Lecture 4
Multiple Linear Regression Il

Reading: Forecasting, Time Series, and Regression (4th
edition) by Bowerman, O’Connell, and Koehler: Chapter 4

MATH 4070: Regression and Time-Series Analysis

Whitney Huang
Clemson University

Agenda

o General Linear F-Test
o Prediction

© Multicollinearity

0 Model Selection

Q Model Diagnostics

0 Non-Constant Variance & Transformation

Review: ¢-Test and F'-Test in Linear Regression

o t-test: Testing one predictor

@ Null/Alternative Hypotheses: H : 3; = 0 vs.
H,:8;#0

O Test Statistic: t* = 2:=%
se(B;)

© Reject Hy if [t*] > t1_a/2,n-p

o Overall F-test: Test of all the predictors
Q Ho:B1=p2=-=03p1=0
Q H,: atleastone B; #0,1<j<p-1

istic: * MSR
@ Test Statistic: F* = MR

Q Reject Hy if F* > Fi_q p-1,n-p
Both tests are special cases of General Linear F-test

Multiple Linear
Regression II

Multiple Linear
Regression Il

o8,

HENATICAL AND
TISTICALSCENCES

Multiple Linear
Regression Il

% icuon o
@@ st s

General Linear
F-Test

Notes

Notes

Notes




General Linear F-Test Multiple Linear

Regression Il NOteS
@ Comparison of a “full model” and “reduced model” %9 i
that involves a subset of full model predictors
General Linear
F-Test
@ Consider a full model with & predictors and reduced
model with ¢ predictors (¢ < k)
ratine % _ (SSEreduceSSEwn)/(k—£) ;
o Test statistic: F* = W = Testing Hy
that the regression coefficients for the extra variables
are all zero
o Example 1: 21, x2, -+, 2,1 VS. intercept only =
Overall F-test
o Example 2: z;,1 < j <p-1vs. intercept only = ¢-test
for 8;
o Example 3: xy, 29, 23,24 VS. x1, 23 = Hy: 2= 4 =0
Geometric lllustration of General Linear F-Test e
Notes
0,
@0 nm,
General Linear
F-Test
Residual for small Residual for large
model / model
Difference
--------------- g between
two models
Large model space Small model
Space
Source: Faraway, Linear Models with r, 2014, p.34
Species Diversity on the Galapagos Islands: Full Model | 'Zieiecoer
Notes
X o% i
> summary(gala_fit2) Q@O SHISTOALSGENCES
Call: General Linear

Im(formula = Species ~ Elevation + Area) LS

Residuals:
Min 1Q Median 3Q Max
-192.619 -33.534 -19.199 7.541 261.514

Coefficients:
Estimate Std. Error t value Pr(>Itl)
(Intercept) 17.10519 20.94211 ©0.817 0.42120

Elevation 0.17174 0.05317  3.230 0.00325 **
Area 0.01880 0.02594 0.725 0.47478

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 <’ 1

Residual standard error: 79.34 on 27 degrees of freedom

Multiple R-squared: ©.554, Adjusted R-squared: ©.521
F-statistic: 16.77 on 2 and 27 DF, p-value: 1.843e-05




Species Diversity on the Galapagos Islands: Reduce e

Model Notes
> summary(gala_fitl)
Call:
Im(formula = Species ~ Elevation)
Residuals:
Min 1Q Median 3Q Max
-218.319 -30.721 -14.690 4.634 259.180
Coefficients:
Estimate Std. Error t value Pr(>Itl)
(Intercept) 11.33511 19.20529 0.590 0.56
Elevation 0.20079 0.03465 5.795 3.18e-06 ***
Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1
Residual standard error: 78.66 on 28 degrees of freedom
Multiple R-squared: ©.5454, Adjusted R-squared: 0.5291
F-statistic: 33.59 on 1 and 28 DF, p-value: 3.177e-06
47
H i ik Multiple L
Performing a General Linear F-Test Rogressionl Notes
.‘ "MNEMMDSADL\E;I‘?B
° HO : ﬁArea =0vs. Ha : ﬂArea #0 -
General Linear
(173254-169947)/(2-1) re
* _ 3254— -1) _
o K= 169947/(30-2-1) 0.5254
@ p-value: P[F > 0.5254] = 0.4748, where F' ~F 1 o7
At et
> anova(gala_fitl, gala_fit2)
Analysis of Variance Table
Model 1: Species ~ Elevation
Model 2: Species ~ Elevation + Area
Res.Df RSS Df Sum of Sq F Pr(>F)
1 28 173254
2 27 169947 1 3307 0.5254 0.4748
48
i i Multiple L
Visualizing p-value Regrocsion il Notes
0% e
§§\ENCB
35 |
General Linear
3.0 F-Test
25
2z
2 20
8
15
1.0
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F test statistic

p-value is the shaped area under the density curve
of the null distribution




Another Example of General Linear F-Test Multiple Linear

Regression Il

> full < Im(Species ~ Area + Elevation + Nearest + Scruz + Adjacent, 1/

data = gala) Y
> anova(full)
Analysis of Variance Table

MATHEATICAL AND
STATISTICAL SCIENCES

Linear

Response: Species
Df Sum Sq Mean Sq F value  Pr(>F)

Area 1 145470 145470 39.1262 1.826e-06 ***
Elevation 1 65664 65664 17.6613 0.0003155 ***
Nearest 1 29 29 0.0079 0.9300674
Scruz 1 14280 14280 3.8408 0.0617324 .

Adjacent 1 66406 66406 17.8609 0.0002971 ***
Residuals 24 89231 3718

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 <’ 1

> reduced <- Im(Species ~ Elevation + Adjacent)
> anova(reduced)
Analysis of Variance Table

Response: Species

Df Sum Sq Mean Sq F value  Pr(>F)
Elevation 1 207828 207828 56.112 4.662e-08 ***
Adjacent 1 73251 73251 19.777 0.0001344 ***
Residuals 27 100003 3704

Signif. codes: @ “***’ 9.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * ’ 1

Performing a General Linear F-Test Multiple Linear

Regression Il

0% iiewmon

o Null and alternative hypotheses: Q@@ st

Linear

HO : ﬁArea = ﬂNearest = ﬂScruz =0
H, : at least one of the three coefficients + 0

% _ (100003-89231)/(5-2) _
° = mEosy - 0-9657

@ p-value: P[F > 0.9657] = 0.425, where F ~ F3 94

> anova(reduced, full)
Analysis of Variance Table

Model 1: Species ~ Elevation + Adjacent

Model 2: Species ~ Area + Elevation + Nearest + Scruz + Adjacent
Res.Df RSS Df Sum of Sq F Pr(GF)

1 27 100003

2 24 89231 3 10772 0.9657 0.425

Multiple Linear Regression Prediction Multiple Linear

Regression Il
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MATHEMATICAL AND
STSTER SEties

Given a new set of predictors,
xo = (1,201,202, Z0p-1) ", the predicted response is

Prediction

9o = Bo + B1xo,1 + Pawo2 + - + Bp-1T0p-1-

Again, we can use matrix representation to simplify the
notation .
9o = x4 B,

T
where xy = (1, 0,1,%0,25"", L0,p-1 )

We will use this formula to carry out two different kinds of
predictions

Notes

Notes

Notes




Two Kinds of Predictions
There are two kinds of predictions can be made for a
given xy:
o Predicting a future response:
Based on MLR, we have yo = 23 3 + . Since
E(¢e) =0, therefore the predicted value is

do=0/3

o Predicting the mean response:
Since E(yo) = 3 3, there we have the predicted
mean response

E(yo) =z B,

the same predicted value as predicting a future
response

Next, we need to assess their prediction uncertainties,

and then we will identify the differences in terms of these

uncertainties

Prediction Uncertainty

From page 30 of slides 3, we have
Var(B) = o? (XTX)". Therefore we have

Var(go) = Var(xgﬁ) = U2x0T (XTXY1 o

We can now construct 100(1 - «)% ClI for the two kinds of

predictions:

o Predicting a future response y:

1+l (XTX) @

accounting for &

TA N
T B+ tl—a/Q,n*p xo

o Predicting the mean response E(y):

2 ~ -1
Cﬂgﬂ + tlfa/Z,nfp X 0\/ Eg (XTX) Zo

Example: Predicting Body Fat (Faraway 2014 Chapter 4.2)

n(formula = brozek ~ age + weight + height + neck + chest +
abdom + hip + thigh + knee + ankle + biceps + forearm + wrist,

data = fat)
Residuals:
Min 10 Median 30 Max

-10.264 -2.572 -0.097 2.898 9.327

Coefficients
Estimate Std. Error t value Pr(>Itl)
(Intercept) -15.29255 16.06992 -0.952 0.34225
0.05679  0.02996 1.895 0.05929 .

weight -0.08031  0.04958 -1.620 0.10660
height -0.06460  0.08893 -0.726 0.46830
neck -0.43754  0.21533 -2.032 0.04327 *
chest -0.02360  0.09184 -0.257 0.79740
abdom 0.88543  0.08008 11.057 < 2e-16 ***
hip -0.19842  0.13516 -1.468 0.14341
thigh 0.23190  0.13372  1.734 0.08418 .
knee -0.01168  0.22414 -0.052 0.95850
ankle 0.16354  0.20514 0.797 0.42614
biceps 0.15280  0.15851 0.964 0.33605
forearm 0.43049  0.18445 2.334 0.02044 *
wrist -1.47654  0.49552 -2.980 0.00318 **

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * * 1

Residual standard error: 3.988 on 238 degrees of freedom
Multiple R-squared: 0.749, Adjusted R-squared: 0.7353
F-statistic: 54.63 on 13 and 238 DF, p-value: < 2.2e-16

What is our prediction for the future response of

a “typical” (e.g., each predictor takes its median
value) man?
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Example: Predicting Body Fat Cont’d Multiple Linear

Regression Il

1/

@ Calculate the median for each predictor to get x

MATHEATICAL AND
ICALSCIENCES

@ Compute the predicted value j, = =} 3

Prediction
© Quantify the prediction uncertainty
> X <- model.matrix(lmod)
> (x@ <- apply(x, 2, median))
(Intercept) age weight height neck chest abdom
43.00 176.50 70.00 38.00 99.65 90.95
hip thigh knee ankle biceps forearm wrist
99.30 59.00 38.50 22.80 32.05 28.70 18.30
> (y8 <- sum(x@ * coef(lmod)))
[1] 17.49322
> predict(lmod, new = data.frame(t(x8)))
1
17.49322
> predict(lmod, new = data.frame(t(x)), interval = "prediction")
fit Twr upr
1 17.49322 9.61783 25.36861
> predict(lmod, new = data.frame(t(x@)), interval = “confidence")
fit Twr upr
1 17.49322 16.94426 18.04219
416
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> cor(siml)

Yy x1 x2
y 1.0000000 0.7987777 ©.8481084
x1 0.7987777 1.0000000 ©.9281514
xZ2 0.8481084 ©.9281514 1.0000000

Multicollinearity Cont’d Multiple Linear

Regression Il

1/

SR Shes
Multicollinearity is a phenomenon of high -
inter-correlations among the predictor variables

Multicollinearity
@ Numerical issue = the matrix X7 X is nearly
singular

o Statistical issues/consequences

o f's are not well estimated = spurious regression
coefficient estimates

o R? and predicted values are usually okay even with
multicollinearity
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An Simulated Example Multiple Linear

Regression Il NOteS
.‘ MATHEMATICAL AND
. . pgl}u\znc:s
Suppose the true relationship between response y and
predictors (z1,z2) is
Y =4+0.821 +0.6x5 + ¢, T
where £ ~N(0,1) and z; and x9 are positively correlated
with p = 0.9. Let’s fit the following models:
@ Model 1: Y = By + B121 + Boxo + €1
This is the true model with parameters unknown
@ Model 2: Y = g + S121 + €2
This is the wrong model because x5 is omitted
Scatter Plot: z; vs. B
Notes
.‘ MATHEMATICAL AND
STA Fﬁl}D\ENE!S
14 ‘% .
H— Multicollinearity
. "
0 o
-1 :
2.
T T T T
-2 -1 0 1
X1
Model 1 Fit e
Notes
.‘ MATHEMATICAL AND
T Fﬁl}D\ENCB
Call:

Im(formula = Y ~ X1 + X2)

Residuals:

Min 1Q Median 3Q Max
-1.91369 -0.73658 ©0.05475 0.87080 1.55150

Multicollinearity

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 4.0710 0.1778 22.898 < 2e-16 ***
X1 2.2429 0.7187 3.121 0.00426 **

X2 -0.8339 0.7093 -1.176 0.24997

Signif. codes: @ ‘***’ 9.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1

Residual standard error: 0.9569 on 27 degrees of freedom
Multiple R-squared: 0.673, Adjusted R-squared: 0.6488

F-statistic: 27.78 on 2 and 27 DF, p-value: 2.798e-07




Model 2 Fit Multiple Linear

Regression Il
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Call:
Im(formula = Y ~ X1)

Residuals:
Min 1Q Median 3Q Max Mutticollinearity
-2.09663 -0.67031 -0.07229 ©0.878381 1.49739

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 4.0347 0.1763 22.888 < 2e-16 ***
X1 1.4293 0.1955 7.311 5.84e-08 ***

Signif. codes: @ ‘***’ 9.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1

Residual standard error: 0.9634 on 28 degrees of freedom
Multiple R-squared: ©.6562, Adjusted R-squared: 0.644
F-statistic: 53.45 on 1 and 28 DF, p-value: 5.839%e-08

Takeaways Multiple Linear

Regression Il

Model 1 fit: Recall the true model: o

MATHEATICAL AND
ICAL SCIENCES
InCformula = Y ~ X1 + X2) i e

Y =4+0.821 +0.6x5 + ¢,

Residuals:
in 1 Median 3 Max
1.91369 -0.73658 0.05475 0.87080 1.55150

Coficients: where £ ~N(0,1), z; and z3 are

stimate Std. Error t value Pr(>1tl)
T S iy e e positively correlated with p = 0.9 wuicolineariy
S codes: @ 900 0,001 4 0.00 0 0.05 0 0.1 ¢+ 1

Multiple R-squared: 0.673,  Adjusted R-squared: 0.6488
F-statistic: 27.78 on 2 and 27 OF, p-value: 2.798e-07

Summary:
Model 2 fit: @ (’s are not well estimated
irdformte =1 = XD in model 1 = Spurious
U 0 a0 e regression coefficient
Coetricients: estimates
Cinerceoy “tamir 01700 22.88n < ae s e
Sanif. codess © “eee 0,001 " 0.0 40 005 11 0.1+ 1

@ In model 2, R? and
Fentorteties 5345 on 1 and 28 0F povalues 5 B30 e predicted values are OK s
compared to model 1

Variance Inflation Factor (VIF) Multiple Linear

Regression Il

We can use the variance inflation factor (VIF) o

MATHEMATICAL AND.
STATISTICAL SCIENCES

1
VIF; = ——
1-R?
to quantifies the severity of multicollinearity in MLR, AR

where Rf is the coefficient of determination when X; is
regressed on the remaining predictors

R example code

> library(faraway)
> vif(siml[, 2:3])

x1 x2
7.218394 7.218394

V' VIF indicates how much larger the standard error
increases compared to if that variable had 0 correlation to
other predictor variables in the model.
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Model Selection in Multiple Linear Regression

Multiple Linear Regression Model:

Y = Bo+ Biat + Bawa o+ Byazpr +e, £ TEEN(0,07)

Basic Problem: how to choose between competing
linear regression models?

@ Model too “small”: underfit the data; poor predictions;

high bias; low variance

@ Model too big: “overfit” the data; poor predictions;
low bias; high variance

In the next few slides we will discuss some commonly
used model selection criteria to choose the “right” model
to balance bias and variance

An Example of Bias and Variance Tradeoff

Balancing Bias And Variance: Mallows’ C,, Criterion
A good model should balance bias and variance to get
good predictions

(Vi - i) = (Vi —E(Y;) + E(Y;) - mi)?
= (Vi —E(Y))* + (E(Y3) - u)?,

o2 Variance Bias®
Y’L

where y; = E(Y;|X; = 2;)
© Mean squared prediction error (MSPE):
Siiod + S (E(F) - i)’

@ C, criterion measure:

mod + T (E() - )?

P~ 0_2
Y Varpred + ¥, Bias®

Varerror
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C,, Criterion

C,, statistic:
SSE

? = MSEf

+2p—-n

@ When model is correct E(C}) ~ p

@ When plotting models against p
o Biased models will fall above C), = p
o Unbiased models will fall around line C}, = p

o By definition: C, for full model equals p

We desire models with small p and C), around or
less than p. See R session for an example

Adjusted R? Criterion

Adjusted R?, denoted by R2 ., attempts to take account of

adj’

the phenomenon of the R? automatically and spuriously
increasing when extra explanatory variables are added to

the model.

SSE/(n-p-1)

2
S R
Rag SST/(n-1)

2

@ Choose model which maximizes Radj

@ Same approach as choosing model with smallest
MSE

Information criteria

Information criteria are statistical measures used for
model selection. Commonly used information criteria
include:

@ Akaike’s information criterion (AIC)

SSE;,
n

nlog( ) + 2k
@ Bayesian information criterion (BIC)

SSEj

n

nlog( ) + klog(n)

Here k is the number of the parameters in the model.

These criteria balance the goodness of fit of a
model with its complexity
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Automatic Search Procedures Multiple Linear

Regression Il NOteS
o Forward Selection: begins with no predictors and e SR ShGes
then adds in predictors one by one using some
criterion (e.g., p-value or AIC)
@ Backward Elimination: starts with all the predictors ool Selention
and then removes predictors one by one using some
criterion
@ Stepwise Search: a combination of backward
elimination and forward selection. Can add or delete
predictor at each stage
@ All Subset Selection: Comparing all possible models
using a selected criterion. Impractical for “large”
number of predictors
Model Assumptions Nre s
_ egression Notes
MOdeI .‘ MATHEMATICAL AND
Q@@ st
Y = 60 + /)’1:1:1 + 621’2 + ﬁp,lll?p,l +e, € “'v;d' N(070'2)
We make the following assumptions:
° L|near|ty Model Diagnostics
E(Y|r1, 22, 2p-1) = Bo + Bra1 + Powa + -+ + Bypo1Tp-1
@ Errors have constant variance, are independent, and
normally distributed
"= N(0,0%)
Residuals versus Fits Plot e
Notes

plot(mod$fitted.values, mod$residuals, pch = 16, col = "blue") &
abline(h = 0, col = "red") @ MATHEMATICAL AND
Q7 g

s .
S

=)
3 4

100
1
.

Model Diagr

modsresiduals
50
I
.

0 100 200 300 400

mod$fitted.values

We will revisit this in the end of the lecture



Assessing Normality of Residuals: Histogram
par(las = 1)
hist (mod$residuals, 12, prob = T,
col = "lightblue", border = "gray")
xg <- seq(-200, 200, 1)
yg <- dnorm(xg, 0, 60.86)
lines(xg, yg)
Histogram of mod$residuals

0012
0.010 -
0.008 |

z

20.006 |

5
0.004 |

0.002 —

0.000 —~

-100 -50 o] 50 100 150 200

modsresiduals

Assessing Normality of Residuals: QQ Plot

plot(gnorm(1:30 / 31, 0, 60.86), sort(mod$residuals), pch = 16,
col = "gray", xlab = "Normal Quantiles", ylab = "Residuals")
abline(0, 1)

200 —

150 -

50 -

Residuals

50

100

-100 -50 0 50 100

Normal Quantiles

Leverage: Detecting “Extreme” Predictor Values

Recall in MLR that § = X (X7 X)' X"y = Hy where H
is the hat-matrix

@ The leverage value for the iy, observation is defined
as:
h; = Hy;

@ Can show that Var(e;) = 02(1 - h;), where ¢; = y; — 9
is the residual for the iy, observation

o len<l, 1<i<nandh=37, % =25 a'rule of

i=1 n
thumb” is that leverages greater than %P should be
examined more closely
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Leverage Values of Species ~ Elev + Adj LD LI
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Standardized Residuals Multiple Linear

Regression Il
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As we have seen Var(e;) = o%(1 - h;), this suggests the

use of r; = #m

Model Diagnostics

o r;’s are called standardized residuals. ;s are
sometimes preferred in residual plots as they have
been standardized to have equal variance.

o If the model assumptions are correct then Var(r;) = 1
and Corr(r;, ;) tends to be small

Standardized Residuals of Species ~ Elev +Adj PHiplojtincay

Regression Il
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Studentized (Jackknife) Residuals e
Notes
@ For a given model, exclude the observation i and "‘ Y e
recompute 3;), 7;) to obtain g;;
@ The observation i is an outlier if g;;) - y; is “large”
@ Can show Var(gji(i) —yi) = Model Diagnostics
U'(Q,i) (1 + (L‘;I(Xgl)X(z))ilil‘l) = O'?l)(l - hl)
o Define the Studentized (Jackknife) Residuals as
‘o Uity ~¥i Yii) — Vi
\/fr‘fi)(l —hi) MSE@(1-h)
which are distributed as a t,,—,_; if the model is
correct and ¢ ~ N(0,021)
Studentized (Jackknife) Residuals of e
Species ~ Elev + Adj Notes
.‘ MATHEMATICAL AND
Q@ s soeices
Jacknife Residuals
s -
4
37 Model Diagnostics
2
1
0
a1
2
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Identifying Influential Observations: Cook’s Distance e Not
otes
Cook’s Distance quantifies how much the predicted 0% iiumonm

Q7 g

values change when a particular observation is excluded

from the analysis.

@ Cook’s distance measure (D;) is defined as:

D - (yi — 9i)? hi
i= r 5 Model Diagnostics
px MSE \ (1= 1)

@ Cook’s Distance considers both leverage and

residual, providing a broader measure of influence

@ Here are the guidelines commonly used:

@ If D; > 0.5, then the it data point is worthy of further

investigation as it may be influential

Q If D; > 1, then the i data point is quite likely to be

influential



Cook’s Distance of Species ~ Elev +Adj Multiple Linear

Regression Il
Notes
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. . . . .
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Such a residual plot suggests a violation of constant
variance
™
Residual Plot After Square Root Transformation e
Notes
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Box-Cox Transformation
The Box-Cox method [Box and Cox, 1964] is a powerful
way to determine if a transformation on the response is
needed

S P
D Y ;
95 {log(y) if A = 0.

95%,

-50

log-Likelihood
54 52
T

56 -

In R, we can use the boxcox function from the MASS
package to perform a Box-Cox transformation. The plot
suggests a cube root may be needed

Summary
These slides cover:

o General Linear F-Test provides a unifying framework

for hypothesis tests

Making predictions and quantifying prediction
uncertainty

Multicollinearity and its implications for MLR
Model/variable selection can be done via some
criterion-based methods to balance bias and

variance

Model diagnostics is crucial to ensure valid statistical
inference

Box-Cox Transformation can be used to transform
the response in order to correct model violations

R Functions to Know

(]

o

anova for model comparison based on F-test

predict: obtain predicted values from a fitted
model

vif under the faraway library: computes the
variance inflation factors

regsubsets in the leaps library and step for
model selection

influence.measures includes a suite of functions
(hatvalues, rstandard, rstudent,
cooks.distance) for computing regression
diagnostics

boxcox in the MASS library for performing a Box-Cox
transformation
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