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Let {X;} be a stationary process with mean p and ACVF ~(-). @ sTnsTcaL soevces
Based on the observed data, X, = (X1, X2, -, X,,)7, we want
to forecast X,,,;, for some h, a positive integer

Linear Predictor

@ Question: What is the best way to do so?
= Need to decide on what “best” means



Forecasting Stationary Time Series

Let {X;} be a stationary process with mean p and ACVF ~(-).
Based on the observed data, X,, = (X1, X»,-, X,,)T, we want
to forecast X,,,;, for some h, a positive integer

@ Question: What is the best way to do so?
= Need to decide on what “best” means

@ A commonly used metric for describing forecast
performance is the mean squared prediction error (MSPE):

MSPE = E [(Xpa = mn(X2))?].
= the best predictor (in terms of MSPE) is
mn(Xn) =E [Xn+h|Xn] )

the conditional expectation of X,,.; given X,
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ARMA Models:

Linear Predictor Prediction and
Forecastin
Calculating E [ X,,11| X, ] can be difficult in general ’
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@ We will restrict to a linear combination of X, X5, -, X, @ stnsisiecrs

and a constant = linear predictor:

Linear Predictor

Pan+}L =Co + Can + CQXn_l + oo+ CnXl
n

=Cy+ Z chnJrl—j
J=1



Linear Predictor Prodiction and
. . . Forecasting
Calculating E [ X,,11| X, ] can be difficult in general
O‘, MATHEMATICAL AND

STATISTICAL SCIENCES

@ We will restrict to a linear combination of X, Xo,---, X,,
and a constant = linear predictor:

Linear Predictor

Pan+}L =Co + Can + CQXn_l + oo+ CnXl
n

=Cy+ Z chnJrl—j
J=1

@ We select the coefficients that minimize the h-step-ahead
mean squared prediction error:

2
E([Xnsn - PuXnsn]?) =E (XM —c- Y. chMj)
j=1



ARMA Models:

Linear Predictor Prediction and

H IYTe . Forecasting
Calculating E [ X,,11| X, ] can be difficult in general
. . . L o% it nn
@ We will restrict to a linear combination of X, X5, -, X, @ stnsisiecrs

and a constant = linear predictor:

Linear Predictor

P, Xnin=co+tc1 X, +c X1+ +c, X1
n

=Cy+ Z chnJrl—j
J=1

@ We select the coefficients that minimize the h-step-ahead
mean squared prediction error:

2
E([Xn+h_Pan+h:|2):E( n+h — ZC] n+1 j)

@ The best linear predictor is the best predictor if {X;} is
Gaussian
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The steps that we are about to follow to calculate the ¢; values Linear Precictor
are the same as you would use for calculating ordinary least
squares estimates

@ Take the derivative of the MSPE with respect to each
coefficient ¢;



How to Determine these Coefficients {c;}?

The steps that we are about to follow to calculate the ¢; values
are the same as you would use for calculating ordinary least
squares estimates

@ Take the derivative of the MSPE with respect to each
coefficient ¢;

@ Set each derivative equal to zero
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How to Determine these Coefficients {c;}? Prediction and
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The steps that we are about to follow to calculate the c; values e preacn
are the same as you would use for calculating ordinary least
squares estimates

@ Take the derivative of the MSPE with respect to each
coefficient ¢;

@ Set each derivative equal to zero

@ Solve with respect to the coefficients
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For simplicity, let's assume 1 = 0 (we can always achieve that @O e
by subtracting off 1) so that we don’t need the constant term.
We have

Prediction Equations

Pan+h = Can + CQXn_l + e+ CnXl.



Forecasting Stationary Processes |

For simplicity, let's assume p = 0 (we can always achieve that
by subtracting off 1) so that we don’t need the constant term.

We have
Pan+h = Can + CQXn—l +oeeet CnX1~
We want the MSPE
E [(Xn+h - Pan+h)2] =E [(Xn+h - Xy —c2Xp1 - - CnXl)Q]

as small as possible.
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Forecasting Stationary Processes |

For simplicity, let's assume p = 0 (we can always achieve that
by subtracting off 1) so that we don’t need the constant term.
We have

P71,Xn+h = Can + CQXn—l +oeeet C7LX1~
We want the MSPE
E [(Xn+h - Pan+h)2] =E [(Xn+h - Xy —c2Xp1 - - CnXl)Q]

as small as possible.

From now on let’s definite
E [(Xn+h - Can - CZXn—l = CnXl)z] = S(Clv "',Cn)

We are going to take derivative of the S(c¢y, -, ¢,,) with respect
to each coefficient c;
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Forecasting Stationary Processes Il

S is a quadratic function of ¢1, ¢o, -+, ¢,,, SO @any minimizing set
of ¢;’s must satisfy these n equations:
98(c1,¢n)
8cj

Recall S(Cl, sy Cn) =E [(Xn+h -1 Xy —caXpo1 - — CnXl)Q],
we have

=0, j=1,-n.
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S is a quadratic function of ¢1, ¢o, -+, ¢,,, SO @any minimizing set
of ¢;’s must satisfy these n equations:

Prediction Equations

98(c1,¢n)
8cj
Recall S(Cl, sy Cn) =E [(Xn+h -1 Xy —caXpo1 - — CnXl)Q],
we have

dS(cy, ¢y n
95(er, en) =-2E [(th - Can—i+1) Xn—j+1] =0
dc; i=1

=0, j=1,-n.

= COV(XnJrh - ZCan,i+1,Xn,j+1) = 0, j = 1,"',7’L

i=1



Forecasting Stationary Processes Il

S is a quadratic function of ¢1, ¢o, -+, ¢,,, SO @any minimizing set
of ¢;’s must satisfy these n equations:

98(c1,+,¢n)

=0. j=1.--n.
acj ) .] b 7n
Recall S(Cl, sy Cn) =E [(Xn+h -1 Xy —caXpo1 - — CnXl)Q],
we have
a9S(cy, -+, cn L
95(er, en) =-2E [(th - Can—i+1) Xn—j+1] =0
dc; i=1

= Cov(Xnsn — ). iXpoiv1, Xn—js1) =0, j=1,-n
=1
= Prediction error is uncorrelated with all RVs used in
corresponding predictor
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Orthogonality principle:

COV()(THh - Z C’an—i+l7Xn—j+1) = 07 .7 = 1’ M.
=1
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. Prediction Equations
Cov(Xnen = ), ¢iXnoiv1, Xnji1) =0, j=1,-n. ’
i=1
We have

n
Cov(Xpan, Xn-ju1) = 2, ciCov(Xpir1, Xn—j+1) =0
i=1



Forecasting Stationary Processes Il

Orthogonality principle:
Cov(Xn+n = Z CiXn-is1, Xn-js1) =0, j=1,-n
i=1
We have

n
Cov(Xpan, Xn-ju1) = 2, ciCov(Xpir1, Xn—j+1) =0
i=1

We obtain {¢;;i = 1,---,n} by solving the system of linear
equations:

{V(hﬂ—l):i@v(i—j%jzl,"',n},

to find n unknown ¢;’s
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Computing P, X,,,;, via Matrix Operations

We can rewrite the system of prediction equations as

In = Encnz

with In = (’Y(h)fy(h + 1)77(h +n - 1))T1 Cp = (617627 '

and
7(0) (1) o y(n-1)
s, - W 20 a(n-2)
An-1) An=-2) -~  5(0)
is the covariance matrix of (X1, Xs, -+, X,,)" .

Solving for ¢,, we have

Cn = Z’I_Ll Tn
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The prediction errors are @O e

Unin = Xoin = PnXnin

= K =)= 3 ¢ (X1 ).

j=1

Prediction Equations

It then follows that

@ The prediction error has mean zero

E(Un+h) = E(Xn+h - Pan+h) =0

11.10



ARMA Models:

Properties of the Prediction Errors Prediction and

Forecasting

The prediction errors are @O e

Unin = Xoin = PnXnin
n Prediction Equations

= (Xn+h - [L) - Z Cj (Xn+1—j - H)-

j=1
It then follows that
@ The prediction error has mean zero

E(Un+h) = E(Xn+h - Pan+h) =0

@ The prediction error is uncorrelated with all RVs used in
the predictor

COV(U’th;Xj) = COV(Xn+h - Pan+h7Xj) = 0; .7 = 17"'7”

11.10



The Minimum Mean Squared Prediction Error

We obtain the minimum value of the MSPE by substituting the

expression for ¢,, into E [(Xp+h, — PoXnin)?] :

MSPE = E [(Xp1 - PoXpin)?]

=E [(Xn+h - U) ] 2 Z C] (Xn+1 -3 N)(Xm—h -

+E[i Xn+1-j —u)r
e[

+ i i CjCkE [(Xn+l—j - M)(Xn*‘l_k - 'u)]

j=1k=1

=1(0) -2 % e(hs -1+ 3 > ek -5)

E
Il

=~(0) - 2¢ v, + LS,

n+h — ,U) ] 2 Z C_] (Xn+1 —j N)(Xm-h -

]

)]
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The Minimum Mean Squared Prediction Error (Cont’d)

From the previous slide we have
MSPE = 7(0) - 2¢ v, + L %,c,,
Recall that ¢,, = ¥, ,,, therefore we have
MSPE = v(0) - 2¢ v, + L%, %1,
=7(0) - ey

—(0) = S ey(h+j - 1).

=1

If {X,} is a Gaussian process then an approximate
100(1 - «)% prediction interval for X, is given by

PanJrh + Z1-a/2V MSPE.
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One-Step Ahead Prediction of AR(1) Process

Consider AR(1) process X; = ¢X;_1 + Z;, where |¢| < 1 and

{Z} ~WN(0,1 - ¢?).

@ Since Var(X;) =1, v(h) = p(h) = ¢/

@ To forecast X,,,; based upon X,, = (X1,--, X,,)7, using
best linear predictor P, X,,;; = ¢ X,,, we need to solve

EnCn:"lln
1 b 0" e
6 1w 2o
¢n—1 ¢n—2 1 Cn

= the solution is ¢, = (¢,0,---,0)7, yielding

P, Xpa = CZXn = ¢Xn

¢
¢2

¢’I’L
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One-Step Ahead Prediction of AR(1) Process (Cont’d)

@ ¢X,, makes intuitive sense as a predictor since

Xn+1 = ¢Xn + Zn+1

ARMA Models:
Prediction and
Forecasting

0% i
@@ SSToA oices

Examples

11.14



One-Step Ahead Prediction of AR(1) Process (Cont’d) Prodiction and

Forecasting

@ ¢X,, makes intuitive sense as a predictor since

Xn+1 = d)Xn + Z’I’L+1 Examples

@ Prediction erroris X1 - ¢X,, = Z,,;1 and

COV(Ztan—jJrl) = 07 .7 = 17“3”
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@ ¢X,, makes intuitive sense as a predictor since

Xns1 = d)Xn + Zni1 e

@ Prediction erroris X1 - ¢X,, = Z,,;1 and

COV(Zthn—jJrl) = 07 .7 = ]-7"',”

@ MSPE is
Var(X,+1 - ¢X,,) =~(0) - cf’yn =1- ¢2,

because ¢, = (¢,0,--,0)T and v, = (¢, ¢%, -, ™) T

11.14



Wind Speed Time Series Example [Source: UW stat 519 lecture
notes by Donald Percival]

Wind Speed Time Series {x¢

Xt
o
|
— .

-4 -

0 20 40 60 80 100 120

Let’s use this series to illustrate forecasting one step ahead
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Model & Sample ACFs & 95% Confidence Bounds

Model & Sample ACFs & 95% Confidence Bounds

oo LU : H\Hﬁmm;:ia%;;:""""'
N I R SARRRRRRRBNAARAA

The sample ACF indicates compatibility with AR(1) model
= P, X1 = 0X,
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One-Step-Ahead Prediction of Wind Speed Series

Xt

-2

-4

One-Step—Ahead Prediction

o, .
o Xt
© %
t N
X=Xt

20 40 60 80 100

120
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o Let {X,} be a stationary process with mean ;. and ACVF “'5 fé%jggf;;.é,’:&s
~(+). Suppose we know X; and X3, and want to predict Xo
using linear combinations of X; and X3

Examples
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ARMA Models:

Predicting “Missing” Values Prediction and

Forecasting

o Let {X,} be a stationary process with mean ;. and ACVF "'5 fé{}j{ﬁ{};;f;&é,’:&s
~(+). Suppose we know X; and X3, and want to predict Xo
using linear combinations of X; and X3

Examples

@ Solution: To calculate Px, x, X2 we minimize

MSPE = E [(X; - Px, x,X2)?]
=E [(XQ —cop—c1 X3 — 02X1)2]
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Predicting “Missing” Values Prediction and

Forecasting
o Let {X,} be a stationary process with mean ;. and ACVF "'5 fs‘}}j{.‘;{“,ggfgg.é,’:&s
~(-). Suppose we know X; and X3, and want to predict X»
using linear combinations of X; and X3

Examples

@ Solution: To calculate Px, x, X2 we minimize

MSPE = E [(X; - Px, x,X2)?]
=E [(Xg —cop—c1 X3 — 02X1)2]

@ Proceed as for the forecasting case to get the optimal
coefficients:
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Predicting “Missing” Values Preciction and

Forecasting

o Let {X,} be a stationary process with mean ;. and ACVF "'5 %ﬁ{;&g;tg;@,’:&s

~(-). Suppose we know X; and X3, and want to predict X»
using linear combinations of X; and X3

Examples

@ Solution: To calculate Px, x, X2 we minimize

MSPE = E [(X; - Px, x,X2)?]
=E [(Xg —cop—c1 X3 — 02X1)2]

@ Proceed as for the forecasting case to get the optimal
coefficients:

o Calculate derivatives

11.18



Predicting “Missing” Values Preciction and

Forecasting

o Let {X,} be a stationary process with mean ;. and ACVF “'5 %ﬁ{;ng;tg;.@,’:&s
~(-). Suppose we know X; and X3, and want to predict X»
using linear combinations of X; and X3

Examples

@ Solution: To calculate Px, x, X2 we minimize
MSPE = E[(X; - Px, x, X2)?]
=E [(XQ —Co — (21X3 - CQX1)2]
@ Proceed as for the forecasting case to get the optimal

coefficients:

o Calculate derivatives

o Set the derivatives equal to zero

11.18



Predicting “Missing” Values Preciction and

Forecasting

o Let {X,} be a stationary process with mean ;. and ACVF “'5 %ﬁ{;ng;tg;.@,’:&s
~(-). Suppose we know X; and X3, and want to predict X»
using linear combinations of X; and X3

Examples

@ Solution: To calculate Px, x, X2 we minimize

MSPE = E [(X; - Px, x,X2)?]
=E [(Xg —cop—c1 X3 — CQXI)Q]

@ Proceed as for the forecasting case to get the optimal
coefficients:

o Calculate derivatives
o Set the derivatives equal to zero

o Solve the linear system of equation
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@=-0.9 AR(1) x; from Gaussian WN(0,1)
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Subsampled @ = -0.9 AR(1) X1, Xa,... Forecasting
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Examples
X 0 4
—2 -

Time
The best linear predictor of X5 given X1, X3 is

2 = W(Xl +X3),

and the MSPE is

1+¢2
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