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9.3

ARMA(p, q) Processes
{ηt} is an ARMA(p, q) process if it satisfies

ηt −
p

∑
i=1
ϕiηt−i = Zt +

q

∑
j=1

θjZt−j ,

where {Zt} is a WN(0, σ2) process.

Let ϕ(B) = 1 −∑pi=1 ϕiB
i and θ(B) = 1 +∑qj=1 θjB

j .
Then we can write it as

ϕ(B)ηt = θ(B)Zt

An ARMA(p, q) process {η̃t} with mean µ can be
written as

ϕ(B)(η̃t − µ) = θ(B)Zt

Notes

Notes

Notes
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9.4

A Stationary Solution to the ARMA Equation
A zero-mean ARMA process is stationary if it can be
written as a linear process, i.e., ηt = ψ(B)Zt, where
ψ(B) = ∑∞j=−∞ψjB

j for an absolutely summable
sequence {ψj}

This only happens if one can “divide” by ϕ(B), i.e., it
is stationary only if the following makes sense:

(ϕ(B))−1 ϕ(B)ηt = (ϕ(B))
−1 θ(B)Zt

⇒ ηt =
θ(B)

ϕ(B)
²
=ψ(B)

Zt

Let’s forget about B is the backshift operator and
replace it with z. Now consider whether we can
divide θ(z) by ϕ(z)
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9.5

Roots of the AR Characteristic Polynomial and
Stationarity

A root of the polynomial f(z) = ∑pj=0 ajz
j is a value ξ

such that f(ξ) = 0⇒ it can be real-valued R or
complex-valued C

For example, a root can take the form ξ = a + b i for
real number a and b. The modulus of a complex
number ∣ξ∣ is defined by

∣ξ∣ =
√
a2 + b2

For any ARMA(p,q) process, a stationary and unique
solution exists if and only if

ϕ(z) = 1 − ϕ1z −⋯ − ϕpz
p
≠ 0,

for all ∣z∣ = 1⇒ None of the roots of the AR
characteristic equation have a modulus of exactly 1

Note: Stationarity of the ARMA process has nothing
to do with the MA polynomial!
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9.6

AR(4) Example

Consider the following AR(4) process

ηt = 2.7607ηt−1 − 3.8106ηt−2 + 2.6535ηt−3 − 0.9238ηt−4 +Zt,

the AR characteristic polynomial is

ϕ(z) = 1 − 2.7607z + 3.8106z2 − 2.6535z3 + 0.9238z4

Hard to find the roots of ϕ(z) –we use the polyroot
function in R:

Use Mod in R to calculate the modulus of the roots

Conclusion:

Notes

Notes

Notes
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9.7

Causal ARMA Processes

An ARMA process is causal if there exists constants {ψj}
with ∑∞j=0 ∣ψj ∣ < 0 and ηt = ∑∞j=0ψjZt−j , that is, we can
write {ηt} as an MA(∞) process depending only on the
current and past values of {Zt}

Equivalently, an ARMA process is causal if and only if

ϕ(z) = 1 − ϕ1z −⋯ − ϕpz
p
≠ 0,

for all ∣z∣ ≤ 1⇒ None of the roots of the AR
characteristic equation have a modulus less than 1

The previous AR(4) example is causal since each
zero, ξ, of ϕ(⋅) is such that ∣ξ∣ > 1

Note: The causality of the ARMA process depends
only on the AR polynomial!
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9.8

Invertible ARMA Processes
An ARMA process is invertible if there exists constants
{πj} with ∑∞j=0 ∣πj ∣ < ∞ and

Zt =
∞
∑
j=0

πjηt−j ,

that is, we can write {Zt} as an AR(∞) process
depending only on the current and past values of {ηt}

A process is invertible if and only if

θ(z) = 1 + θ1z +⋯ + θqz
q
≠ 0,

for all ∣z∣ ≤ 1⇒ None of the roots of the MA
characteristic equation have a modulus less than 1

An ARMA process

ηt − 0.5ηt−1 = Zt + 0.4Zt−1,

with ϕ(z) = 1 − 0.5z and θ(z) = 1 + 0.4z has a root of
the MA characteristic polynomial at z = −10.4 = −2.5
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9.9

Review of the Autocorrelation Function (ACF)

The autocorrelation function (ACF) measures the
correlation of a stationary time series ηt with its own
lagged values

The theoretical ACF for MA processes can be

computed as ρ(h) =
∑q

j=0 θjθj+h

∑q
j=0 θ

2
j

, and via the

Yule-Walker equation for AR processes

The ACF is useful in identifying the MA(q) order, as it
cuts off after lag q

Notes

Notes

Notes
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9.10

Partial Autocorrelation Functions (PACF)

The partial autocorrelation function (PACF) represents
the partial correlation of a stationary time series {ηt} with
its own lagged values, while regressing out the effects of
the time series at all shorter lags

The PACF at lag h is the autocorrelation between ηt
and ηt+h with the linear dependence between ηt and
ηt+1, . . . , ηt+h−1 removed

PACF plots are a commonly used tool for identifying
the order of an AR model, as the theoretical PACF
“shuts off” past the order of the model (see an
example on the next slide)

One can use the function pacf in R to plot the PACF
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9.11

An Example of PACF Plot

ηt − 0.5ηt−1 − 0.25ηt−2 = Zt
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The theoretical ACF decays exponentially, while the
PACF cuts off at lag 2
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9.12

PACF Plot for a MA Process

ηt = Zt +Zt−1
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The theoretical ACF cuts off at lag 1, while the PACF
decays exponentially
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9.13

Lake Huron Series PACF Plot
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We can use both ACF and PACF plots to identify the
potential ARMA model order

ARMA Models:
Properties,

Identification,
and Estimation

Properties of
ARMA Models:
Stationarity,
Causality, and
Invertibility

Tentative Model
Identification Using
ACF and PACF

Parameter
Estimation

9.14

PACF Plot for a ARMA Process

ηt − 0.5ηt−1 − 0.25ηt−2 = Zt +Zt−1
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Both the theoretical ACF and PACF decay exponentially
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9.15

Identifying Plausible Stationary ARMA Models

We can use the sample ACF and PACF to help identify
plausible models:

Model ACF PACF
MA(q) cuts off after lag q tails off exponentially
AR(p) tails off exponentially cuts off after lag p

For ARMA(p, q) we will see a combination of the above

Notes

Notes

Notes
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9.16

Estimation of the ARMA Process Parameters

Suppose we choose a ARMA(p, q) model for {ηt}

Need to estimate the p + q + 1 parameters:

AR component {ϕ1,⋯, ϕp}

MA component {θ1,⋯, θq}

Var(Zt) = σ
2

One strategy:

Do some preliminary estimation of the model
parameters (e.g., via Yule-Walker estimates)

Follow-up with maximum likelihood estimation with
Gaussian assumption
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9.17

The Yule-Walker Method

Suppose ηt is a causal AR(p) process

ηt − ϕ1ηt−1 −⋯ − ϕpηt−p = Zt

To estimate the parameters {ϕ1,⋯, ϕp}, we use a method
of moments estimation scheme:

Let h = 0,1,⋯, p. We multiply ηt−h to both sides

ηtηt−h − ϕ1ηt−1ηt−h −⋯ − ϕpηt−pηt−h = Ztηt−h

Taking expectations:

E(ηtηt−h)−ϕ1E(ηt−1ηt−h)−⋯−ϕpE(ηt−pηt−h) = E(Ztηt−h),

we get
γ(h) − ϕ1γ(h − 1) − ⋯ − ϕpγ(h − p) = E(Ztηt−h)
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9.18

The Yule-Walker Equations

When h = 0, E(Ztηt−h) = Cov(Zt, ηt) = σ2 (Why?)
Therefore, we have

γ(0) −
p

∑
j=1

ϕjγ(j) = σ
2

When h > 0, Zt is uncorrelated with ηt−h (because the
assumption of causality), thus E(Ztηt−h) = 0 and we
have

γ(h) −
p

∑
j=1

ϕjγ(h − j) = 0, h = 1,2,⋯, p

The Yule-Walker estimates are the solution of these
equations when we replace γ(h) by γ̂(h)

Notes

Notes

Notes
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9.19

The Yule-Walker Equations in Matrix Form

Let ϕ̂ = (ϕ̂1,⋯, ϕ̂p)T be an estimate for ϕ = (ϕ1,⋯, ϕp)T

and let

Γ̂ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ̂(0) γ̂(1) ⋯ γ̂(p − 1)
γ̂(1) γ̂(0) ⋯ γ̂(p − 2)
⋮ ⋮ ⋱ ⋮

γ̂(p − 1) γ̂(p − 2) ⋯ γ̂(0)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then the Yule-Walker estimates of ϕ and σ2 are

ϕ̂ = Γ̂−1γ̂,

and
σ̂2 = γ̂(0) − ϕ̂T γ̂,

where γ̂ = (γ̂(1),⋯, γ̂(p))T
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9.20

Lake Huron Example in R
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9.21

Remarks on the Yule-Walker Method

For large sample size, Yule-Walker estimator have
(approximately) the same sampling distribution as
maximum likelihood estimator (MLE), but with small
sample size Yule-Walker estimator can be far less
efficient than the MLE

The Yule-Walker method is a poor procedure for
MA(q) and ARMA(p,q) processes with q > 0 (see
Cryer Chan 2008, p. 150-151)

We move on the more versatile and popular method
for estimating ARMA(p,q) parameters–maximum
likelihood estimation1

1See Least Squares Estimation in Chapter 7.2 of Cryer and
Chan (2008).

Notes

Notes

Notes
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9.22

Maximum Likelihood Estimation
The setup:

Model: X = (X1,X2,⋯,Xn) has joint probability
density function f(x;ω) where ω = (ω1, ω2,⋯, ωp) is
a vector of p parameters

Data: x = (x1, x2,⋯, xn)

The likelihood function is defined as the the
“likelihood” of the data, x, given the parameters, ω

Ln(ω) = f(x;ω)

The maximum likelihood estimate (MLE) is the value
of ω which maximizes the likelihood, Ln(ω), of the
data x:

ω̂ = argmax
ω

Ln(ω).

It is equivalent (and often easier) to maximize the log
likelihood,

ℓn(ω) = logLn(ω)
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9.23

The MLE for an i.i.d. Gaussian Process
Suppose {Xt} be a Gaussian i.i.d. process with mean µ
and variance σ2. We observe a time series
x = (x1,⋯, xn)

T .
The likelihood function is

Ln(µ,σ
2
) = f(x∣µ,σ2)

=
n

∏
t=1
f(xt∣µ,σ)

=
n

∏
t=1
{

1
√
2πσ2

exp [−
(xt − µ)

2

2σ2
]}

= (2π)−n/2(σ2)−n/2 exp [−
∑
n
t=1(xt − µ)

2

2σ2
]

The log-likelihood function is

ℓn(µ,σ
2
) = logLn(µ,σ

2
)

= −
n

2
log(2π) −

n

2
log(σ2) −

∑
n
t=1(xt − µ)

2

2σ2

⇒ µ̂MLE =
∑n

t=1Xt

n = X̄, σ̂2MLE =
∑n

t=1(Xt−X̄)2
n
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9.24

Likelihood for Stationary Gaussian Time Series Models
Suppose {Xt} be a mean zero stationary Gaussian time
series with ACVF γ(h). If γ(h) depends on p parameters,
ω = (ω1,⋯, ωp)

The likelihood of the data x = (x1,⋯, xn) given the
parameters ω is

Ln(ω) = (2π)
−n/2
∣Γ∣−1/2 exp(−

1

2
xTΓ−1x) ,

where Γ is the covariance matrix of
X = (X1,⋯,Xn)

T , ∣Γ∣ is the determinant of the
matrix Γ, and Γ−1 is the inverse of the matrix Γ

The log-likelihood is

ℓn(θ) = −
n

2
log(2π) −

1

2
log ∣Γ∣ −

1

2
xTΓ−1x

Typically need to solve it numerically

Notes

Notes

Notes
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9.25

Decomposing Joint Density into Conditional Densities
A joint distribution can be represented as the product of
conditionals and a marginal distribution

The simple version for n = 2 is:

f(x1, x2) = f(x2∣x1)f(x1)

Extending for general n we get the following
expression for the likelihood:

Ln(θ) = f(x;θ) = f(x1)
n

∏
t=2
f(xt∣xt−1,⋯, x1;θ),

and the log-likelihood is

ℓn(θ) = log f(x;θ) = log(f(x1))+
n

∑
t=2

log f(xt∣xt−1,⋯, x1;θ).
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9.26

AR(1) Log-likelihood
Let {η1, η2,⋯, ηn} be a realization of a zero-mean
stationary AR(1) Gaussian time series. Let θ = (ϕ,σ2)

ℓn(θ) = log(f(η1))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ℓn,1

+
n

∑
t=2

log f(ηt∣ηt−1,⋯, η1;θ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ℓn,2

.

Note that for t ≥ 2, f(ηt∣ηt−1,⋯, η1) = f(ηt∣ηt−1), where
[ηt∣ηt−1] ∼ N(ϕηt−1, σ2) ⇒ ℓn,2 =

−
(n − 1)

2
log 2π −

(n − 1)

2
logσ2 −

∑
n
t=2(ηt − ϕηt−1)

2

2σ2

Also, we know [η1] ∼ N (0, σ2

(1−ϕ2)) ⇒ ℓ1,n =

− log 2π

2
−
logσ2

2
+
log(1 − ϕ2)

2
−
(1 − ϕ2)η21

2σ2

⇒ ℓn(θ) = −
n

2
log 2π −

n

2
logσ2 −

∑
n
t=2(ηt − ϕηt−1)

2

2σ2

+
log(1 − ϕ2)

2
−
(1 − ϕ2)η21

2σ2
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9.27

AR(1) Log-likelihood Cont’d

ℓn(θ) = −
n

2
log 2π −

n

2
logσ2 +

log(1 − ϕ2)

2
−
S(ϕ)

2σ2
,

where S(ϕ) = ∑nt=2(ηt − ϕηt−1)
2 + (1 − ϕ2)η21

For given value of ϕ, ℓn(ϕ,σ2) can be maximized
analytically with respect to σ2

σ̂2 =
S(ϕ̂)

n

Estimation of ϕ can be simplified by maximizing the
conditional sum-of-squares (∑nt=2(ηt − ϕηt−1)

2)

Notes

Notes

Notes
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9.28

arima in R with the Lake Huron Example
Notes

Notes

Notes
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