Lecture 9

ARMA Models: Properties, Identification, and Estimation

Reading: Bowerman, O'Connell, and Koehler (2005): Chapter 9.2-9.4; Capter 10.1; Cryer and Chen (2008): Chapter 4.4-4.6; Chapter 6.1-6.3

MATH 4070: Regression and Time-Series Analysis

Whitney Huang Clemson University

Agenda

- Properties of ARMA Models: Stationarity, Causality, and Invertibility
- 2 Tentative Model Identification Using ACF and PACF
- 3 Parameter Estimation

Properties of ARMA Models: Stationarity, Causality, and Invertibility Tentative Model Identification Using ACF and PACF Parameter

9.2

Notes

Notes

9.2

ARMA(p, q) Processes

 $\{\eta_t\}$ is an ARMA(p, q) process if it satisfies

$$\eta_t - \sum_{i=1}^p \phi_i \eta_{t-i} = Z_t + \sum_{j=1}^q \theta_j Z_{t-j},$$

where $\{Z_t\}$ is a $\mathrm{WN}(0,\sigma^2)$ process.

• Let $\phi(B)$ = $1 - \sum_{i=1}^p \phi_i B^i$ and $\theta(B)$ = $1 + \sum_{j=1}^q \theta_j B^j$. Then we can write it as

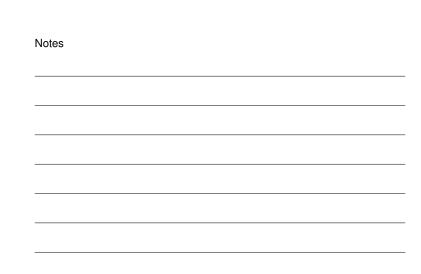
$$\phi(B)\eta_t = \theta(B)Z_t$$

• An ARMA($p,\,q$) process $\{\tilde{\eta}_t\}$ with mean μ can be written as

$$\phi(B)(\tilde{\eta}_t - \mu) = \theta(B)Z_t$$

ARMA Models: Properties, Identification, and Estimation

Properties of ARMA Models: Stationarity, Causality, and Invertibility Tentative Model Identification Using ACF and PACF



A Stationary Solution to the ARMA Equation

A zero-mean ARMA process is stationary if it can be written as a linear process, i.e., $\eta_t = \psi(B)Z_t$, where $\psi(B) = \sum_{j=-\infty}^{\infty} \psi_j B^j$ for an absolutely summable sequence $\{\psi_j\}$

 \bullet This only happens if one can "divide" by $\phi(B),$ i.e., it is stationary only if the following makes sense:

$$(\phi(B))^{-1}\phi(B)\eta_t = (\phi(B))^{-1}\theta(B)Z_t$$

$$\Rightarrow \eta_t = \underbrace{\frac{\theta(B)}{\phi(B)}}_{\text{=wb(B)}} Z_t$$

ullet Let's forget about B is the backshift operator and replace it with z. Now consider whether we can divide $\theta(z)$ by $\phi(z)$

Roots of the AR Characteristic Polynomial and Stationarity

- A root of the polynomial $f(z) = \sum_{j=0}^{p} a_j z^j$ is a value ξ such that $f(\xi) = 0 \Rightarrow$ it can be real-valued $\mathbb R$ or complex-valued $\mathbb C$
- For example, a root can take the form $\xi = a + bi$ for real number a and b. The modulus of a complex number $|\xi|$ is defined by

$$|\xi| = \sqrt{a^2 + b^2}$$

• For any ARMA(p,q) process, a stationary and unique solution exists if and only if

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p \neq 0,$$

for all |z| = 1 \Rightarrow None of the roots of the AR characteristic equation have a modulus of exactly 1

Note: Stationarity of the ARMA process has nothing to do with the MA polynomial!

Notes

Notes

Notes

AR(4) Example

Consider the following AR(4) process

 $\eta_t = 2.7607\eta_{t-1} - 3.8106\eta_{t-2} + 2.6535\eta_{t-3} - 0.9238\eta_{t-4} + Z_t,$

the AR characteristic polynomial is

 $\phi(z) = 1 - 2.7607z + 3.8106z^2 - 2.6535z^3 + 0.9238z^4$

- ullet Hard to find the roots of $\phi(z)$ —we use the polyroot function in R:
- Use Mod in R to calculate the modulus of the roots
- Conclusion:

Causal ARMA Processes

An ARMA process is causal if there exists constants $\{\psi_j\}$ with $\sum_{j=0}^{\infty} |\psi_j| < 0$ and $\eta_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}$, that is, we can write $\{\eta_t\}$ as an MA(∞) process depending only on the current and past values of $\{Z_t\}$

• Equivalently, an ARMA process is causal if and only if

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p \neq 0,$$

for all $|z| \le 1 \Rightarrow$ None of the roots of the AR characteristic equation have a modulus less than 1

• The previous AR(4) example is causal since each zero, ξ , of $\phi(\cdot)$ is such that $|\xi| > 1$

Note: The causality of the ARMA process depends only on the AR polynomial!

Invertible ARMA Processes

An ARMA process is invertible if there exists constants $\{\pi_j\}$ with $\sum_{j=0}^{\infty}|\pi_j|<\infty$ and

$$Z_t = \sum_{j=0}^{\infty} \pi_j \eta_{t-j},$$

that is, we can write $\{Z_t\}$ as an AR(∞) process depending only on the current and past values of $\{\eta_t\}$

• A process is invertible if and only if

$$\theta(z) = 1 + \theta_1 z + \dots + \theta_q z^q \neq 0,$$

for all $|z| \le 1 \Rightarrow$ None of the roots of the MA characteristic equation have a modulus less than 1

An ARMA process

$$\eta_t - 0.5\eta_{t-1} = Z_t + 0.4Z_{t-1},$$

with $\phi(z)$ = 1 – 0.5z and $\theta(z)$ = 1 + 0.4z has a root of the MA characteristic polynomial at $z = \frac{-1}{0.4} = -2.5$

Notes

Notes

Review of the Autocorrelation Function (ACF)

The autocorrelation function (ACF) measures the correlation of a stationary time series η_t with its own lagged values

- The theoretical ACF for MA processes can be computed as $\rho(h)=\frac{\sum_{j=0}^q\theta_j\theta_{j+h}}{\sum_{j=0}^q\theta_j^2}$, and via the Yule-Walker equation for AR processes
- The ACF is useful in identifying the MA(q) order, as it cuts off after lag \boldsymbol{q}

Notes			

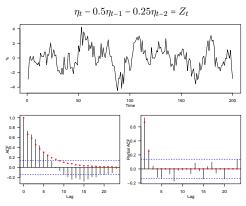
Partial Autocorrelation Functions (PACF)

The partial autocorrelation function (PACF) represents the partial correlation of a stationary time series $\{\eta_t\}$ with its own lagged values, while regressing out the effects of the time series at all shorter lags

- The PACF at lag h is the autocorrelation between η_t and η_{t+h} with the linear dependence between η_t and $\eta_{t+1},\dots,\eta_{t+h-1}$ removed
- PACF plots are a commonly used tool for identifying the order of an AR model, as the theoretical PACF "shuts off" past the order of the model (see an example on the next slide)
- \bullet One can use the function pacf in R to plot the PACF

Notes

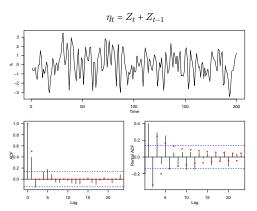
An Example of PACF Plot



The theoretical ACF decays exponentially, while the PACF cuts off at lag 2 $\,$

Notes

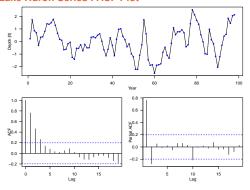
PACF Plot for a MA Process



The theoretical ACF cuts off at lag 1, while the PACF decays exponentially

V	o	tes	3

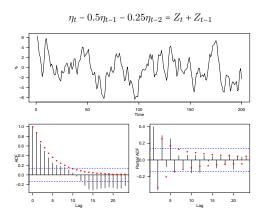
Lake Huron Series PACF Plot



We can use both ACF and PACF plots to identify the potential ARMA model order

Notes

PACF Plot for a ARMA Process



Both the theoretical ACF and PACF decay exponentially

Notes

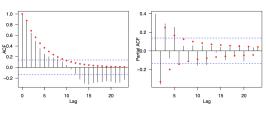
•		
•		

Identifying Plausible Stationary ARMA Models

We can use the sample ACF and PACF to help identify plausible models:

Model		PACF
	cuts off after lag q	tails off exponentially
AR(p)	tails off exponentially	cuts off after lag p

For $\mathsf{ARMA}(p,\,q)$ we will see a combination of the above



ARMA Models:
Properties,
Identification,
and Estimation

Notes

Estimation of the ARMA Process Parameters

Suppose we choose a ARMA(p, q) model for $\{\eta_t\}$

- Need to estimate the p + q + 1 parameters:
 - AR component $\{\phi_1, \dots, \phi_p\}$
 - MA component $\{\theta_1, \dots, \theta_q\}$
 - $Var(Z_t) = \sigma^2$
- One strategy:
 - Do some preliminary estimation of the model parameters (e.g., via Yule-Walker estimates)
 - Follow-up with maximum likelihood estimation with Gaussian assumption

The Yule-Walker Method

Suppose η_t is a causal AR(p) process

$$\eta_t - \phi_1 \eta_{t-1} - \dots - \phi_p \eta_{t-p} = Z_t$$

To estimate the parameters $\{\phi_1, \cdots, \phi_p\}$, we use a method of moments estimation scheme:

• Let $h = 0, 1, \dots, p$. We multiply η_{t-h} to both sides

$$\eta_t \eta_{t-h} - \phi_1 \eta_{t-1} \eta_{t-h} - \dots - \phi_p \eta_{t-p} \eta_{t-h} = Z_t \eta_{t-h}$$

Taking expectations:

$$\mathbb{E}(\eta_t \eta_{t-h}) - \phi_1 \mathbb{E}(\eta_{t-1} \eta_{t-h}) - \dots - \phi_p \mathbb{E}(\eta_{t-p} \eta_{t-h}) = \mathbb{E}(Z_t \eta_{t-h}),$$

$$\gamma(h) - \phi_1 \gamma(h-1) - \dots - \phi_p \gamma(h-p) = \mathbb{E}(Z_t \eta_{t-h})$$

Notes

Notes

The Yule-Walker Equations

• When h = 0, $\mathbb{E}(Z_t \eta_{t-h}) = \operatorname{Cov}(Z_t, \eta_t) = \sigma^2$ (Why?) Therefore, we have

$$\gamma(0) - \sum_{j=1}^{p} \phi_j \gamma(j) = \sigma^2$$

• When h > 0, Z_t is uncorrelated with η_{t-h} (because the assumption of causality), thus $\mathbb{E}(Z_t\eta_{t-h})$ = 0 and we have

$$\gamma(h) - \sum_{j=1}^{p} \phi_j \gamma(h-j) = 0, \quad h = 1, 2, \dots, p$$

• The Yule-Walker estimates are the solution of these equations when we replace $\gamma(h)$ by $\hat{\gamma}(h)$

The Yule-Walker Equations in Matrix Form

Let $\hat{\phi} = (\hat{\phi}_1, \cdots, \hat{\phi}_p)^T$ be an estimate for $\phi = (\phi_1, \cdots, \phi_p)^T$ and let

$$\hat{\boldsymbol{\Gamma}} = \begin{bmatrix} \hat{\gamma}(0) & \hat{\gamma}(1) & \cdots & \hat{\gamma}(p-1) \\ \hat{\gamma}(1) & \hat{\gamma}(0) & \cdots & \hat{\gamma}(p-2) \\ \vdots & \vdots & \ddots & \vdots \\ \hat{\gamma}(p-1) & \hat{\gamma}(p-2) & \cdots & \hat{\gamma}(0) \end{bmatrix}.$$

Then the Yule-Walker estimates of ϕ and σ^2 are

$$\hat{\phi} = \hat{\Gamma}^{-1} \hat{\gamma}$$
,

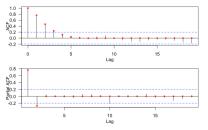
and

$$\hat{\sigma}^2 = \hat{\gamma}(0) - \hat{\boldsymbol{\phi}}^T \hat{\boldsymbol{\gamma}},$$

where
$$\hat{\gamma}$$
 = $(\hat{\gamma}(1), \cdots, \hat{\gamma}(p))^T$

Lake Huron Example in R

YW_est <- ar(lmsresiduals, aic = F, order.max = 2, method = "yw")
plot sample and estimated acf/pacf
par(las = 1, mgp = c(2.2, 1, 0), mar = c(3.6, 3.6, 0.6, 0.6), mfrow = c(2, 1))
acf(lmsresiduals)
acf_YWest <- ARMAacf(ar = YW_estsar, lag.max = 23)
points(0:23, acf_YWest, col = "red", pch = 16, cex = 0.8)
pacf(lmsresiduals)
pacf_YWest <- ARMAacf(ar = YW estsar, lag.max = 23, pacf = T) pacf(lm%residuals)
pacf_YWest <- ARMAacf(ar = YW_est%ar, lag.max = 23, pacf = T)
points(1:23, pacf_YWest, col = "red", pch = 16, cex = 0.8)</pre>



Notes

Notes

Remarks on the Yule-Walker Method

- For large sample size, Yule-Walker estimator have (approximately) the same sampling distribution as maximum likelihood estimator (MLE), but with small sample size Yule-Walker estimator can be far less efficient than the MLE
- The Yule-Walker method is a poor procedure for $\mathsf{MA}(q)$ and $\mathsf{ARMA}(p,q)$ processes with q>0 (see Cryer Chan 2008, p. 150-151)
- We move on the more versatile and popular method for estimating ARMA(p,q) parameters—maximum likelihood estimation1

¹ See Least Squares	Estimation in	Chapter	7.2 of C	ryer and
Chan (2008).				

I	Notes				
-					
-					
-					
-					
-					

Maximum Likelihood Estimation

- The setup:
 - Model: $\boldsymbol{X} = (X_1, X_2, \dots, X_n)$ has joint probability density function $f(x; \omega)$ where $\omega = (\omega_1, \omega_2, \cdots, \omega_p)$ is a vector of p parameters
 - Data: $x = (x_1, x_2, \dots, x_n)$
- The likelihood function is defined as the the "likelihood" of the data, x, given the parameters, ω

$$L_n(\boldsymbol{\omega}) = f(\boldsymbol{x}; \boldsymbol{\omega})$$

• The maximum likelihood estimate (MLE) is the value of ω which maximizes the likelihood, $L_n(\omega)$, of the data x:

$$\hat{\boldsymbol{\omega}} = \underset{\boldsymbol{\omega}}{\operatorname{argmax}} L_n(\boldsymbol{\omega}).$$

It is equivalent (and often easier) to maximize the log likelihood,

$$\ell_n(\boldsymbol{\omega}) = \log L_n(\boldsymbol{\omega})$$

Notes

Notes

The MLE for an i.i.d. Gaussian Process

Suppose $\{X_t\}$ be a Gaussian i.i.d. process with mean μ and variance σ^2 . We observe a time series $\boldsymbol{x} = (x_1, \cdots, x_n)^T.$

The likelihood function is

$$L_n(\mu, \sigma^2) = f(\mathbf{x}|\mu, \sigma^2)$$

$$= \prod_{t=1}^n f(x_t|\mu, \sigma)$$

$$= \prod_{t=1}^n \left\{ \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x_t - \mu)^2}{2\sigma^2}\right] \right\}$$

$$= (2\pi)^{-n/2} (\sigma^2)^{-n/2} \exp\left[-\frac{\sum_{t=1}^n (x_t - \mu)^2}{2\sigma^2}\right]$$

The log-likelihood function is

$$\begin{split} \ell_n(\mu, \sigma^2) &= \log L_n(\mu, \sigma^2) \\ &= -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{\sum_{t=1}^n (x_t - \mu)^2}{2\sigma^2} \\ \Rightarrow \hat{\mu}_{\text{MLE}} &= \frac{\sum_{t=1}^n X_t}{n} = \bar{X}, \quad \hat{\sigma}_{\text{MLE}}^2 &= \frac{\sum_{t=1}^n (X_t - \bar{X})^2}{n} \end{split}$$

Likelihood for Stationary Gaussian Time Series Models

Suppose $\{X_t\}$ be a mean zero stationary Gaussian time series with ACVF $\gamma(h)$. If $\gamma(h)$ depends on p parameters, $\boldsymbol{\omega} = (\omega_1, \dots, \omega_p)$

• The likelihood of the data $x = (x_1, \dots, x_n)$ given the parameters ω is

$$L_n(\boldsymbol{\omega}) = (2\pi)^{-n/2} |\boldsymbol{\Gamma}|^{-1/2} \exp\left(-\frac{1}{2}\boldsymbol{x}^T \boldsymbol{\Gamma}^{-1} \boldsymbol{x}\right),$$

where $\boldsymbol{\Gamma}$ is the covariance matrix of $X = (X_1, \dots, X_n)^T$, $|\Gamma|$ is the determinant of the matrix Γ , and Γ^{-1} is the inverse of the matrix Γ

The log-likelihood is

$$\ell_n(\boldsymbol{\theta}) = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\log|\boldsymbol{\Gamma}| - \frac{1}{2}\boldsymbol{x}^T\boldsymbol{\Gamma}^{-1}\boldsymbol{x}$$

Typically need to solve it numerically

Parameter Estimation	
	9.2

Notes				
·	· <u> </u>			

Decomposing Joint Density into Conditional Densities

A joint distribution can be represented as the product of conditionals and a marginal distribution

• The simple version for n = 2 is:

$$f(x_1, x_2) = f(x_2|x_1)f(x_1)$$

ullet Extending for general n we get the following expression for the likelihood:

$$L_n(\boldsymbol{\theta}) = f(\boldsymbol{x}; \boldsymbol{\theta}) = f(x_1) \prod_{t=2}^n f(x_t | x_{t-1}, \dots, x_1; \boldsymbol{\theta}),$$

and the log-likelihood is

$$\ell_n(\boldsymbol{\theta}) = \log f(\boldsymbol{x}; \boldsymbol{\theta}) = \log(f(x_1)) + \sum_{t=2}^n \log f(x_t | x_{t-1}, \dots, x_1; \boldsymbol{\theta}).$$

Notes

Notes

AR(1) Log-likelihood

Let $\{\eta_1,\eta_2,\cdots,\eta_n\}$ be a realization of a zero-mean stationary AR(1) Gaussian time series. Let θ = (ϕ, σ^2)

$$\ell_n(\boldsymbol{\theta}) = \underbrace{\log(f(\eta_1))}_{\ell_{n,1}} + \underbrace{\sum_{t=2}^n \log f(\eta_t | \eta_{t-1}, \cdots, \eta_1; \boldsymbol{\theta})}_{\ell_{n,1}}.$$

Note that for $t \geq 2$, $f(\eta_t | \eta_{t-1}, \dots, \eta_1) = f(\eta_t | \eta_{t-1})$, where $[\eta_t | \eta_{t-1}] \sim \mathcal{N}(\phi \eta_{t-1}, \sigma^2) \Rightarrow \ell_{n,2} =$

$$-\frac{(n-1)}{2}\log 2\pi - \frac{(n-1)}{2}\log \sigma^2 - \frac{\sum_{t=2}^{n}(\eta_t - \phi\eta_{t-1})^2}{2\sigma^2}$$

Also, we know $[\eta_1] \sim N\left(0, \frac{\sigma^2}{(1-\sigma^2)}\right) \Rightarrow \ell_{1,n} =$

$$\frac{-\log 2\pi}{2} - \frac{\log \sigma^2}{2} + \frac{\log (1 - \phi^2)}{2} - \frac{(1 - \phi^2)\eta_1^2}{2\sigma^2}$$

$$\Rightarrow \ell_n(\boldsymbol{\theta}) = -\frac{n}{2}\log 2\pi - \frac{n}{2}\log \sigma^2 - \frac{\sum_{t=2}^n (\eta_t - \phi \eta_{t-1})^2}{2\sigma^2} + \frac{\log(1 - \phi^2)}{2} - \frac{(1 - \phi^2)\eta_1^2}{2\sigma^2}$$

AR(1) Log-likelihood Cont'd

$$\ell_n(\boldsymbol{\theta}) = -\frac{n}{2}\log 2\pi - \frac{n}{2}\log \sigma^2 + \frac{\log(1-\phi^2)}{2} - \frac{S(\phi)}{2\sigma^2},$$

where $S(\phi) = \sum_{t=2}^{n} (\eta_t - \phi \eta_{t-1})^2 + (1 - \phi^2) \eta_1^2$

• For given value of ϕ , $\ell_n(\phi,\sigma^2)$ can be maximized analytically with respect to σ^2

$$\hat{\sigma}^2 = \frac{S(\hat{\phi})}{n}$$

ullet Estimation of ϕ can be simplified by maximizing the conditional sum-of-squares $(\sum_{t=2}^{n} (\eta_t - \phi \eta_{t-1})^2)$

Notes					

arima in R with the Lake Huron Example

```
arima: ARIMA Modelling of Time Series
```

Description

```
```{r}  (MLE_est1 <- arima(lm$residuals, order = c(2, 0, 0), method = "ML"))
```

Call: arima(x = lm\$residuals, order = c(2, 0, 0), method = "ML")

Coefficients:
 ar1 ar2 intercept
 1.0047 -0.2919 0.0197
s.e. 0.0977 0.1004 0.2350

sigma^2 estimated as 0.4571: log likelihood = -101.25, aic = 210.5



Notes	
	_
Notes	
	_
	_
Notes	
	_
	_
	_
	_
	_
	_
	-