

Mathématical An Statistical Sciences Ineral Linear Test Idiction

Notes

Multicollinearity Cont'd

Multicollinearity is a phenomenon of high inter-correlations among the predictor variables

- Numerical issue \Rightarrow the matrix $X^T X$ is nearly singular
- Statistical issues/consequences
 - β 's are not well estimated \Rightarrow spurious regression coefficient estimates
 - $\bullet \ R^2$ and predicted values are usually okay even with multicollinearity

Multiple Linear Regression II

An Simulated Example

Suppose the true relationship between response \boldsymbol{y} and predictors $(\boldsymbol{x}_1,\boldsymbol{x}_2)$ is

 $Y = 4 + 0.8x_1 + 0.6x_2 + \varepsilon,$

where $\varepsilon \sim N(0,1)$ and x_1 and x_2 are positively correlated with ρ = 0.9. Let's fit the following models:

- Model 1: $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon_1$ This is the true model with parameters unknown
- Model 2: $Y = \beta_0 + \beta_1 x_1 + \varepsilon_2$ This is the wrong model because x_2 is omitted

Multiple Linear Regression II
MATHEMATICAL AND STATISTICAL SCIENCES
Multicollinearity

Notes

Scatter Plot: x_1 vs. x_2

General Linear Pr-Test Auticollinearity

iple Linea

Notes

Model 1 Fit

Call: lm(formula =	Y ~ X1 + X	2)				
Residuals:	10 Mad	lian	20	Мах		
1 01260 0		11UN 175 0.97	200 1 F	MUX E1E0		
-1.91309 -0.	1000 0.00	475 0.87	1.5	9120		
Coefficients	:					
	Estimate St	d. Error	t value	Pr(>ltl)		
(Intercept)	4.0710	0.1778	22.898	< 2e-16	***	
X1	2.2429	0.7187	3.121	0.00426	**	
X2	-0.8339	0.7093	-1.176	0.24997		
Signif. code	s: 0 '***'	0.001 '*	*' 0.01	·*' 0.05	·.' 0.1	• 1
0						
				~	c .	

Residual standard error: 0.9569 on 27 degrees of freedom Multiple R-squared: 0.673, Adjusted R-squared: 0.6488 F-statistic: 27.78 on 2 and 27 DF, p-value: 2.798e-07

4.21

Model 2 Fit

(all: $lm(formula = Y \sim X1)$

Residuals: Min 10 Median 30 Max -2.09663 -0.67031 -0.07229 0.87881 1.49739

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

 (Intercept)
 4.0347
 0.1763
 22.888
 < 2e-16</td>

 X1
 1.4293
 0.1955
 7.311
 5.84e-08

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

Residual standard error: 0.9634 on 28 degrees of freedom Multiple R-squared: 0.6562, Adjusted R-squared: 0.644 F-statistic: 53.45 on 1 and 28 DF, p-value: 5.839e-08

Multiple Linear Regression II		
MATHEMATICAL AND STATISTICAL SCIENCES		
Multicollinearity		

Notes

Notes

Takeaways

Model 1 fit: Call: lm(formula = Y ~ X1 + X2) Residuals: Min 1Q Median 3Q Max -1.91369 -0.73658 0.05475 0.87080 1.55150

Confficient

s: Estimate Std. Error t value Pr(>|t|) 4.0710 0.1778 22.898 < 2e-16 2.2429 0.7187 3.121 0.00426 -0.8339 0.7093 -1.176 0.24997 ----Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '

Residual standard error: 0.9569 on 27 degrees of freedom Multiple R-squared: 0.673, Adjusted R-squared: 0.6488 F-statistic: 27.78 on 2 and 27 DF, p-value: 2.798e-07

Model 2 fit:

lm(formula = Y ~ X1) Residuals: Min 1Q Nedian 3Q Max -2.09663 -0.67031 -0.07229 0.87881 1.49739

Coefficient : Estimate Std. Error t value Pr(>|t|) 4.8347 0.1763 22.888 < 2e-16 *** 1.4293 0.1955 7.311 5.84e-08 *** (Int X1 ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 0.9634 on 28 degrees of freedom Multiple R-squared: 0.6562, Adjusted R-squared: 0.644 F-statistic: 53.45 on 1 and 28 DF, p-value: 5.839e-08

$Y = 4 + 0.8x_1 + 0.6x_2 + \varepsilon,$ where $\varepsilon \sim N(0,1)$, x_1 and x_2 are positively correlated with $\rho = 0.9$ Summary:

Recall the true model:

- β 's are not well estimated in model 1 \Rightarrow Spurious regression coefficient estimates
- predicted values are OK compared to model 1

- In model 2, ${\it R}^2$ and

Variance Inflation Factor (VIF)

We can use the variance inflation factor (VIF)

$$\mathsf{VIF}_i = \frac{1}{1 - \mathsf{R}_i^2}$$

to quantifies the severity of multicollinearity in MLR, where R_i^2 is the coefficient of determination when X_i is regressed on the remaining predictors

R example code

 $\sqrt{\text{VIF}}$ indicates how much larger the standard error increases compared to if that variable had 0 correlation to other predictor variables in the model.

4.23

Model Selection in Multiple Linear Regression

Multiple Linear Regression Model:

```
Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{p-1} x_{p-1} + \varepsilon, \quad \varepsilon \stackrel{i.i.d.}{\sim} \mathrm{N}(0, \sigma^2)
```

Basic Problem: how to choose between competing linear regression models?

- Model too "small": underfit the data; poor predictions; high bias; low variance
- Model too big: "overfit" the data; poor predictions; low bias; high variance

In the next few slides we will discuss some commonly used model selection criteria to choose the "right" model to balance bias and variance

Regression II
MATHEMATICAL AND STATISTICAL SCIENCES
Model Selection

Multiple Linear

An Example of Bias and Variance Tradeoff

Notes

Notes

Balancing Bias And Variance: Mallows' C_p Criterion A good model should balance bias and variance to get good predictions

$$\begin{split} (\hat{Y}_i - \mu_i)^2 &= (\hat{Y}_i - \mathbb{E}(\hat{Y}_i) + \mathbb{E}(\hat{Y}_i) - \mu_i)^2 \\ &= \underbrace{(\hat{Y}_i - \mathbb{E}(\hat{Y}_i))^2}_{\sigma_{\hat{Y}_i}^2} + \underbrace{(\mathbb{E}(\hat{Y}_i) - \mu_i)^2}_{\text{Bias}^2}, \end{split}$$

where $\mu_i = \mathbb{E}(Y_i|X_i = x_i)$ • Mean squared prediction error (MSPE): $\sum_{i=1}^{n} \sigma_{\hat{Y}_i}^2 + \sum_{i=1}^{n} (\mathbb{E}(\hat{Y}_i) - \mu_i)^2$

• C_p criterion measure:

$$\begin{split} \Gamma_p &= \frac{\sum_{i=1}^n \sigma_{\hat{Y}_i}^2 + \sum_{i=1}^n (\mathbb{E}(\hat{Y}_i) - \mu_i)^2}{\sigma^2} \\ &= \frac{\sum \operatorname{Var}_{\mathsf{pred}} + \sum \operatorname{Bias}^2}{\operatorname{Var}_{\mathsf{error}}} \end{split}$$

Multiple Line Regression

C_p Criterion

 C_p statistic:

$$C_p = \frac{\text{SSE}}{\text{MSE}_{\text{F}}} + 2p - n$$

- When model is correct $E(C_p) \approx p$
- $\bullet\,$ When plotting models against p
 - Biased models will fall above $C_p = p$
 - ${\ensuremath{\,\circ\,}}$ Unbiased models will fall around line C_p = p
 - By definition: C_p for full model equals p

We desire models with small p and C_p around or less than p. See R session for an example

Multiple Linear Regression II
MATHEMATICAL AND STATISTICAL SCIENCES
Model Selection

Notes

 TRISTAL GENES

Adjusted R² Criterion

Adjusted R^2 , denoted by $R^2_{\rm adj}$, attempts to take account of the phenomenon of the R^2 automatically and spuriously increasing when extra explanatory variables are added to the model.

 $R_{\mathsf{adj}}^2 = 1 - \frac{\text{SSE}/(n-p-1)}{\text{SST}/(n-1)}$

- Choose model which maximizes R_{adi}^2
- Same approach as choosing model with smallest MSE

Notes

Notes

Information criteria

Information criteria are statistical measures used for model selection. Commonly used information criteria include:

• Akaike's information criterion (AIC)

$$n\log(\frac{\mathrm{SSE}_k}{n}) + 2k$$

• Bayesian information criterion (BIC)

$$n\log(\frac{\mathrm{SSE}_k}{n}) + k\log(n)$$

Here \boldsymbol{k} is the number of the parameters in the model.

These criteria balance the goodness of fit of a model with its complexity

General Linear

tiple Lin

Automatic Search Procedures

- Forward Selection: begins with no predictors and then adds in predictors one by one using some criterion (e.g., *p*-value or AIC)
- Backward Elimination: starts with all the predictors and then removes predictors one by one using some criterion
- Stepwise Search: a combination of backward elimination and forward selection. Can add or delete predictor at each stage
- All Subset Selection: Comparing all possible models using a selected criterion. Impractical for "large" number of predictors

Multiple Linear Regression II
MATHEMATICAL AND STATISTICAL SCIENCES
Model Selection

Notes

Model Assumptions

Model:

$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{p-1} x_{p-1} + \varepsilon, \quad \varepsilon \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$

We make the following assumptions:

Linearity:

 $E(Y|x_1, x_2, \dots, x_{p-1}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{p-1} x_{p-1}$

• Errors have constant variance, are independent, and normally distributed

 $\varepsilon \overset{i.i.d.}{\sim} \mathrm{N}(0,\sigma^2)$

Notes

We will revisit this in the end of the lecture

Notes

Assessing Normality of Residuals: QQ Plot

Notes

Leverage: Detecting "Extreme" Predictor Values

Recall in MLR that $\hat{y} = X(X^TX)^{-1}X^Ty = Hy$ where His the hat-matrix

• The leverage value for the i_{th} observation is defined as: тт h_i

$$n_i = \boldsymbol{H}_{ii}$$

- Can show that $Var(e_i) = \sigma^2(1 h_i)$, where $e_i = y_i \hat{y}_i$ is the residual for the $i_{\rm th}$ observation
- $\frac{1}{n} \le h_i \le 1$, $1 \le i \le n$ and $\bar{h} = \sum_{i=1}^n \frac{h_i}{n} = \frac{p}{n} \Rightarrow$ a "rule of thumb" is that leverages greater than $\frac{2p}{n}$ should be examined more closely

tiple Linea

tiple Linea

Leverage Values of Species ~ Elev + Adj

	Multiple Linear Regression II
	MATHEMATICAL AND STATISTICAL SCIENCES
Ņ	Model Diagnostics

Notes

Notes

_			
_			
_			
-			•
-			
_			

Standardized Residuals

As we have seen Var(e_i) = $\sigma^2(1 - h_i)$, this suggests the use of $r_i = \frac{e_i}{\hat{\sigma}\sqrt{(1-h_i)}}$

- r_i 's are called **standardized residuals**. r_i 's are sometimes preferred in residual plots as they have been standardized to have equal variance.
- If the model assumptions are correct then $Var(r_i) = 1$ and $Corr(r_i, r_j)$ tends to be small

STATISTICAL SCIENCES
Nodel Diagnostics

ple Lir

Studentized (Jackknife) Residuals

- For a given model, exclude the observation i and recompute $\hat{\beta}_{(i)}, \hat{\sigma}_{(i)}$ to obtain $\hat{y}_{i(i)}$
- The observation i is an outlier if $\hat{y}_{i(i)} y_i$ is "large"
- Can show Var $(\hat{y}_{i(i)} y_i) = \sigma_{(i)}^2 \left(1 + x_i^T (X_{(i)}^T X_{(i)})^{-1} x_i\right) = \sigma_{(i)}^2 (1 h_i)$
- Define the Studentized (Jackknife) Residuals as

$$t_i = \frac{\hat{y}_{i(i)} - y_i}{\sqrt{\hat{\sigma}_{(i)}^2 (1 - h_i)}} = \frac{\hat{y}_{i(i)} - y_i}{\sqrt{\mathsf{MSE}_{(i)} (1 - h_i)}}$$

which are distributed as a t_{n-p-1} if the model is correct and $\varepsilon \sim \mathrm{N}(\mathbf{0}, \sigma^2 \pmb{I})$

Multiple Linear Regression II
MATHEMATICAL AND STATISTICAL SCIENCES
Model Diagnostics

Notes

Studentized (Jackknife) Residuals of Species ~ Elev + Adj

MATHEMATICAL AND STATISTICAL SCIENCES
Model Diagnostics

Notes

Identifying Influential Observations: Cook's Distance

Cook's Distance quantifies how much the predicted values change when a particular observation is excluded from the analysis.

• Cook's distance measure (D_i) is defined as:

$$D_i = \frac{(y_i - \hat{y}_i)^2}{p \times \text{MSE}} \left(\frac{h_i}{(1 - h_i)^2}\right)$$

- Cook's Distance considers both leverage and residual, providing a broader measure of influence
- Here are the guidelines commonly used:
 - If D_i > 0.5, then the ith data point is worthy of further investigation as it may be influential
 - If D_i > 1, then the ith data point is quite likely to be influential

Iultiple Line Regression

Notes

Residual Plot of Species ~ Elev + Adj

Residual Plot After Square Root Transformation

Box-Cox Transformation

The Box-Cox method [Box and Cox, 1964] is a powerful way to determine if a transformation on the response is needed

In ${\tt R},$ we can use the ${\tt boxcox}$ function from the <code>MASS</code> package to perform a Box-Cox transformation. The plot suggests a cube root may be needed

Summary

These slides cover:

- General Linear *F*-Test provides a unifying framework for hypothesis tests
- Making predictions and quantifying prediction uncertainty
- Multicollinearity and its implications for MLR
- Model/variable selection can be done via some criterion-based methods to balance bias and variance
- Model diagnostics is crucial to ensure valid statistical inference
- Box-Cox Transformation can be used to transform the response in order to correct model violations

Notes

Notes

R Functions to Know

- anova for model comparison based on F-test
- predict: obtain predicted values from a fitted model
- vif under the faraway library: computes the variance inflation factors
- regsubsets in the leaps library and step for model selection
- influence.measures includes a suite of functions (hatvalues, rstandard, rstudent, cooks.distance) for computing regression diagnostics
- boxcox in the MASS library for performing a Box-Cox transformation

Regression II
MATHEMATICAL A STATISTICAL SCIE

ance &