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Lecture 4
Multiple Linear Regression II
Reading: Forecasting, Time Series, and Regression (4th
edition) by Bowerman, O’Connell, and Koehler: Chapter 4

MATH 4070: Regression and Time-Series Analysis

Whitney Huang
Clemson University
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4.2

Agenda

1 General Linear F -Test

2 Prediction

3 Multicollinearity

4 Model Selection

5 Model Diagnostics

6 Non-Constant Variance & Transformation
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4.3

Review: t-Test and F -Test in Linear Regression

t-test: Testing one predictor
1 Null/Alternative Hypotheses: H0 ∶ βj = 0 vs.

Ha ∶ βj ≠ 0

2 Test Statistic: t∗ = β̂j−0
ŝe(β̂j)

3 Reject H0 if ∣t∗∣ > t1−α/2,n−p

Overall F -test: Test of all the predictors
1 H0 ∶ β1 = β2 = ⋯ = βp−1 = 0

2 Ha ∶ at least one βj ≠ 0,1 ≤ j ≤ p − 1

3 Test Statistic: F ∗ = MSR
MSE

4 Reject H0 if F ∗ > F1−α,p−1,n−p

Both tests are special cases of General Linear F -test

Notes

Notes

Notes
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4.4

General Linear F -Test

Comparison of a “full model” and “reduced model”
that involves a subset of full model predictors

Consider a full model with k predictors and reduced
model with ℓ predictors (ℓ < k )

Test statistic: F ∗ = (SSEreduce−SSEfull)/(k−ℓ)
SSEfull/(n−k−1)

⇒ Testing H0

that the regression coefficients for the extra variables
are all zero

Example 1: x1, x2,⋯, xp−1 vs. intercept only⇒
Overall F -test

Example 2: xj ,1 ≤ j ≤ p − 1 vs. intercept only⇒ t-test
for βj

Example 3: x1, x2, x3, x4 vs. x1, x3 ⇒H0 ∶ β2 = β4 = 0
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4.5

Geometric Illustration of General Linear F -Test

Source: Faraway, Linear Models with R, 2014, p.34
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4.6

Species Diversity on the Galapagos Islands: Full Model

Notes
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4.7

Species Diversity on the Galapagos Islands: Reduce
Model
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4.8

Performing a General Linear F -Test

H0 ∶ βArea = 0 vs. Ha ∶ βArea ≠ 0

F ∗ = (173254−169947)/(2−1)169947/(30−2−1) = 0.5254

p-value: P[F > 0.5254] = 0.4748, where F ∼ F 1
®
k−ℓ

, 27
¯

n−k−1
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4.9

Visualizing p-value
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p-value is the shaped area under the density curve
of the null distribution

Notes

Notes

Notes



Multiple Linear
Regression II

General Linear
F -Test

Prediction

Multicollinearity

Model Selection

Model Diagnostics

Non-Constant
Variance &
Transformation

4.10

Another Example of General Linear F -Test
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4.11

Performing a General Linear F -Test

Null and alternative hypotheses:

H0 ∶ βArea = βNearest = βScruz = 0
Ha ∶ at least one of the three coefficients ≠ 0

F ∗ = (100003−89231)/(5−2)89231/(30−5−1) = 0.9657

p-value: P[F > 0.9657] = 0.425, where F ∼ F3,24
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4.12

Multiple Linear Regression Prediction

Given a new set of predictors,
x0 = (1, x0,1, x0,2,⋯, x0,p−1)T, the predicted response is

ŷ0 = β̂0 + β̂1x0,1 + β̂2x0,2 +⋯ + β̂p−1x0,p−1.

Again, we can use matrix representation to simplify the
notation

ŷ0 = xT
0 β̂,

where xT
0 = (1, x0,1, x0,2,⋯, x0,p−1)

We will use this formula to carry out two different kinds of
predictions

Notes

Notes

Notes
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4.13

Two Kinds of Predictions
There are two kinds of predictions can be made for a
given x0:

Predicting a future response:
Based on MLR, we have y0 = xT

0 β + ε. Since
E(ε) = 0, therefore the predicted value is

ŷ0 = xT
0 β̂

Predicting the mean response:
Since E(y0) = xT

0 β, there we have the predicted
mean response

Ê(y0) = xT
0 β̂,

the same predicted value as predicting a future
response

Next, we need to assess their prediction uncertainties,
and then we will identify the differences in terms of these
uncertainties
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4.14

Prediction Uncertainty

From page 30 of slides 3, we have
Var(β̂) = σ2 (XTX)−1. Therefore we have

Var(ŷ0) = Var(xT
0 β̂) = σ2xT

0 (XTX)−1x0

We can now construct 100(1 − α)% CI for the two kinds of
predictions:

Predicting a future response y0:

xT
0 β̂ ± t1−α/2,n−p × σ̂

¿
ÁÁÀ 1®

accounting for ε

+xT
0 (XTX)−1x0

Predicting the mean response E(y0):

xT
0 β̂ ± t1−α/2,n−p × σ̂

√
xT
0 (XTX)−1x0

Multiple Linear
Regression II

General Linear
F -Test

Prediction

Multicollinearity

Model Selection

Model Diagnostics

Non-Constant
Variance &
Transformation

4.15

Example: Predicting Body Fat (Faraway 2014 Chapter 4.2)

What is our prediction for the future response of
a “typical” (e.g., each predictor takes its median
value) man?

Notes

Notes

Notes
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4.16

Example: Predicting Body Fat Cont’d

1 Calculate the median for each predictor to get x0

2 Compute the predicted value ŷ0 = xT
0 β̂

3 Quantify the prediction uncertainty

Multiple Linear
Regression II

General Linear
F -Test

Prediction

Multicollinearity

Model Selection

Model Diagnostics

Non-Constant
Variance &
Transformation

4.17

Multicollinearity
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4.18

Multicollinearity Cont’d

Multicollinearity is a phenomenon of high
inter-correlations among the predictor variables

Numerical issue⇒ the matrix XTX is nearly
singular

Statistical issues/consequences

β’s are not well estimated⇒ spurious regression
coefficient estimates

R2 and predicted values are usually okay even with
multicollinearity

Notes

Notes

Notes
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4.19

An Simulated Example

Suppose the true relationship between response y and
predictors (x1, x2) is

Y = 4 + 0.8x1 + 0.6x2 + ε,

where ε ∼ N(0,1) and x1 and x2 are positively correlated
with ρ = 0.9. Let’s fit the following models:

Model 1: Y = β0 + β1x1 + β2x2 + ε1
This is the true model with parameters unknown

Model 2: Y = β0 + β1x1 + ε2
This is the wrong model because x2 is omitted
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4.20

Scatter Plot: x1 vs. x2
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4.21

Model 1 Fit

Notes

Notes

Notes
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4.22

Model 2 Fit
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4.23

Takeaways

Model 1 fit:

Model 2 fit:

Recall the true model:

Y = 4 + 0.8x1 + 0.6x2 + ε,

where ε ∼ N(0,1), x1 and x2 are
positively correlated with ρ = 0.9

Summary:
β’s are not well estimated
in model 1⇒ Spurious
regression coefficient
estimates

In model 2, R2 and
predicted values are OK
compared to model 1
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4.24

Variance Inflation Factor (VIF)

We can use the variance inflation factor (VIF)

VIFi =
1

1 −R2
i

to quantifies the severity of multicollinearity in MLR,
where R2

i is the coefficient of determination when Xi is
regressed on the remaining predictors

R example code

√
VIF indicates how much larger the standard error

increases compared to if that variable had 0 correlation to
other predictor variables in the model.

Notes

Notes

Notes
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4.25

Model Selection in Multiple Linear Regression

Multiple Linear Regression Model:

Y = β0 + β1x1 + β2x2 +⋯ + βp−1xp−1 + ε, ε
i.i.d.∼ N(0, σ2)

Basic Problem: how to choose between competing
linear regression models?

Model too “small”: underfit the data; poor predictions;
high bias; low variance

Model too big: “overfit” the data; poor predictions;
low bias; high variance

In the next few slides we will discuss some commonly
used model selection criteria to choose the “right” model
to balance bias and variance
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4.26

An Example of Bias and Variance Tradeoff
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4.27

Balancing Bias And Variance: Mallows’ Cp Criterion
A good model should balance bias and variance to get
good predictions

(Ŷi − µi)2 = (Ŷi − E(Ŷi) + E(Ŷi) − µi)2

= (Ŷi − E(Ŷi))2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
σ2
Ŷi

Variance

+ (E(Ŷi) − µi)2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Bias2

,

where µi = E(Yi∣Xi = xi)
Mean squared prediction error (MSPE):
∑n

i=1 σ
2
Ŷi
+∑n

i=1(E(Ŷi) − µi)2

Cp criterion measure:

Γp =
∑n

i=1 σ
2
Ŷi
+∑n

i=1(E(Ŷi) − µi)2

σ2

= ∑
Varpred +∑Bias2

Varerror

Notes

Notes

Notes
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4.28

Cp Criterion
Cp statistic:

Cp =
SSE

MSEF
+ 2p − n

When model is correct E(Cp) ≈ p

When plotting models against p

Biased models will fall above Cp = p

Unbiased models will fall around line Cp = p

By definition: Cp for full model equals p

We desire models with small p and Cp around or
less than p. See R session for an example

Multiple Linear
Regression II

General Linear
F -Test

Prediction

Multicollinearity

Model Selection

Model Diagnostics

Non-Constant
Variance &
Transformation

4.29

Adjusted R2 Criterion

Adjusted R2, denoted by R2
adj, attempts to take account of

the phenomenon of the R2 automatically and spuriously
increasing when extra explanatory variables are added to
the model.

R2
adj = 1 −

SSE/(n − p − 1)
SST/(n − 1)

Choose model which maximizes R2
adj

Same approach as choosing model with smallest
MSE
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4.30

Information criteria
Information criteria are statistical measures used for
model selection. Commonly used information criteria
include:

Akaike’s information criterion (AIC)

n log(SSEk

n
) + 2k

Bayesian information criterion (BIC)

n log(SSEk

n
) + k log(n)

Here k is the number of the parameters in the model.

These criteria balance the goodness of fit of a
model with its complexity

Notes

Notes

Notes
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4.31

Automatic Search Procedures

Forward Selection: begins with no predictors and
then adds in predictors one by one using some
criterion (e.g., p-value or AIC)

Backward Elimination: starts with all the predictors
and then removes predictors one by one using some
criterion

Stepwise Search: a combination of backward
elimination and forward selection. Can add or delete
predictor at each stage

All Subset Selection: Comparing all possible models
using a selected criterion. Impractical for “large”
number of predictors
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4.32

Model Assumptions
Model:

Y = β0 + β1x1 + β2x2 +⋯ + βp−1xp−1 + ε, ε
i.i.d.∼ N(0, σ2)

We make the following assumptions:
Linearity:

E(Y ∣x1, x2,⋯, xp−1) = β0 + β1x1 + β2x2 +⋯ + βp−1xp−1

Errors have constant variance, are independent, and
normally distributed

ε
i.i.d.∼ N(0, σ2)
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4.33

Residuals versus Fits Plot

We will revisit this in the end of the lecture

Notes

Notes

Notes
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4.34

Assessing Normality of Residuals: Histogram
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4.35

Assessing Normality of Residuals: QQ Plot
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4.36

Leverage: Detecting “Extreme” Predictor Values

Recall in MLR that ŷ =X(XTX)−1XTy =Hy where H
is the hat-matrix

The leverage value for the ith observation is defined
as:

hi =Hii

Can show that Var(ei) = σ2(1 − hi), where ei = yi − ŷi
is the residual for the ith observation

1
n ≤ hi ≤ 1, 1 ≤ i ≤ n and h̄ = ∑n

i=1
hi

n =
p
n ⇒ a “rule of

thumb” is that leverages greater than 2p
n should be

examined more closely

Notes

Notes

Notes
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4.37

Leverage Values of Species ∼ Elev + Adj
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4.38

Standardized Residuals

As we have seen Var(ei) = σ2(1 − hi), this suggests the
use of ri = ei

σ̂
√

(1−hi)

ri’s are called standardized residuals. ri’s are
sometimes preferred in residual plots as they have
been standardized to have equal variance.

If the model assumptions are correct then Var(ri) = 1
and Corr(ri, rj) tends to be small
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4.39

Standardized Residuals of Species ∼ Elev + Adj
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4.40

Studentized (Jackknife) Residuals

For a given model, exclude the observation i and
recompute β̂(i), σ̂(i) to obtain ŷi(i)

The observation i is an outlier if ŷi(i) − yi is “large”

Can show Var(ŷi(i) − yi) =
σ2
(i) (1 +x

T
i (XT

(i)X(i))
−1xi) = σ2

(i)(1 − hi)

Define the Studentized (Jackknife) Residuals as

ti =
ŷi(i) − yi√
σ̂2
(i)
(1 − hi)

=
ŷi(i) − yi√

MSE(i)(1 − hi)

which are distributed as a tn−p−1 if the model is
correct and ε ∼ N(0, σ2I)
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4.41

Studentized (Jackknife) Residuals of
Species ∼ Elev + Adj
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4.42

Identifying Influential Observations: Cook’s Distance

Cook’s Distance quantifies how much the predicted
values change when a particular observation is excluded
from the analysis.

Cook’s distance measure (Di) is defined as:

Di =
(yi − ŷi)2
p ×MSE

( hi

(1 − hi)2
)

Cook’s Distance considers both leverage and
residual, providing a broader measure of influence

Here are the guidelines commonly used:

1 If Di > 0.5, then the ith data point is worthy of further
investigation as it may be influential

2 If Di > 1, then the ith data point is quite likely to be
influential

Notes

Notes

Notes
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4.43

Cook’s Distance of Species ∼ Elev + Adj

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

Obs. number

C
oo

k'
s 

di
st

an
ce

Cook's distance

Isabela

SantaCruz

Pinta

0.0 0.2 0.4 0.6 0.8

−2

−1

0

1

2

3

4

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Cook's distance

1
0.5

Residuals vs Leverage

Isabela

SantaCruz

Pinta

Multiple Linear
Regression II

General Linear
F -Test

Prediction

Multicollinearity

Model Selection

Model Diagnostics

Non-Constant
Variance &
Transformation

4.44

Residual Plot of Species ∼ Elev + Adj
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Such a residual plot suggests a violation of constant
variance
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4.45

Residual Plot After Square Root Transformation

√
Species ∼ Elev +Adj
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4.46

Box-Cox Transformation
The Box-Cox method [Box and Cox, 1964] is a powerful
way to determine if a transformation on the response is
needed

gλ(y) = {
yλ−1
λ if λ ≠ 0;

log(y) if λ = 0.

In R, we can use the boxcox function from the MASS
package to perform a Box-Cox transformation. The plot
suggests a cube root may be needed
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4.47

Summary
These slides cover:

General Linear F -Test provides a unifying framework
for hypothesis tests

Making predictions and quantifying prediction
uncertainty

Multicollinearity and its implications for MLR

Model/variable selection can be done via some
criterion-based methods to balance bias and
variance

Model diagnostics is crucial to ensure valid statistical
inference

Box-Cox Transformation can be used to transform
the response in order to correct model violations
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4.48

R Functions to Know
anova for model comparison based on F -test

predict: obtain predicted values from a fitted
model

vif under the faraway library: computes the
variance inflation factors

regsubsets in the leaps library and step for
model selection

influence.measures includes a suite of functions
(hatvalues, rstandard, rstudent,
cooks.distance) for computing regression
diagnostics

boxcox in the MASS library for performing a Box-Cox
transformation

Notes

Notes

Notes
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