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Lecture 1
Course Information and Review
Reading: Forecasting, Time Series, and Regression (4th edition) by
Bowerman, O’Connell, and Koehler [Link]: Chapters 1 and 2

MATH 4070: Regression and Time-Series Analysis

Whitney Huang
Clemson University

https://www.google.com/books/edition/Forecasting_Time_Series_and_Regression/2Yc_AQAAIAAJ?hl=en
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About the Instructor
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1.4

Instructor Background

Assistant Professor of Applied Statistics and Data Science

Born in Laramie, WY, and raised in Taiwan

Obtained a B.S. in Mechanical Engineering; transitioned to
Statistics in graduate school

Earned a Ph.D. in Statistics from Purdue University in

2017
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1.5

How to Reach Me?

EmailB: wkhuang@clemson.edu

Please include [MATH 4070] in your email subject line

Office: O-221 Martin Hall

Office Hours: Tue., Wed., and Thurs., 1:45 pm - 2:30 pm,
and by appointment

mailto:wkhuang@clemson.edu
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Class Policies
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1.7

Logistics

There will be some (4-6) homework assignments:

To be uploaded to Canvas by 11:59 pm ET on the due dates

Worst grade will be dropped

There will be three 60-minute exam. The (tentative) dates
are: Sep. 24, Tuesday; Oct. 22, Tuesday; Nov. 21,
Thursday

There will be a final project. It could be a data analysis, a
simulation study, methodological or theoretical
research, or a report on a research article of interest to
you
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1.8

Evaluation

Grades will be weighted as follows:

Homework 30%
Exam I 15%
Exam II 15%
Exam III 20%
Final Project 20%

Final course grades will be assigned using the following
grading scheme:

>= 90.00 A
80.00 ∼ 89.99 B
70.00 ∼ 79.99 C
60.00 ∼ 69.99 D
<= 59.99 F
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1.9

Computing

We will use software to perform statistical analyses.
Specifically, we will be using R/Rstudio

a free/open-source programming language for statistical
analysis

available at https://www.r-project.org/ (R);
https://rstudio.com/ (Rstudio)

I strongly encourage you to use R Markdown for
homework assignments

https://www.r-project.org/
https://rstudio.com/
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Course Materials at CANVAS

Course syllabus / announcements

Lecture slides/notes/videos

R Codes

Data sets
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1.11

Course Website

Link: https://whitneyhuang83.github.io/
MATH4070/Schedule.html

https://whitneyhuang83.github.io/MATH4070/Schedule.html
https://whitneyhuang83.github.io/MATH4070/Schedule.html
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1.12

Tentative Schedule

Week Dates Topic
1 8/22 Overview of the course
2 8/27-29 Simple linear regression
3 9/3-5 Multiple regression I
4 9/10-12 Multiple regression II
5 9/17-19 Time series regression
6 9/24-26 TS regression/ autocorrelation
7 10/1-2 Intro to ARMA models
8 10/8-10 ARIMA models
9 10/17 Fitting ARIMA I

10 10/22-10/24 Fitting ARIMA II
11 10/29-10/31 Model selection: AICC, BIC
12 11/7 Seasonal models: SARIMA
13 11/12-14 Fitting SARIMA
14 11/19-21 Regression with ARMA errors
15 11/26 Model fitting review
16 12/3-5 Review and Project Presentation
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Review
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1.14

Population (parameters) vs. Sample (statistics)

We use parameters to describe the population and
statistics to describe the sample

Statistical Science involves using sample information to
infer about populations

population

sample

parameter(s)

statistic(s)

Sampling Inference
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1.15

Example

Population is Clemson students and variable Y is IQ

µ is the average IQ of all Clemson students (we don’t
know this)

σ2 is the variance of IQ in the whole student body (don’t
know this either)

Randomly select n = 36 students and administer an IQ test
to them. Suppose the average IQ score in the sample is
116, with a sample variance of 256

Note that different samples yield different sample means
and variances, but the population mean and variance
remain constant. This variation in sample means reflects
the sampling properties of the sample mean
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1.16

Some Properties of the Sample Mean

Consider a random sample: Y1, Y2,⋯, Yn

For any outcome of the sample, ∑n
i=1 (yi − ȳ) = 0, where

ȳ = ∑
n
i=1 yi

n

The theoretical average of the sample mean is the
population mean:

E[Ȳ ] = µ

⇒ average over all possible sample means we get the
population mean

The variance of the sample mean is

Var(Ȳ ) = E [(Ȳ − µ)
2
] =

σ2

n

⇒ the average “distance” between Ȳ and µ is σ
√

n
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1.17

Statistical Inference

Statistical inference is the process of using sample data to
draw conclusions about a population

Tools

Confidence intervals

Hypothesis tests

These require distributional assumptions

If our population variable has a normal distribution, for
each sample

t =
ȳ − µ

s
√

n

is a draw from a t-distribution with degrees of freedom (df)
= n − 1
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1.18

Stundet-t Distribution
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1.19

Inference on µ for Normal Samples: Confidence Interval

95% confidence interval:

(Ȳ − t0.975,df=n−1
s
√
n
, Ȳ + t0.975,df=n−1

s
√
n
) ,

where t0.975,df=n−1 denotes the 0.975 quantile of the t
distribution with df = n − 1.

This interval contains µ in 95% of samples, meaning each
(random) sample has a 95% chance that its CI includes µ
(see next slide for a demonstration)

The interval gives a likely range for µ. For example, if the
interval is (3.4,8.6), it is unlikely that µ < 3 or µ > 10
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1.20

A Demonstration of Confidence Intervals

The black horizontal line represents the true population
mean µ, which is unknown but fixed

Each vertical line represents a confidence interval around
a sample mean, constructed from different samples drawn
from the same population
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Inference on µ for Normal Samples: Hypothesis Test

Say you want to conclude that the average IQ of Clemson
students is greater than 110.

Null hypothesis H0 ∶ µ ≤ 110;

Alternative hypothesis H1 ∶ µ ≥ 110.

Note:
The alternative hypothesis is what we want to show

The hypotheses do not depend on any sample

Now take a sample of n = 36 students: ȳ = 112 and s = 16. If µ
were 110 (H0)

t =
ȳ − 110

16
√

36

= 0.75, and P(t35 > 0.75) = 0.229.

⇒ there is up to a 22.9% chance that ȳ ≥ 112 if µ ≤ 110. Not too
convincing. Can’t conclude that µ ≥ 110 from this sample
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1.22

Hypothesis Test Cont’d

Null hypothesis H0 ∶ µ ≤ 110;

Alternative hypothesis H1 ∶ µ ≥ 110.

If instead n = 36, ȳ = 116 and s = 16. If µ were 110 (H0)

t =
116 − 110

16
√

36

= 2.25, and P(t35 > 2.25) = 0.0154.

⇒ If µ ≤ 110, the chance of getting ȳ ≥ 116 is at most
0.0154. Since this is unlikely, we reject H0 and conclude
that µ ≥ 110. This outcome provides strong evidence that
the average population IQ exceeds 110

Here, the p-value = 0.0154. A small p-value indicates the
likelihood of obtaining our result (in the direction of H1) if
H0 were true, suggesting that H0 should be rejected in
favor of H1
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1.23

A Connection to Calculus: Mean Squared Error

Consider taking a measurement Y (random variable). If we
were to approximate Y with a single number, what would be
the best choice?

Consider minimizing

g(c) = E [(Y − c)2] = E[Y 2
] + c2 − 2cE[Y ].

Take the derivative on the left hand side and solve g′(c0) = 0 to
solve for minimum

Solution
c0 = E[Y ] = µ

⇒ we say µ is the best mean squared error (MSE) constant
predictor of Y



Course Information
and Review

About the Instructor

Class Policies

Review

1.23

A Connection to Calculus: Mean Squared Error

Consider taking a measurement Y (random variable). If we
were to approximate Y with a single number, what would be
the best choice?

Consider minimizing

g(c) = E [(Y − c)2] = E[Y 2
] + c2 − 2cE[Y ].

Take the derivative on the left hand side and solve g′(c0) = 0 to
solve for minimum

Solution
c0 = E[Y ] = µ

⇒ we say µ is the best mean squared error (MSE) constant
predictor of Y



Course Information
and Review

About the Instructor

Class Policies

Review

1.23

A Connection to Calculus: Mean Squared Error

Consider taking a measurement Y (random variable). If we
were to approximate Y with a single number, what would be
the best choice?

Consider minimizing

g(c) = E [(Y − c)2] = E[Y 2
] + c2 − 2cE[Y ].

Take the derivative on the left hand side and solve g′(c0) = 0 to
solve for minimum

Solution
c0 = E[Y ] = µ

⇒ we say µ is the best mean squared error (MSE) constant
predictor of Y



Course Information
and Review

About the Instructor

Class Policies

Review

1.24

A Little Linear Algebra
Recall that for real-valued vectors

u = (u1, u2,⋯, un)
T , v = (v1, v2,⋯, vn)

T ,

where the superscript T denotes the transpose. The inner
product between u and v is

uTv =
n

∑
i=1

uivi.

The vectors are orthogonal if the inner product is 0, and in that
case

∥u + v∥2 = ∥u∥2 + ∥v∥2,

where ∥u∥2 = uTu = ∑
n
i=1 u

2
i .

∥u∥

∥v∥

∥u + v∥
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1.25

A Connection to Linear Algebra

Consider the sample outcome as a vector:

y = (y1, y2,⋯, yn)
T .

Approximate each component by µ, estimated by ȳ.

y −µ = (ŷ −µ) + (y − ŷ),

where ŷ = (ȳ, ȳ,⋯, ȳ)T and µ = (µ,µ,⋯, µ)T .

Since the first and second vector on the RHS are orthogonal
(why?):

∥y −µ∥2 = ∥ŷ −µ∥2 + ∥y − ŷ∥2
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1.26

A Connection to Linear Algebra: Remarks

y consists of ordinary n-vectors of real numbers

The vector ŷ −µ is a one-dimensional object since all its
components have the same value

The vector y − ŷ is an n − 1 dimensional object since its
components sum to 0 (one linear restriction)

The sample variance is related to the squared norm of
y − ŷ:

s2 =
(y − ŷ)T (y − ŷ)

n − 1

Notice that the denominator (df) represents the dimension
of y − ŷ.
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1.27

Chi-Square Distribution

Let Y1, Y2,⋯, Yn be independent with

Yj ∼ N(µj , σ
2
).

Then

χ2
=

n

∑
j=1

(
Yj − µj

σ
)

2

has a chi-square distribution with n degrees of freedom. Note
that the df is the dimension of outcomes of the data vector.

Now say ŷ = (ŷ1, ŷ2,⋯, ŷn)
T takes outcomes in k-dimensions

(k < n) with

E(ŷ) = µ = (µ1, µ2,⋯, µn)
T , (ŷ −µ)

T
(y − ŷ) = 0

Then
(n−k)σ̂2

σ2 =
(ŷ−µ)T (ŷ−µ)

σ2 ∼ χ2
df = n−k; E(σ̂2) = σ2

ŷ is independent of σ̂2
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F - and t- Distributions

Let Y1, Y2,⋯, Yn be independent with

Yj ∼ N(µj , σ
2
),

ŷ takes outcomes in k-dimensions (k < n) with

E(ŷ) = µ = (µ1, µ2,⋯, µn)
T , (ŷ −µ)

T
(y − ŷ) = 0

Then for any real vector a = (a1, a2,⋯, an)T ,

T =
∑

n
i=1 ai(ŷi − µi)

σ̂
√
∑

n
i=1 a

2
i

=
(ŷ −µ)Ta
√
σ̂2aTa

is a draw from a t-distribution with df = n − k

Also,

F =
(ŷ −µ)

T
(ŷ −µ) /k

σ̂2

is a draw from an F -distribution with df1 = k and df2 = n − k
1

1Note: the textbook uses s2 to denote the estimated varaince.
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1.29

Example: 2 Sample t-Test

Let’s assume that we have two independent samples, each
with a sample size of n = 10, and we want to infer the mean
difference µM − µF ∶

Set a = ( 1
10
, 1
10
,⋯, 1

10
, −1
10
, −1
10
,⋯, 1

10
)T and let

T =
µ̂F − µ̂M − (µM − µF )

σ̂
√

2
10

Reject H0 ∶ (µM − µF ) ≤ 0 if the p-value < 0.05, where
Tobs =

µ̂m−µ̂F

σ̂
√

2
10

, and

p-value = P(tn−2 > Tobs).

A 95% confidence interval for (µM − µF ) is

(µ̂M − µ̂F ) ± t0.975,df=n−2σ̂

√
2

10
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1.30

Review of Main Concepts

Population parameters are inferred from data using
statistics as estimators.

Statistics are random variables when the data is a random
sample.

The mean is the best MSE predictor. The mean vector ŷ
can be estimated from a data vector, with variance
estimated by s2 = (y−ŷ)

T
(y−ŷ)

(n−k)
.

The t- and F -distributions arise from independent
sampling from normal distributions with equal variance.
The df of ŷ is k, and the df of the variance estimate
determines the df of the t-distribution (n − k).
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1.31

Standard Error for Normal Models

Let Y1, Y2,⋯, Yn be independent with Yj ∼ N(µj , σ
2)

E(ŷ) = µ = (µ1, µ2,⋯, µn)
T ;

(ŷ − µ)T (y − ŷ) = 0;

σ̂2
=
(y − ŷ)T (y − ŷ)

n − k

For θ̂ = ∑n
i=1 aiŷi √

Var(θ̂) =
√
σ2aTa

The standard error of θ̂ is

se(θ̂) =
√
σ̂2aTa
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1.32

t-Distribution Revisited

Under the setup from the previous slide:

E(θ̂) = θ =
n

∑
i=1

aiµi.

Then

T =
θ̂ − θ

se(θ̂)

has a t-distribution with df = n − k
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1.33

Two Sample t-Test Revisited

Take two independent random samples

Y1, Y2,⋯, Yn ∼ N(µ1, σ
2
), X1,X2,⋯,Xm ∼ N(µ2, σ

2
)

Estimate the means as

Ȳ =
n

∑
i=1

Yi

n
; X̄ =

m

∑
j=1

Xj

m

Estimate the variance with

s2 =
∑

n
i=1(Yi − Ȳ )

2 +∑
m
j=1(Xj − X̄)

2

n +m − 2
=
(n − 1)s21 + (m − 1)s

2
2

n +m − 2

By independent of the two samples

Var(Ȳ − X̄) = Var(Ȳ ) +Var(X̄) =
σ2

n
+
σ2

m

se(Ȳ − X̄) = s

√
1

n
+

1

m
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1.34

Two Sample t-Test

From the previous slide, we have

T =
(Ȳ − X̄) − (µ1 − µ2)

s
√

1
n
+ 1

m

has a t-distribution with df = n +m − 2
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1.35

Summary

In this lecture, we reviewed:

Statistical Inference: Confidence Intervals and Hypothesis
Testing

The t-distribution, F -distribution, χ2 distribution, and their
applications

Two-sample t-tests

In the next lecture, we will begin exploring Regression
Analysis, starting with Simple Linear Regression
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