Lecture 8
Autoregressive Moving-Average
(ARMA) Models

Reading: Bowerman, O’Connell, and Koehler (2005):
Chapter 9; Cryer and Chen (2008): Chapter 4
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Agenda

o Autocovariance Estimation and Testing

Q Linear Processes

Q Autoregressive-Moving Average Model:
Stationarity, Causality, and Invertibility

0 Partial Autocorrelation Functions

Estimation of Autocovariance Function +(-)
Goal: Want to estimate

y(h) = Cov (e, nesn) = E[(ne = 1) (e — )]

using data {n;}7,
For |h| < T, consider

1 Tl
A(h) = T ; (e = 1) Mgy = 7)-

We call 4(h) the sample ACVF

@ The sample ACVF 4(h) is used as the standard
estimate of (k) and is even and non-negative
definite

@ The sample ACVF is a biased estimator of v(h), that
is, E[¥(h)] # v(h)
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The Sample Autocorrelation Function

@ The sample autocorrelation function (ACF) is defined
for || < T by

@ Rule of thumb: Box and Jenkins (1976) recommend
using (k) and 4(h) only for 2 < 1 and 7> 50

@ This is because estimates (k) and §(h) are
unstable for large |h| as there will be no enough data
points going into the estimator

Calculating the Sample ACF in R

@ Use acf function to calculate the sample ACF

o Lake Huron Example (acf (LakeHuron)—note that
this is NOT the right thing to do here; see the next
slide))

582
581 o
580 o
579 o
578
577 4
576

Depth (f

1.0 o
0.8 -
0.6 -

0.4 o

02 ‘ [

00 N O A T

ACF

Sample ACF for the Lake Huron Example

@ Recall that the ACF is used to characterize a
stationary process

o Ensure the series is (approximately) stationarys; if not,
model and remove the non-stationary component.
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Asymptotic Distribution of the Sample ACF [Bartlett, T
1946] (ARMA) Models Notes
Let {n:} be a stationary process we suppose that the ACF a‘t T D

STSTEASEties

p=(p(1),p(2), p(k))" P

Estimation and
is estimated by

Testing

p=(p(1),p(2), (k)"

o Forlarge T’

.- 1
P~ Nk(p7 fW)v

where Ny, is the k-variate normal distribution and W
is an k x k covariance matrix with (z, ;) element

defined by

o0
wij:Zamajh, 1<i<k, 1<j<k
h=1

where a;, = p(h +1) + p(h—1) - 2p(h)p(i)

Using the ACF as a Test for i.i.d. Noise

Autoregressive

Moving-At

(ARMA) Nodels Notes
When {7} is an i.i.d. process with finite variance,

.“ MATHEATICAL AND
Bartlett’s result simplifies for each h # 0

STSTEASEEiEs

Autocovariance

) LN 1 Estimation and
p(h) ~N(0, =). Testing
p(h) ~N(0, )

This suggests a diagnostic for i.i.d. noise:

@ Plot the lag h versus the sample ACF 5(h)

@ Draw two horizontal lines at i% (blue dashed lines
in R)

© About 95% of the {p(h) : h =1,2,3,---} should be

within the lines if we have i.i.d. noise

The Portmanteau Test [Box and Pierce, 1970] for i.i.d. ey et
Noise

(ARMA) Models Notes
Suppose we wish to test:

Ho : {m1,m2,,nr} is an i.i.d. noise sequence

H,: Hy is false

Testing

@ Under Hy,

1

R . a 1
p(h) ~ N(07 f) = 7TN(07 1)

@ Hence

Q=T p*(h) ~ Xk

M-

o We reject Hy if @ > x2(1 - a), the 1 - a quatile of the
chi-squared distribution with k£ degrees of freedom




Ljung-Box Test [Ljung and Box, 1978]

Ljung and Box [1978] showed that

k2
p=(h) - s
=T(T-2 ~ Xie
Que =T( )iL§=1: T " Xk

The Ljung-Box test can be more powerful than the
Portmanteau test

Both the Portmanteau Test (aka Box-Pierce test) and
Ljung-Box test can be carried out in R using the function
Box.test, with the options type =

c (“Box-Pierce”, “Ljung-Box”)

Examples in R
> Box.test(rnorm(100), 20)

Box-Pierce test

data: rnorm(100)
X-squared = 12.197, df = 20, p-value = 0.9091

> Box.test(LakeHuron, 20)
Box-Pierce test

data: LakeHuron
X-squared = 182.43, df = 20, p-value < 2.2e-16

> Box.test(LakeHuron, 20, type = "Ljung")
Box-Ljung test

data: LakeHuron
X-squared = 192.6, df = 20, p-value < 2.2e-16

Linear Processes

o Atime series {n;} is a linear process with mean . if
we can write it as

n=pt oy Wi, Vi,
Jj=—o0
where p is a real-valued constant, {Z;} is a

WN(0,0%) process and {;} is a set of absolutely
summable constants’

@ Absolute summability of the constants guarantees
that the infinite sum converges

"A set of real-valued constants {1; : j € Z} is absolutely summable
if $52 o [1hj] < o0
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Example: Moving Average Process of Order ¢, MA(q) Autoregressive
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Let {Zt} be a WN(O 0'2) process. For an integer ¢ > 0 .“ STHTISTICALSCIENCES

and constants 6y, ---, 6, with 6, # 0, define

Linear Processes

Me=Zp+ 012+ + 0474
= 90ZL + 912571 + -+ qu[,q

q
=2 02,
j=0

where we let 6y = 1

{m:} is known as the moving average process of order ¢,

or the MA(q) process, and, by definition, is a linear

process
-
Defining Linear Processes with Backward Shifts o
(ARMA) Models Notes
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@ Recall the backward shift operator, B, is defined by
By =1

Linear Processes

@ We can represent a linear process using the

backward shift operator as n; = p + ¢(B)Z;, where
we let (B) = 552 _, v;B7

@ Example: we can write a mean zero MA(1) process
as

N = p+P(B)Zy,

where p=0and ¢(B)=1+6B

Linear Filtering Preserves Stationarity Autoregressive

Moving-Average

(ARMA) Models Notes
o Let {Y;} be a time series and {v;} be a set of Pro——
absolutely summable constants that does not @ s soeies

depend on time

Linear Processes

o Definition: A linear time invariant filtering of {Y;}
with coefficients {«;} that do not depend on time is

defined by
X; =¢(B)Y;

o Theorem: Suppose {Y;} is a zero mean stationary

series with ACVF ~y (-). Then {X}} is a zero mean
stationary process with ACVF

()= 3 Y ity (G-k+h)

j=—o00 k=—o0o



Example: The MA(q) Process is Stationary et
(ARMA) Models

By the filtering preserves stationarity result, the MA(q) 0% iiumonm
) . . @ swsei soeies
process is a stationary process with mean zero and ACVF

Linear Processes

q
Y(h)=0% 3 0;0;.n
=0

9 9
1(h) =3 Y 0;0k72(j — K +h)
j=0k=0
q9 49
=0? Y > 0;001(k=j+h)

j=0k=0

<

2
(e 9j6j+h
J=0

Processes with a Correlation that Cuts Off o
(ARMA) Models
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o A time series 1 is g-correlated if
n: and 7, are uncorrelated V|t — s| > ¢,

Linear Processes

i.e., Cov(n,ms) =0,V[t—s|>q

o Atime series {n;} is ¢-dependent if
ne and 7, are independent V|t - s| > q.
o Theorem: if {n,} is a stationary g-correlated time

series with zero mean, then it can be always be
represented as an MA(q) process

AR(p): Autoregressive Process of Order p Atitofegressivel

Moving-Average

@ This process is attributed to George Udny Yule. The e
AR(1) process has also been called the Markov "‘ oo,
process

o Let {7} be a WN(0,02) process and let {¢1, -, ¢p}  Lnear Processes
be a set of constants for some integer p > 0 with
op 0

@ The (zero-mean) AR(p) process is defined to be the
solution to the equation

P P
=y, Gith—j + Ze =M — Y. Gile—j = Zt,
j=1 j=1

¢(B)m

where we let ¢(B) = 1- X7, ¢; B/

Notes

Notes

Notes




A Stationary Solution for AR(1)

@ We want the solution to the AR equation to yield a
stationary process. Let’s first consider AR(1). We will
demonstrate that a stationary solution exists for
|on] < 1.

o We first write

N =111+ Zy = pr(d1m—2 + Zi1) + Zy
= @im-2+ ¢1 21+ 2y
. k-1
=Pk + Y. O 2
=0

2

™M

0

J

AR(1) Example Cont’d
@ Now let ¢; = ¢]. We then have

ne= .1 Z;.
=0

Using the fact that, for [a| < 1, £52 a/ =
sequence {v;} is absolutely summable

the

1
1-a’

@ Thus, since {1} is a linear process, it follows by the
filtering preserves stationarity result that {r,} is a
zero mean stationary process with ACVF

(=]
V(1) = 0> Y st
=0

oo
2 j jth

=o' ) hor’
J=0

=o2gh i(ﬂﬁ)j
=0

AR(1) Example Cont’d
Now |¢;| < 1 implies that |¢2| < 1 and therefore we have

2 1h
ety

"/(h) = 1_0%

When |¢1] > 1
@ No stationary solutions exist for |¢;| = 1

@ When |¢1] > 1, dividing by ¢; for both sides we get
Gr'm=ma+ 61 2
== -6 2
A linear combination of future Z,’s = we have a

stationary solution, but, 7, depends on future
{Z,}’s—This process is said to be not causal

o If we assume that n; and Z; are uncorrelated for
each t > s, [¢1] < 1 is the only stationary solution to
the AR equation
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The Autoregressive Operator

@ AR(1) process

N =d1m-1+Z = (1-¢1B)m = Zy = my = (1-1B) ' Z,

o Recall £ a/ = 1= = (1-a)™*. We have

l-a ~
m=Y(nBYZ =Y 5B 2 =Y ¢ 7
7=0 j=0 =0

= This is another way to show that AR(1) is a
linear process

o Here 1 - ¢, B is the AR characteristic polynomial

The Second-Order Autoregressive Process: AR(2)

Now consider the series satisfying
= P11 + a2 + Zy,

where, again, we assume that Z; is independent of
Mt-1,Mt-2, "

@ The AR characteristic polynomial is

#(B) =1-¢1B - ¢ B*

@ The corresponding AR characteristic equation is

#(B)=1-¢1B-¢B*=0

Stationarity of the AR(2) Process

@ A stationary solution exists if and only if the roots of
the AR characteristic equation exceed 1 in absolute

value

@ For the AR(2) the roots of the quadratic characteristic

equation are

d1£\/97 42
—2¢2

These roots exceed 1 in absolute value if

Gr1+pa<l, ¢a—¢1<1, and|pyf<1

@ We say that the roots should lie outside the unit circle
in the complex plane. This statement will generalize

to the AR(p) case
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The Autocorrelation Function for the AR(2) Process Moving Avorage
(ARMA) Models Notes
@ Yule-Walker equations: .“ MATHENATICALAND.
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M= Q1i—1 + Pama + Zy

P — 9 2 , r Linear Processes
= MNi-h = P1M-1Mt-n + P2M-2M-h + ZiM—n fearronesse

=7(h) = 17(h-1) + ¢2y(h -2)
= p(h) = p1p(h 1) + gap(h - 2),

h=1,2,-

o Setting h = 1, we have
p(1) = 61 p(0) +2 p(-1) = p(1) = 125

NS N
=1 =p(1)

— +¢2
0 p(2) = ¢1p(1) + $2p(0) = W

The Variance for the AR(2) Model

Autoregressive
(RIS Modsis Notes
Taking the variance of both sides of AR(2) equations: o i

‘ MATHEMATICAL AND

STSTEASEEiEs

N = G1m-1 + dani—2 + Zt,

yields

Linear Processes

7(0) = Var (¢17:-1 + pame—2) + Var(Zy)

= (67 +93)7(0) + 261627(1) + 0

- 6+ )+ 200 (5250 .2
(1-¢2)0”

T (- 02)(1- 07— 03) - 26007

(1 @) o?
T+¢a) (1-¢2)? -3

The General Autoregressive Processes

Autoregressive

Moving-Average NOteS
Consider now the pth-order autoregressive model: LD
O i
M= P11+ Gate-g + -+ dpne—p + Zt @ e,

@ AR characteristic polynomial:

¢(B) =1-¢1B - ¢2B* — = ¢, B”
Linear Processes
AR characteristic equation:

1-¢1B - ¢aB* - - ¢, B" =0

o Yule-Walker equations:

p(1) = ¢1+ g2p(1) + -+ dpp(p - 1)

p(2) = p1p(1) + b2 + -+ dpp(p - 2)

p(p) = d1p(p—1) + p2p(p—2) + -+ +
@ Variance:

Y(0) = 1y(1) + ¢27(2) + - + dpy(p) + 0°
2

(o

T 1= 1p(1) -~ dpo(p)




ARMA(p, q) Processes

{n:} is an ARMA(p, ¢) process if it satisfies
P q

M= Git-i = Zp + . 0; 21,
i=1 j=1
where {Z;} is a WN(0, o%) process.

o let¢(B)=1-%7,¢;B and§(B) =1+ X% 6;B.
Then we can write it as

(B)ne =6(B)Z

o An ARMA(p, ¢) process {7} with mean . can be
written as

(B) (7l - n) = 0(B) Z,

A Stationary Solution to the ARMA Equation

A zero-mean ARMA process is stationary if it can be
written as a linear process, i.e., n; = ¢ (B)Z;, where
P(B) = £52_ 4; B for an absolutely summable
sequence {1}

@ This only happens if one can “divide” by ¢(B), i.e., it
is stationary only if the following makes senese:

(6(B)) " ¢(B)n = (6(B)) " 0(B) 2,

o Let’s forget about B is the backshift operator and
replace it with z. Now consider whether we can
divide 6(z) by ¢(z)

The Roots of AR Characteristic Polynomial and
Stationarity
@ A root of the polynomial f(z) = Zﬁ.’:o a2’ is avalue ¢
such that f(¢) = 0 = it can be real-valued R or
complex-valued C

o For example, a root can take the form ¢ = a + bi for
real number a and b. The modulus of a complex
number [¢| is defined by

le] = Va2 + b2

@ For any ARMA(p,q) process, a stationary and unique
solution exists if and only if
$(2) =1 =1z == gpa” #0,

forall |z] = 1.
Note: Stationarity of the ARMA process has nothing
to do with the MA polynomial!
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Autoregressive
AR(4) Example Moving-Average
(ARMA) Models

Consider the foIIowing AR(4) process .“ MATHENATICALAND.

STSTEASEties

= 2760701 — 3.810617,_2 + 2.6535m,_3 — 0.9238n,_4 + Zi,

the AR characteristic polynomial is

Autoregressive-
#(2) = 1-2.7607z + 3.81062> - 2.65352° +0.92382" g Averge
Statio

@ Hard to find the roots of ¢(z) —we use the polyroot
function in R:

@ Use Mod in R to calculate the modulus of the roots

@ Conclusion:

Causal ARMA Processes Autoregressive

Moving-Average
(ARMA) Models
. . . .‘s MATHENATICAL AND
An ARMA process is causal if there exists constants {¢;} @ st
with X2 [¥;] <0 and n = Y20 Zt-j, that is, we can
write {n;} as an MA(co) process depending only on the
current and past values of {Z,;}

o Equivalently, an ARMA process is causal if and only if

$(2) =1 - b1z == gp? £0,

forall|z] <1

o The previous AR(4) example is causal since each
zero, ¢, of ¢(-) is such that |¢] > 1

Invertible ARMA Processes Moving Avrage
An ARMA process is invertible if there exists constants (AR odets

i Pre ‘
{m;} with 52 || < oo and &5 inunuw,

Zy =y mmj,
=0
that is, we can write {Z;} as an AR(oo) process

depending only on the current and past values of {1;} e
@ A process is invertible if and only if

0(z) =1+01z++0427 %0,

forall |z] <1

@ An ARMA process
o(B)n: = 6(B)Zt,

with ¢(z) =1-0.5z and 6(z) = 1 + 0.4z has a root of
the MA characteristic polynomial at z = 57 = -2.5
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Partial Autocorrelation Functions (PACF)

The partial autocorrelation function (PACF) represents

the partial correlation of a stationary time series {7, } with
its own lagged values, while regressing out the effects of
the time series at all shorter lags

o PACF of lag h is the autocorrelation between 7; and
ne+n With the linear dependence between 7, and
Nt+1,75 Ne+h-1 FEMOVEd

o PACF plots are a commonly used tool for identifying
the order of an AR model, as the theoretical PACF
“shuts off” past the order of the model

@ One can use the function pacf in R to plot the PACF
plots

An Example of PACF Plot
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PACF Plot for a MA Process Autoregressive

Moving-Average
(ARMA) Models
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Identifying Plausible Stationary ARMA Models Morehon

(ARMA) Models

We can use the sample ACF and PACF to help identify

%% iicuon o

plausible models: Q@O SHSTOALSGENGES
Model ‘ ACF ‘ PACF
MA(q) | cuts off after lag ¢ tails off exponentially

AR(p) | tails off exponentially | cuts off after lag p

For ARMA(p, ¢) we will see a combination of the above
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