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Forecasting Stationary Time Series

Let {Xt} be a stationary process with mean µ and ACVF γ(⋅).
Based on the observed data, Xn = (X1,X2,⋯,Xn)T , we want
to forecast Xn+h for some h, a positive integer

Question: What is the best way to do so?
⇒ Need to decide on what “best” means

A commonly used metric for describing forecast
performance is the mean squared prediction error (MSPE):

MSPE = E [(Xn+h −mn(Xn))2] .

⇒ the best predictor (in terms of MSPE) is

mn(Xn) = E [Xn+h∣Xn] ,

the conditional expectation of Xn+h given Xn
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Linear Predictor
Calculating E [Xn+h∣Xn] can be difficult in general

We will restrict to a linear combination of X1,X2,⋯,Xn

and a constant⇒ linear predictor:

PnXn+h = c0 + c1Xn + c2Xn−1 +⋯ + cnX1

= c0 +
n

∑
j=1

cjXn+1−j

We select the coefficients that minimize the h-step-ahead
mean squared prediction error:

E ([Xn+h − PnXn+h]2) = E
⎛
⎝
Xn+h − c0 −

n

∑
j=1

cjXn+1−j
⎞
⎠

2

The best linear predictor is the best predictor if {Xt} is
Gaussian
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How to Determine these Coefficients {cj}?

The steps that we are about to follow to calculate the cj values
are the same as you would use for calculating ordinary least
squares estimates

1 Take the derivative of the MSPE with respect to each
coefficient cj

2 Set each derivative equal to zero

3 Solve with respect to the coefficients
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Forecasting Stationary Processes I

For simplicity, let’s assume µ = 0 (we can always achieve that
by subtracting off µ) so that we don’t need the constant term.
We have

PnXn+h = c1Xn + c2Xn−1 +⋯ + cnX1.

We want the MSPE

E [(Xn+h − PnXn+h)2] = E [(Xn+h − c1Xn − c2Xn−1 −⋯ − cnX1)2]

as small as possible.

From now on let’s definite

E [(Xn+h − c1Xn − c2Xn−1 −⋯ − cnX1)2] = S(c1,⋯, cn)

We are going to take derivative of the S(c1,⋯, cn) with respect
to each coefficient cj
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Forecasting Stationary Processes II

S is a quadratic function of c1, c2,⋯, cn, so any minimizing set
of cj ’s must satisfy these n equations:

∂S(c1,⋯, cn)
∂cj

= 0, j = 1,⋯, n.

Recall S(c1,⋯, cn) = E [(Xn+h − c1Xn − c2Xn−1 −⋯ − cnX1)2],
we have

∂S(c1,⋯, cn)
∂cj

= −2E [(Xn+h −
n

∑
i=1

ciXn−i+1)Xn−j+1] = 0

⇒ Cov(Xn+h −
n

∑
i=1

ciXn−i+1,Xn−j+1) = 0, j = 1,⋯, n

⇒ Prediction error is uncorrelated with all RVs used in
corresponding predictor
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Forecasting Stationary Processes III

Orthogonality principle:

Cov(Xn+h −
n

∑
i=1

ciXn−i+1,Xn−j+1) = 0, j = 1,⋯, n.

We have

Cov(Xn+h,Xn−j+1) −
n

∑
i=1

ciCov(Xn−i+1,Xn−j+1) = 0

We obtain {ci; i = 1,⋯, n} by solving the system of linear
equations:

{γ(h + j − 1) =
n

∑
i=1

ciγ(i − j) ∶ j = 1,⋯, n} ,

to find n unknown ci’s
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Computing PnXn+h via Matrix Operations

We can rewrite the system of prediction equations as

γn = Σncn,

with γn = (γ(h), γ(h + 1),⋯γ(h + n − 1))T , cn = (c1, c2,⋯, cn)T
and

Σn =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

γ(0) γ(1) ⋯ γ(n − 1)
γ(1) γ(0) ⋯ γ(n − 2)
⋮ ⋮ ⋱ ⋮

γ(n − 1) γ(n − 2) ⋯ γ(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
is the covariance matrix of (X1,X2,⋯,Xn)T .

Solving for cn we have

cn = Σ−1n γn
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Properties of the Prediction Errors

The prediction errors are

Un+h =Xn+h − PnXn+h

= (Xn+h − µ) −
n

∑
j=1

cj(Xn+1−j − µ).

It then follows that

The prediction error has mean zero

E(Un+h) = E(Xn+h − PnXn+h) = 0

The prediction error is uncorrelated with all RVs used in
the predictor

Cov(Un+h,Xj) = Cov(Xn+h − PnXn+h,Xj) = 0, j = 1,⋯, n
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The Minimum Mean Squared Prediction Error

We obtain the minimum value of the MSPE by substituting the
expression for cn into E [(Xn+h − PnXn+h)2] ∶

MSPE = E [(Xn+h − PnXn+h)2]

= E [(Xn+h − µ)2] − 2
n

∑
j=1

cjE [(Xn+1−j − µ)(Xn+h − µ)]

+ E
⎡⎢⎢⎢⎣

n

∑
j=1

cj(Xn+1−j − µ)
⎤⎥⎥⎥⎦

2

= E [(Xn+h − µ)2] − 2
n

∑
j=1

cjE [(Xn+1−j − µ)(Xn+h − µ)]

+
n

∑
j=1

n

∑
k=1

cjckE [(Xn+1−j − µ)(Xn+1−k − µ)]

= γ(0) − 2
n

∑
j=1

cjγ(h + j − 1) +
n

∑
j=1

n

∑
k=1

cjckγ(k − j)

= γ(0) − 2cTnγn + cTnΣncn.



ARMA Models:
Prediction and

Forecasting

Linear Predictor

Prediction Equations

Examples

11.12

The Minimum Mean Squared Prediction Error (Cont’d)

From the previous slide we have

MSPE = γ(0) − 2cTnγn + cTnΣncn

Recall that cn = Σ−1n γn, therefore we have

MSPE = γ(0) − 2cTnγn + cTnΣnΣ
−1
n γn

= γ(0) − cTnγn

= γ(0) −
n

∑
j=1

cjγ(h + j − 1).

If {Xt} is a Gaussian process then an approximate
100(1 − α)% prediction interval for Xn+h is given by

PnXn+h ± z1−α/2
√
MSPE.
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One-Step Ahead Prediction of AR(1) Process

Consider AR(1) process Xt = ϕXt−1 +Zt, where ∣ϕ∣ < 1 and
{Zt} ∼WN(0,1 − ϕ2).

Since Var(Xt) = 1, γ(h) = ρ(h) = ϕ∣h∣

To forecast Xn+1 based upon Xn = (X1,⋯,Xn)T , using
best linear predictor PnXn+1 = cTnXn, we need to solve
Σncn = γn

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 ϕ ⋯ ϕn−1

ϕ 1 ⋯ ϕn−2

⋮ ⋮ ⋯ ⋮
ϕn−1 ϕn−2 ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c1
c2
⋮
cn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ϕ
ϕ2

⋮
ϕn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⇒ the solution is cn = (ϕ,0,⋯,0)T , yielding

PnXn+1 = cTnXn = ϕXn
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One-Step Ahead Prediction of AR(1) Process (Cont’d)

ϕXn makes intuitive sense as a predictor since

Xn+1 = ϕXn +Zn+1

Prediction error is Xn+1 − ϕXn = Zn+1 and

Cov(Zt,Xn−j+1) = 0, j = 1,⋯, n

MSPE is

Var(Xn+1 − ϕXn) = γ(0) − cTnγn = 1 − ϕ2,

because cn = (ϕ,0,⋯,0)T and γn = (ϕ,ϕ2,⋯, ϕn)T
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Wind Speed Time Series Example [Source: UW stat 519 lecture
notes by Donald Percival]
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Let’s use this series to illustrate forecasting one step ahead
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Model & Sample ACFs & 95% Confidence Bounds
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The sample ACF indicates compatibility with AR(1) model
⇒ PnXn+1 = ϕXn
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One-Step-Ahead Prediction of Wind Speed Series
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11.18

Predicting “Missing” Values

Let {Xt} be a stationary process with mean µ and ACVF
γ(⋅). Suppose we know X1 and X3, and want to predict X2

using linear combinations of X1 and X3

Solution: To calculate PX1,X3X2 we minimize

MSPE = E [(X2 − PX1,X3X2)2]
= E [(X2 − c0 − c1X3 − c2X1)2]

Proceed as for the forecasting case to get the optimal
coefficients:

Calculate derivatives

Set the derivatives equal to zero

Solve the linear system of equation
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coefficients:

Calculate derivatives

Set the derivatives equal to zero

Solve the linear system of equation
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11.19

Another AR(1) Example with ϕ = −0.9
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φ = −0.9 AR(1) xt from Gaussian WN(0,1)
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11.20

Subsampled X1,X3,⋯ and Removed X2,X4,⋯
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The best linear predictor of X2 given X1,X3 is

X̂2 =
ϕ

1 + ϕ2
(X1 +X3),

and the MSPE is
σ2

1 + ϕ2
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11.21

Predict X2,X4,⋯ Using Best Linear Predictor
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11.22

Prediction Errors from Best Linear Predictor

0 20 40 60 80 100

−1.5

−1.0

−0.5

0.0

0.5

1.0

Prediction Errors from Best Linear Predictor

Time

x t


	Linear Predictor
	Prediction Equations
	Examples

