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Autocorrelation
Level of Lake Huron 1875-1972 and Time Serios
Models NOteS
Sy = D
par(mar = c(3.2, 3.2, 0.5, 0.5), mgp = c(2, 0.5, 0), bty = "L") O ;
data(LakeHuron) QO e
plot(LakeHuron, ylab = "Depth (ft)", xlab = "Year", las = 1)
points(LakeHuron, cex - 0.8, col = "blue", pch = 16)
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Mauna Loa Atmospheric CO, Concentration Autocorrelation

and Time Series
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o :
PR = QO e
par(mar = c(3.8, 4, 0.8, 0.6))
plot(co2, las = 1, xlab = "", ylab = "")
mtext("Time (year)", side = 1, line = 2)
mtext(expression(paste("C0"[2], " Concentration (ppm)")), side = 2, line = 2.5)
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[Source: St. Louis Federal Reserve Bank’s FRED system] ““,' i%§{j;}k?§5?,’:£a
[1948-01-01/2021-07-01]
os
Airline Passengers Example e s Notes
The data set airpassengers, which are the monthly Hodels
totals of international airline passengers from 1960 to 0% o
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Here we stabilize the variance with a log,, transformation o



Global Annual Temperature Anomalies ArtocoSIction
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[Source: NASA GISS Surface Temperature Analysis] Q@& s
Global Warming
1.5
—+— Land Surface
+— Sea Surface
5’3‘1.0—
=
£
505+
<
°
E}
£0.0
Qo
£
k]
-0.5-
\p”
L]
T T T T T T T T
1880 1900 1920 1940 1960 1980 2000 2020
67
i 7 H Autocorrelation
A Simulated Time Series i
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Ry, N -
set.seed(123) @9 yiniwmonm
W < rnorm(2000); x <- cumsum(w); tsplot(x, las = 1) @O ssTcaioices
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Some Objectives of Time Series Analysis

Statistical Modeling: Find a statistical model that
adequately explains the observed time series

@ For example, identify a model which can account for
the fact that the depths of Lake Huron are correlated
with differ years and with a decreasing long-term
trend

@ The fitted model can be used for further statistical
inference, for instant, to answer the question like: Is
there evidence of decreasing trend in the Lake Huron
depths?

Some Objectives of Time Series Analysis, Cont’d

Forecasting is perhaps the most common objective. One
observe a time series of given length and wish to predict
or forecast future values of the time series based on
those already observed.

Forecasts from TBATS(1, {3,1}, -, {<12,5>})
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Some Objectives of Time Series Analysis, Cont’d

o Adjustment: an example would be seasonal
adjustment, where the seasonal component is
estimated and then removed to better understand the
underlying trend

o Simulation: use a time series model (which
adequately describes a physical process) as a
surrogate to simulate repeatedly in order to
approximate how the physical process behaves

@ Control: adjust various input (control) parameters to
make the time series fit more closely to a given
standard (many examples from statistical quality
control)
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Time Series Models

Lake Huron Time Series

@ Time series analysis is the area of statistics which
deals with the analysis of dependency between

different observations (typically {n:})

@ Some key features of the Lake Huron time series:

o decreasing trend

e some “random” fluctuations around the decreasing

trend

@ For example, we can extract the ‘noise’ component

by assuming a linear trend

Exploring the Dependence Structure of “Noise” {7}

{n:} exhibit a temporal dependence structure, meaning
that the nearby (in time) values tend to be more alike than
those that are far part. To observe this, let’s create a few

time lag plots
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Further Exploration of the Temporal Dependence
Structure
Let’s plot the correlation as a function of the time lag
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We will learn how to use this information to suggest
an appropriate time series model

Time Series Models

]

©

@ A time series model is a probabilistic model that

describes how the series data y; could have been
generated. More specifically, it is a probability model
for {Y; : t € T'}, a collection of random variables
indexed in time

We will keep our models for Y; as simple as possible
by assuming stationarity, meaning that some
characteristics of the distribution of Y; depend only
on the “time lag” not on the specific time points

While most time series are not stationary, we can
model the non-stationary parts (e.g., by de-trending
or de-seasonalizing) to obtain a stationary
component, 7;. We typically assume the process is
second-order stationary, meaning

E[m]=0, VteT and,
Cov(ne,mir) = v = 1) = Cov(trrs, Nrss)

Time Series Models

@ A time series model is a specification of the

probabilistic distribution of a sequence of random
variables (RVs) n;

(The observed time series is a realization of such a
sequence of random variables)

@ The simplest time series is i.i.d. (independent and

identically distributed) noise
o {n.} is a sequence of independent and identically
distributed zero-mean (i.e., E(n;) = 0, Vt) random
variables = no temporal dependence

o ltis of little value of using i.i.d. noise model to
conduct forecast as there is no information from the
past observations

o But, we will use i.i.d. model as a building block to
develop time series models that can accommodate
time dependence
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Example Realizations of i.i.d. Noise
@ Gaussian (normal) i.i.d. noise with mean 0 and
variance o2 > 0
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Means and Autocovarainces

A time series model could also be a specification of the
means and autocovariances of the RVs

@ The mean function of {7} is
pe =E(m).
@ u is the population mean at time ¢, which can be
computed as:

| [ mef(n)dne  when n, is a continuous RV;
=178 mep(n), when 7, is a discrete RV,

where f(-) and p(-) are the probability density function
and probability mass function of 7, respectively

Examples of Mean Functions

o Example 1: What is the mean function for {,}, an
i.i.d. N(0,02) process?

@ Example 2: For each time point, let Y; = 8y + S1t + m:
with 3y and 3; some constants and 7 is defined
above. What is yiy-(t)?

Autocorrelation
and Time Series
Models

0% iumon
@9 ST e

Autocorrelation
and Time Series
Models

0% wiumon o
@9 ST e

Functions

Autocorrelation
and Time Series
Models

0% icmon o
Q@ SHTSTALStiEices

Notes

Notes

Notes




Review: The Covariance Between Two RVs Attoconiation

and Time Series
@ The covariance between the RVs X and Y is Hodels Notes
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Cov(X,Y) = E{(X — px)(Y — iy)}
=E(XY) - uxpy.

It is a measure of linear dependence between the
two RVs. When X =Y we have

Cov(X,X) = Var(X).

@ For constants a,b,c, and RVs X, Y, Z:

Cov(aX +bY +¢,Z) = Cov(aX,Z) + Cov(bY, Z)
=aCov(X,Z) +bCov(Y, Z)

=
Var(X +Y) = Cov(X, X) + Cov(X,Y) + Cov(Y, X) + Cov(Y,Y)
= Var(X) + Var(Y) + 2Cov(X,Y) oz
Autocovariance Function Juloconeiation
Models Notes

@ The autocovariance function of {7} is o8y iinucun
" STRTISTICALSCIENCES

v(s,t) = Cov(ns,me) = E[(ns = 1) (e = )]

It measures the strength of linear dependence

between two RVs 7, and n; P
Al raince

Functions
o Properties:
o 7(s,t) =~(t,s) foreach sand ¢
o When s =t we have
(t,t) = Cov (e, ) = Cov(ny) = o}
the value of the variance function at time ¢
@ ~(s,t) is a non-negative definite function (will come
back to this later)
o
Autocorrelation Function ::;"ﬁ%}:;}‘;g"s Notes
@ The autocorrelation function of {r;} is “‘$ e,

7(s:t)

V7 (s8)7(8,1)

p(s,t) = Corr(ns,ne) =

It measures the “scale invariant” linear association
between 7 and 7;

o Properties:

o -1<p(s,t)<1foreachsandt

o p(s,t) =p(t,s) foreach s and ¢

o p(t,t)=1foreacht

e p(+,-) is a non-negative definite function



Stationarity
@ We typically need “replicates” to estimate population
quantities. For example, we use

I
:E;Xi

to be the estimate of n.x, the population mean of the
single RV, X

@ However, in time series analysis, we have n =1 (i.e.,
no replication) because we only have one realized
value at each time point

o Stationarity means that some characteristic of {7, }
does not depend on the time point, ¢, only on the
“time lag” between time points so that we can
create “replicates”

Next, we will discuss strict stationarity and
weak stationarity

Strictly Stationary Processes

o Atime series, {1}, is strictly stationary if

d
[, m2,-07] = [Mhs M2sns =010 ],

for all integers h and T' > 1 = the joint distribution
are unaffected by time shifts

@ Under such the strict stationarity

o {n.} is identically distributed but not (necessarily)
independent

o u; = p is independent of time ¢

o y(s,t) =v(s+h,t+h),forany s, t,and h

Weakly Stationary Processes
o {n:} is weakly stationary if

o E(n) =pe=p

o Cov(ne,me+n) = v(t,t + h) = y(h), finite constant that
can depend on h but not on ¢

@ Other names for this type of stationarity include
second-order, covariance, wide senese. The quantity
his called the lag

@ Weak and strict stationarity

o A strictly stationary process {1} is also weakly
stationary as long as u is finite

o Weak stationarity does not imply strict stationarity!
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Autocovariance Function of Stationary Processes
The autocovariance function (ACVF) of a stationary

process {n;} is defined to be

v (h) = Cov(ne, nesn)
= E[(m — 1) (esn — 1)),

which measures the lag-h time dependence
Properties of the ACVF:

@ ~(0) = Var(n,)

@ y(—h) =~(h) for each h

@ y(s—-t) as a function of (s-t) is non-negative definite

Autocorrelation Function of Stationary Processes

The autocorrelation function (ACF) of a stationary
process {n,} is defined to be

_oh)
p(h) = 40)

which measures the “scale invariant” lag-h time
dependence

Properties of the ACF:

@ -1<p(h)<1landp(0)=1foreachh

@ p(-h) = p(h) for each h

o p(s-t) as a function of (s-t) is non-negative definite

Summary

In this lecture, we discuss

o Objectives of time series analysis
@ Time series models
@ Mean and auto-covariance/correlation functions

@ Stationarity assumption in time series

The most important R function of this lecture is acf,
which calculates and plots the sample autocorrelation
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