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ARMA(p, q) Processes AiTo‘;;”,ﬁg§f5:
{n:} is an ARMA(p, q) process if it satisfies an Estrmation
@9 yiniwmowm
u a @7 s
M= Gii = Zi+ p, 0,2,
i=1 j=1 Properties of
ARMA Models
. o Stationarity,
where {Z,} is a WN(0,0°) process. Gl

o Let¢p(B)=1-%" ¢;B and0(B) =1+ D 0;B7.
Then we can write it as

d(B)ne =6(B)Z

o An ARMA(p, ¢) process {7} with mean x can be
written as

(B) (i — p) = 6(B)Z,

Notes

Notes

Notes




A Stationary Solution to the ARMA Equation
A zero-mean ARMA process is stationary if it can be
written as a linear process, i.e., n; = ¥(B)Z;, where
Y(B)=Y7 o +;B7 for an absolutely summable
sequence {1}

@ This only happens if one can “divide” by ¢(B), i.e., it

is stationary only if the following makes sense:

(¢(B) ™ ¢(B)m = (6(B)) ™' 0(B) 2,
_0(B)
== @ Zy
=4(B)

o Let’s forget about B is the backshift operator and
replace it with z. Now consider whether we can
divide 6(z) by ¢(z)

Roots of the AR Characteristic Polynomial and
Stationarity

@ Aroot of the polynomial f(2) = ¥7_, a2’ is avalue ¢

such that f(¢) = 0 = it can be real-valued R or
complex-valued C

@ For example, a root can take the form ¢ = a + bi for
real number a and b. The modulus of a complex
number [¢] is defined by

le| = Va2 + b2

@ For any ARMA(p,q) process, a stationary and unique

solution exists if and only if
6(x) = 1= 1z == 4?0,

for all |z| = 1 = None of the roots of the AR
characteristic equation have a modulus of exactly 1

Note: Stationarity of the ARMA process has nothing
to do with the MA polynomial!

AR(4) Example

Consider the following AR(4) process

= 2760701 — 3.810617,_2 + 2.6535m,_3 — 0.9238n,_4 + Zi,

the AR characteristic polynomial is

#(2) = 1-2.7607z + 3.81062° - 2.65352° + 0.92382*

@ Hard to find the roots of ¢(z) —we use the polyroot

function in R:

@ Use Mod in R to calculate the modulus of the roots

@ Conclusion:
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Causal ARMA Processes

An ARMA process is causal if there exists constants {v;}
with 2220 [0 < 0 and 7, = $320 ¥ Z1-;, that is, we can
write {n;} as an MA(cc) process depending only on the
current and past values of {Z;}

o Equivalently, an ARMA process is causal if and only if
B(2) = L= 1z == ¥ # 0,

for all |z| < 1 = None of the roots of the AR
characteristic equation have a modulus less than 1

@ The previous AR(4) example is causal since each
zero, &, of ¢(-) is such that |¢] > 1

Note: The causality of the ARMA process depends
only on the AR polynomial!

Invertible ARMA Processes

An ARMA process is invertible if there exists constants
{m;} with 322 || < 0o and

.
Zi=Yy T,
j=0

that is, we can write {Z;} as an AR(o0) process
depending only on the current and past values of {n;}
@ A process is invertible if and only if

0(z)=1+01z+-+0427 %0,
for all |z| < 1 = None of the roots of the MA
characteristic equation have a modulus less than 1
@ An ARMA process
= 0.5m-1 = Zy +0.4Z;q,

with ¢(z) =1-0.5z and 6(z) = 1 + 0.4z has a root of
the MA characteristic polynomial at z = = = -2.5

0.4

Review of the Autocorrelation Function (ACF)

The autocorrelation function (ACF) measures the
correlation of a stationary time series 7, with its own
lagged values

@ The theoretical ACF for MA processes can be
q
computed as p(h) = % and via the
3=0"J

Yule-Walker equation for AR processes

@ The ACF is useful in identifying the MA(q) order, as it
cuts off after lag ¢
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Partial Autocorrelation Functions (PACF)

The partial autocorrelation function (PACF) represents
the partial correlation of a stationary time series {7, } with
its own lagged values, while regressing out the effects of
the time series at all shorter lags

o The PACF at lag h is the autocorrelation between 7,

and ;. with the linear dependence between 7, and
Nt+1, -5 Ne+h-1 FEMOVEd

o PACF plots are a commonly used tool for identifying
the order of an AR model, as the theoretical PACF
“shuts off” past the order of the model (see an
example on the next slide)

@ One can use the function pacf in R to plot the PACF

An Example of PACF Plot
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The theoretical ACF decays exponentially, while the
PACF cuts off at lag 2

PACF Plot for a MA Process
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The theoretical ACF cuts off at lag 1, while the PACF
decays exponentially
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Lake Huron Series PACF Plot
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We can use both ACF and PACF plots to identify the
potential ARMA model order

PACF Plot for a ARMA Process
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Both the theoretical ACF and PACF decay exponentially

Identifying Plausible Stationary ARMA Models

We can use the sample ACF and PACF to help identify

plausible models:

Model | AGF

| PACF

MA(q)
AR(p)

cuts off after lag ¢
tails off exponentially

tails off exponentially
cuts off after lag p

For ARMA(p, ¢) we will see a combination of the above
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ARMA Models:

Estimation of the ARMA Process Parameters e
Identification, Notes
and Estimation
Suppose we choose a ARMA(p, ¢) model for {n;}
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o Need to estimate the p + ¢ + 1 parameters:

o AR component {¢, -, ¢}

o MA component {6;,---,0,}

o Var(Z,) = o?

@ One strategy:

o Do some preliminary estimation of the model
parameters (e.g., via Yule-Walker estimates)

o Follow-up with maximum likelihood estimation with
Gaussian assumption

The Yule-Walker Method ARMA Models:
Idontcation, Notes
and Estimation

Suppose 7, is a causal AR(p) process
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M= P1Me-1 = = QpN—p = 2t

To estimate the parameters {¢1,---, ¢}, we use a method

of moments estimation scheme:

o Leth=0,1,---,p. We multiply n,_, to both sides

NeMe-h = PIMe=-1Mt—h = *** = PpNt—pNt-h = LtNs-h Ectmadon

@ Taking expectations:

E(mni-n) D1 E(Me—1m-n) == OpE(—pti—n) = E(Zsmy-p),

we get

[7(0) = é17(h = 1) == = $7(h = p) = E(Zimy-1)

The Yule-Walker Equations e
Identification, Notes

o When h =0, E(Zmy-p) = Cov(Zs, m) = 0% (Why?) and Estimation

Therefore‘ we have @9 yiniwmowm

" STATSTICAL SCIENCES

wm—i@wﬁ=ﬂ
2

@ When h > 0, Z; is uncorrelated with n,_, (because the .
. . arameter
assumption of causality), thus E(Z;n;-,) = 0 and we Estimation

have

p
Y(h) = Y ¢ 1(h=5) =0, h=1,2,p
j=1

@ The Yule-Walker estimates are the solution of these
equations when we replace (k) by 5(h)



The Yule-Walker Equations in Matrix Form ARIA Models:
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Let ¢ = (¢1,, ¢,)T be an estimate for ¢ = (¢1,+, ¢p)” oo s,
and let RIS

A(0) @) - A1)

W A0 - Ae-2)

>
I

S-1) A-2) -~ 5(0)

Then the Yule-Walker estimates of ¢ and o are

¢=T"9,

and .
62 =45(0)- ™4

where 4 = (4(1), - 4(p))"

919
Lake Huron Example in R e
. Identification, Notes
{r} and Estimation
YW_est <- ar(lm$residuals, aic = F, order.max = 2, method = "yw")
# plot sample and estimated acf/pacf ." MATHEMATICAL AND.

par(las = 1, mgp = c(2.2, 1, @), mar = c(3.6, 3.6, 0.6, 0.6), mfrow = c(2, 1)) " STATISTICAL SCIENCES

acf(Ilm$residuals)

acf_YWest <- ARMAacf(ar = YW_est$ar, lag.max = 23)
points(0:23, acf_YWest, col = "', pch = 16, cex = ©.8)
pacf (Im$residuals)

pacf_YWest <- ARMAacf(ar = YW_estSar, lag.max = 23, pacf = T)
points(1:23, pacf_YWest, col = "[@M", pch = 16, cex = 0.8)
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Parameter
w08 ] l I Estimation

Remarks on the Yule-Walker Method GLLLLLE

Properties,
Identification, Notes
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o For Iargg sample size, Yule—WaIk.er es'tln?atolr have "5 P
(approximately) the same sampling distribution as @ s s

maximum likelihood estimator (MLE), but with small
sample size Yule-Walker estimator can be far less

efficient than the MLE

@ The Yule-Walker method is a poor procedure for s
MA(q) and ARMA(p,q) processes with ¢ > 0 (see Estimation

Cryer Chan 2008, p. 150-151)

@ We move on the more versatile and popular method
for estimating ARMA(p,q) parameters—maximum

likelihood estimation'

See Least Squares Estimation in Chapter 7.2 of Cryer and
Chan (2008). 021



Maximum Likelihood Estimation

@ The setup:
o Model: X = (X1, X,+, X,,) has joint probability
density function f(x;w) where w = (wy,ws, -+ wp) IS
a vector of p parameters

o Data: x = (z1,22,,2n)

@ The likelihood function is defined as the the
“likelihood” of the data, =, given the parameters, w

Ln(w) = f(zw)

@ The maximum likelihood estimate (MLE) is the value
of w which maximizes the likelihood, L, (w), of the
data x:

@ = argmax Ly (w).
w

It is equivalent (and often easier) to maximize the log
likelihood,
In(w) =log L (w)

The MLE for an i.i.d. Gaussian Process

Suppose {X;} be a Gaussian i.i.d. process with mean
and variance 2. We observe a time series
x = (Ila ) xn)T-

@ The likelihood function is

Ln(#vgz) = f(zlp, ‘72)

-1 (il o)
t=1

_ n (:EL _ #)2
_E{WGXD T 202 ]}

n 2
- (2m) (o) exp [W]

@ The log-likelihood function is
Cn(p,0”) =log Ly (1,0%)

_.n n 2 Yo (we - N)2
= —Elog(Qw) - glog(o ) - ==

~ X Xt _ v ~2 _Ih (X-X)?
= jMLE = =5 =X, Oy = S

Likelihood for Stationary Gaussian Time Series Models
Suppose {X;} be a mean zero stationary Gaussian time
series with ACVF ~(h). If v(h) depends on p parameters,
w = (Wi, wp)

o The likelihood of the data « = (z1, -, 2, ) given the
parameters w is
Ln(w) = (21) ™20 Y2 exp (—%wTI"lw) ,
where T is the covariance matrix of

X = (X1, X,)7T, T is the determinant of the
matrix ', and I'"! is the inverse of the matrix T"

@ The log-likelihood is
n 1 1
(0) = —=log(27) - =log|T| - =2’ T7!
£(8) = =3 log(2m) - S log [T - 52" T "=

Typically need to solve it numerically
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Decomposing Joint Density into Conditional Densities

A joint distribution can be represented as the product of
conditionals and a marginal distribution

@ The simple version for n = 2 is:

f(x1,22) = f(x2lz1) f(21)

o Extending for general n we get the following
expression for the likelihood:

L.(6) = f(2:0) = f(m)@f(xt\xt_l,m,xl;e),

and the log-likelihood is

0,(0) = 1og £ (2:0) = 1og(f (21))+ 3" log f (aele 1, 213 ).
t=2

AR(1) Log-likelihood
Let {n1,m2,---,m, } be a realization of a zero-mean
stationary AR(1) Gaussian time series. Let 8 = (¢,0?)
n
€:(8) = log(f(m)) +_1og f(melne-1,-+,m; ).
N—— =2

ln1

ln,2

Note that for ¢ > 2, f(ne|ne-1,---,m) = f(me|me-1), where
[elne-1] ~ N(¢11-1,0%) = b =
g i (ne = ¢ne-1)?

(n-1) (n-1)
- log 2w — 2 log 952

Also, we know [7;] ~N (0, (l‘j—;)) =l =

—log2r logo® | log(1- ¢*)  (A-¢>)mt
2 2 2 202

n _ 2
=0,(0) =- ;llog 21 — glog o’ - 7Zt:2(7]152l72¢77t—1)

Jlog(1-¢)  (1-¢")ni
2 202

AR(1) Log-likelihood Cont’d

log(1-6°) S(¢)
2 202’

0,(0) = —glog 27 — gloga2 +
where S(¢) = Sy (ne - ¢m-1)? + (1 - ¢*)ng

@ For given value of ¢, £,(¢,0?) can be maximized
analytically with respect to ¢

;,2:@

n

o Estimation of ¢ can be simplified by maximizing the
conditional sum-of-squares (X7, (1 — ¢1:-1)%)

Q@ SHISTOLSIENGES
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arima in R with the Lake Huron Example ARIA Models:

Properties.
arima: ARIMA Modelling of Time Series Jdentifjcation] Notes
and Estimation
Description -
0% wiumon o
Fitan ARIMA modet 0 8 usharte e s, Q@ SHISTOLSIENGES
Usage

S
(MLE_estl <- arima(lm$residuals, order = c(2, @, @), method = "ML"))

Call:

arima(x = Im$residuals, order = c(2, @, @), method = "ML")

Coefficients:

arl ar2 intercept
1.0047 -0.2919 0.0197
s.e. 0.0977 0.1004 0.2350

sigmaA2 estimated as ©.4571: log likelihood = -101.25, aic = 210.5

Notes

Notes
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