Lecture 11 ARMA Models: Prediction and Forecasting

Reading: Bowerman, O'Connell, and Koehler (2005): Capter 10.3; Cryer and Chen (2008): Chapter 9.1, 9.3, 9.4

MATH 4070: Regression and Time-Series Analysis

ARMA Models: Prediction and Forecasting

Linear Predictor Prediction Equations Examples

Whitney Huang Clemson University

Agenda

Linear Predictor

ARMA Models: Prediction and Forecasting

Linear Predictor

Forecasting Stationary Time Series

Let $\{X_t\}$ be a stationary process with mean μ and ACVF $\gamma(\cdot)$. Based on the observed data, $X_n = (X_1, X_2, \dots, X_n)^T$, we want to forecast X_{n+h} for some h, a positive integer

Question: What is the best way to do so?
 ⇒ Need to decide on what "best" means

Bradiation Equations

Forecasting Stationary Time Series

Let $\{X_t\}$ be a stationary process with mean μ and ACVF $\gamma(\cdot)$. Based on the observed data, $X_n = (X_1, X_2, \dots, X_n)^T$, we want to forecast X_{n+h} for some h, a positive integer

- Question: What is the best way to do so?
 ⇒ Need to decide on what "best" means
- A commonly used metric for describing forecast performance is the mean squared prediction error (MSPE):

$$MSPE = E\left[\left(X_{n+h} - m_n(\boldsymbol{X}_n)\right)^2\right].$$

 \Rightarrow the best predictor (in terms of MSPE) is

$$m_n(\boldsymbol{X}_n) = \mathbb{E}[X_{n+h}|\boldsymbol{X}_n],$$

the conditional expectation of X_{n+h} given X_n

ARMA Models: Prediction and Forecasting

Linear Predictor

Calculating $\mathbb{E}\left[X_{n+h}|\boldsymbol{X}_n\right]$ can be difficult in general

• We will restrict to a linear combination of *X*₁, *X*₂, ···, *X*_n and a constant ⇒ linear predictor:

$$P_n X_{n+h} = c_0 + c_1 X_n + c_2 X_{n-1} + \dots + c_n X_1$$
$$= c_0 + \sum_{j=1}^n c_j X_{n+1-j}$$

ARMA Models: Prediction and Forecasting

Linear Predictor

Calculating $\mathbb{E}[X_{n+h}|X_n]$ can be difficult in general

 We will restrict to a linear combination of X₁, X₂, ..., X_n and a constant ⇒ linear predictor:

$$P_n X_{n+h} = c_0 + c_1 X_n + c_2 X_{n-1} + \dots + c_n X_1$$
$$= c_0 + \sum_{j=1}^n c_j X_{n+1-j}$$

 We select the coefficients that minimize the *h*-step-ahead mean squared prediction error:

$$\mathbb{E}\left([X_{n+h} - P_n X_{n+h}]^2\right) = \mathbb{E}\left(X_{n+h} - c_0 - \sum_{j=1}^n c_j X_{n+1-j}\right)^2$$

ARMA Models: Prediction and Forecasting

Linear Predictor

Calculating $\mathbb{E}[X_{n+h}|X_n]$ can be difficult in general

 We will restrict to a linear combination of X₁, X₂, ..., X_n and a constant ⇒ linear predictor:

$$P_n X_{n+h} = c_0 + c_1 X_n + c_2 X_{n-1} + \dots + c_n X_1$$
$$= c_0 + \sum_{j=1}^n c_j X_{n+1-j}$$

 We select the coefficients that minimize the *h*-step-ahead mean squared prediction error:

$$\mathbb{E}\left([X_{n+h} - P_n X_{n+h}]^2\right) = \mathbb{E}\left(X_{n+h} - c_0 - \sum_{j=1}^n c_j X_{n+1-j}\right)^2$$

• The best linear predictor is the best predictor if $\{X_t\}$ is Gaussian

ARMA Models: Prediction and Forecasting

How to Determine these Coefficients $\{c_j\}$?

The steps that we are about to follow to calculate the c_j values are the same as you would use for calculating ordinary least squares estimates

Take the derivative of the MSPE with respect to each coefficient c_j

How to Determine these Coefficients $\{c_j\}$?

The steps that we are about to follow to calculate the c_j values are the same as you would use for calculating ordinary least squares estimates

- Take the derivative of the MSPE with respect to each coefficient c_j
- Set each derivative equal to zero

How to Determine these Coefficients $\{c_j\}$?

The steps that we are about to follow to calculate the c_j values are the same as you would use for calculating ordinary least squares estimates

- Take the derivative of the MSPE with respect to each coefficient c_j
- Set each derivative equal to zero
- Solve with respect to the coefficients

Forecasting Stationary Processes I

For simplicity, let's assume $\mu = 0$ (we can always achieve that by subtracting off μ) so that we don't need the constant term. We have

 $P_n X_{n+h} = c_1 X_n + c_2 X_{n-1} + \dots + c_n X_1.$

Linear Predictor

Prediction Equations

Forecasting Stationary Processes I

For simplicity, let's assume $\mu = 0$ (we can always achieve that by subtracting off μ) so that we don't need the constant term. We have

 $P_n X_{n+h} = c_1 X_n + c_2 X_{n-1} + \dots + c_n X_1.$

We want the MSPE

$$\mathbb{E}\left[\left(X_{n+h} - P_n X_{n+h}\right)^2\right] = \mathbb{E}\left[\left(X_{n+h} - c_1 X_n - c_2 X_{n-1} - \dots - c_n X_1\right)^2\right]$$

as small as possible.

Prediction Equations

Forecasting Stationary Processes I

For simplicity, let's assume $\mu = 0$ (we can always achieve that by subtracting off μ) so that we don't need the constant term. We have

 $P_n X_{n+h} = c_1 X_n + c_2 X_{n-1} + \dots + c_n X_1.$

We want the MSPE

$$\mathbb{E}\left[\left(X_{n+h} - P_n X_{n+h}\right)^2\right] = \mathbb{E}\left[\left(X_{n+h} - c_1 X_n - c_2 X_{n-1} - \dots - c_n X_1\right)^2\right]$$

as small as possible.

From now on let's definite

$$\mathbb{E}\left[\left(X_{n+h} - c_1 X_n - c_2 X_{n-1} - \dots - c_n X_1\right)^2\right] = S(c_1, \dots, c_n)$$

We are going to take derivative of the $S(c_1, \dots, c_n)$ with respect to each coefficient c_j

ARMA Models: Prediction and Forecasting

Linear Predictor
Prediction Equations

Forecasting Stationary Processes II

S is a quadratic function of c_1, c_2, \dots, c_n , so any minimizing set of c_i 's must satisfy these *n* equations:

$$\frac{\partial S(c_1, \cdots, c_n)}{\partial c_j} = 0, \quad j = 1, \cdots, n.$$

Recall $S(c_1, \dots, c_n) = \mathbb{E} [(X_{n+h} - c_1 X_n - c_2 X_{n-1} - \dots - c_n X_1)^2]$, we have

Linear Predictor

Prediction Equations

Forecasting Stationary Processes II

S is a quadratic function of c_1, c_2, \dots, c_n , so any minimizing set of c_i 's must satisfy these *n* equations:

$$\frac{\partial S(c_1, \cdots, c_n)}{\partial c_j} = 0, \quad j = 1, \cdots, n.$$

Recall $S(c_1, \dots, c_n) = \mathbb{E} [(X_{n+h} - c_1 X_n - c_2 X_{n-1} - \dots - c_n X_1)^2]$, we have

$$\frac{\partial S(c_1, \cdots, c_n)}{\partial c_j} = -2\mathbb{E}\left[\left(X_{n+h} - \sum_{i=1}^n c_i X_{n-i+1}\right) X_{n-j+1}\right] = 0$$

$$\Rightarrow \operatorname{Cov}(X_{n+h} - \sum_{i=1}^{n} c_i X_{n-i+1}, X_{n-j+1}) = 0, \quad j = 1, \dots, n$$

ARMA Models: Prediction and Forecasting

Linear Predictor

vamplaa

Forecasting Stationary Processes II

S is a quadratic function of c_1, c_2, \dots, c_n , so any minimizing set of c_i 's must satisfy these *n* equations:

$$\frac{\partial S(c_1, \cdots, c_n)}{\partial c_j} = 0, \quad j = 1, \cdots, n.$$

Recall $S(c_1, \dots, c_n) = \mathbb{E} [(X_{n+h} - c_1 X_n - c_2 X_{n-1} - \dots - c_n X_1)^2]$, we have

$$\frac{\partial S(c_1, \cdots, c_n)}{\partial c_j} = -2\mathbb{E}\left[\left(X_{n+h} - \sum_{i=1}^n c_i X_{n-i+1}\right) X_{n-j+1}\right] = 0$$

$$\Rightarrow \operatorname{Cov}(X_{n+h} - \sum_{i=1}^{n} c_i X_{n-i+1}, X_{n-j+1}) = 0, \quad j = 1, \dots, n$$

 \Rightarrow Prediction error is uncorrelated with all RVs used in corresponding predictor

ARMA Models: Prediction and Forecasting

Linear Predictor

Forecasting Stationary Processes III

Orthogonality principle:

$$\operatorname{Cov}(X_{n+h} - \sum_{i=1}^{n} c_i X_{n-i+1}, X_{n-j+1}) = 0, \quad j = 1, \dots, n.$$

Linear Predictor

Prediction Equations

Forecasting Stationary Processes III

Orthogonality principle:

$$Cov(X_{n+h} - \sum_{i=1}^{n} c_i X_{n-i+1}, X_{n-j+1}) = 0, \quad j = 1, \dots, n.$$

We have

$$\operatorname{Cov}(X_{n+h}, X_{n-j+1}) - \sum_{i=1}^{n} c_i \operatorname{Cov}(X_{n-i+1}, X_{n-j+1}) = 0$$

ARMA Models:

Prediction Equations

Forecasting Stationary Processes III

Orthogonality principle:

$$\operatorname{Cov}(X_{n+h} - \sum_{i=1}^{n} c_i X_{n-i+1}, X_{n-j+1}) = 0, \quad j = 1, \dots, n.$$

We have

$$Cov(X_{n+h}, X_{n-j+1}) - \sum_{i=1}^{n} c_i Cov(X_{n-i+1}, X_{n-j+1}) = 0$$

We obtain $\{c_i; i = 1, \dots, n\}$ by solving the system of linear equations:

$$\left\{\gamma(h+j-1) = \sum_{i=1}^{n} c_i \gamma(i-j) : j = 1, \dots, n\right\},\$$

to find n unknown c_i 's

ARMA Models:

Linear Predictor
Prediction Equations

Computing $P_n X_{n+h}$ via Matrix Operations

We can rewrite the system of prediction equations as

$$\boldsymbol{\gamma}_n$$
 = $\Sigma_n \boldsymbol{c}_n$,

with $\gamma_n = (\gamma(h), \gamma(h+1), \dots \gamma(h+n-1))^T$, $c_n = (c_1, c_2, \dots, c_n)^T$ and

$$\Sigma_n = \begin{bmatrix} \gamma(0) & \gamma(1) & \cdots & \gamma(n-1) \\ \gamma(1) & \gamma(0) & \cdots & \gamma(n-2) \\ \vdots & \vdots & \ddots & \vdots \\ \gamma(n-1) & \gamma(n-2) & \cdots & \gamma(0) \end{bmatrix}$$

is the covariance matrix of $(X_1, X_2, \cdots, X_n)^T$.

Solving for c_n we have

$$\boldsymbol{c}_n$$
 = $\Sigma_n^{-1} \boldsymbol{\gamma}_n$

Linear Predictor
Prediction Equations

Properties of the Prediction Errors

The prediction errors are

$$U_{n+h} = X_{n+h} - P_n X_{n+h}$$

= $(X_{n+h} - \mu) - \sum_{j=1}^n c_j (X_{n+1-j} - \mu).$

ARMA Models: Prediction and Forecasting

inear Predictor

Prediction Equations

Examples

It then follows that

• The prediction error has mean zero

 $\mathbb{E}(U_{n+h}) = \mathbb{E}(X_{n+h} - P_n X_{n+h}) = 0$

Properties of the Prediction Errors

The prediction errors are

L

$$U_{n+h} = X_{n+h} - P_n X_{n+h}$$

= $(X_{n+h} - \mu) - \sum_{j=1}^n c_j (X_{n+1-j} - \mu).$

Linear Predictor

Examples

It then follows that

• The prediction error has mean zero

$$\mathbb{E}(U_{n+h}) = \mathbb{E}(X_{n+h} - P_n X_{n+h}) = 0$$

• The prediction error is uncorrelated with all RVs used in the predictor

$$Cov(U_{n+h}, X_j) = Cov(X_{n+h} - P_n X_{n+h}, X_j) = 0, \quad j = 1, \dots, n$$

The Minimum Mean Squared Prediction Error

We obtain the minimum value of the MSPE by substituting the expression for c_n into $\mathbb{E}\left[(X_{n+h} - P_n X_{n+h})^2\right]$:

$$MSPE = \mathbb{E} \left[(X_{n+h} - P_n X_{n+h})^2 \right]$$

= $\mathbb{E} \left[(X_{n+h} - \mu)^2 \right] - 2 \sum_{j=1}^n c_j \mathbb{E} \left[(X_{n+1-j} - \mu) (X_{n+h} - \mu) \right]$
+ $\mathbb{E} \left[\sum_{j=1}^n c_j (X_{n+1-j} - \mu) \right]^2$
= $\mathbb{E} \left[(X_{n+h} - \mu)^2 \right] - 2 \sum_{j=1}^n c_j \mathbb{E} \left[(X_{n+1-j} - \mu) (X_{n+h} - \mu) \right]$
+ $\sum_{j=1}^n \sum_{k=1}^n c_j c_k \mathbb{E} \left[(X_{n+1-j} - \mu) (X_{n+1-k} - \mu) \right]$
= $\gamma(0) - 2 \sum_{j=1}^n c_j \gamma(h+j-1) + \sum_{j=1}^n \sum_{k=1}^n c_j c_k \gamma(k-j)$
= $\gamma(0) - 2 c_n^T \gamma_n + c_n^T \Sigma_n c_n.$

ARMA Models: Prediction and Forecasting

Prediction Equations

The Minimum Mean Squared Prediction Error (Cont'd)

From the previous slide we have

$$MSPE = \gamma(0) - 2\boldsymbol{c}_n^T\boldsymbol{\gamma}_n + \boldsymbol{c}_n^T\boldsymbol{\Sigma}_n\boldsymbol{c}_n$$

Recall that $c_n = \sum_n^{-1} \gamma_n$, therefore we have

$$\begin{split} \text{MSPE} &= \gamma(0) - 2\boldsymbol{c}_n^T\boldsymbol{\gamma}_n + \boldsymbol{c}_n^T\boldsymbol{\Sigma}_n\boldsymbol{\Sigma}_n^{-1}\boldsymbol{\gamma}_n \\ &= \gamma(0) - \boldsymbol{c}_n^T\boldsymbol{\gamma}_n \\ &= \gamma(0) - \sum_{j=1}^n c_j\gamma(h+j-1). \end{split}$$

If $\{X_t\}$ is a Gaussian process then an approximate $100(1 - \alpha)$ % prediction interval for X_{n+h} is given by

$$P_n X_{n+h} \pm z_{1-\alpha/2} \sqrt{\text{MSPE}}.$$

inear Predictor

Prediction Equations

One-Step Ahead Prediction of AR(1) Process

Consider AR(1) process $X_t = \phi X_{t-1} + Z_t$, where $|\phi| < 1$ and $\{Z_t\} \sim WN(0, 1 - \phi^2)$.

• Since
$$\operatorname{Var}(X_t)$$
 = 1, $\gamma(h)$ = $\rho(h)$ = $\phi^{|h|}$

• To forecast X_{n+1} based upon $X_n = (X_1, \dots, X_n)^T$, using best linear predictor $P_n X_{n+1} = c_n^T X_n$, we need to solve $\Sigma_n c_n = \gamma_n$

$$\begin{bmatrix} 1 & \phi & \cdots & \phi^{n-1} \\ \phi & 1 & \cdots & \phi^{n-2} \\ \vdots & \vdots & \cdots & \vdots \\ \phi^{n-1} & \phi^{n-2} & \cdots & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} \phi \\ \phi^2 \\ \vdots \\ \phi^n \end{bmatrix}$$

 \Rightarrow the solution is $c_n = (\phi, 0, \dots, 0)^T$, yielding

 $P_n X_{n+1} = \boldsymbol{c}_n^T \boldsymbol{X}_n = \phi X_n$

ARMA Models: Prediction and Forecasting

One-Step Ahead Prediction of AR(1) Process (Cont'd)

• ϕX_n makes intuitive sense as a predictor since

$$X_{n+1} = \phi X_n + Z_{n+1}$$

Linear Predictor

ivamplas

One-Step Ahead Prediction of AR(1) Process (Cont'd)

• ϕX_n makes intuitive sense as a predictor since

$$X_{n+1} = \phi X_n + Z_{n+1}$$

• Prediction error is $X_{n+1} - \phi X_n = Z_{n+1}$ and

$$Cov(Z_t, X_{n-j+1}) = 0, j = 1, \dots, n$$

Linear Predictor Prediction Equations

One-Step Ahead Prediction of AR(1) Process (Cont'd)

• ϕX_n makes intuitive sense as a predictor since

$$X_{n+1} = \phi X_n + Z_{n+1}$$

$$Cov(Z_t, X_{n-j+1}) = 0, j = 1, \dots, n$$

• MSPE is

$$\operatorname{Var}(X_{n+1} - \phi X_n) = \gamma(0) - \boldsymbol{c}_n^T \boldsymbol{\gamma}_n = 1 - \phi^2,$$

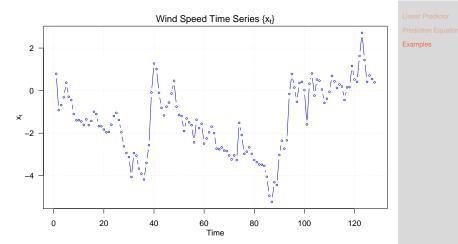
because $\boldsymbol{c}_n = (\phi, 0, \dots, 0)^T$ and $\boldsymbol{\gamma}_n = (\phi, \phi^2, \dots, \phi^n)^T$

Linear Predictor Prediction Equations

11.14

Wind Speed Time Series Example [Source: UW stat 519 lecture notes by Donald Percival]

ARMA Models: Prediction and Forecasting



Let's use this series to illustrate forecasting one step ahead

Model & Sample ACFs & 95% Confidence Bounds

ARMA Models: Prediction and Forecasting

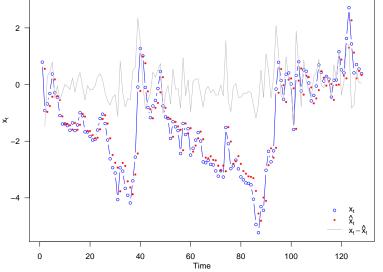
Model & Sample ACFs & 95% Confidence Bounds 1.0 0.5 Ů0.0 -0.5 IID AR(1) -1.0 10 20 30 40 h (lag)

The sample ACF indicates compatibility with AR(1) model $\Rightarrow P_n X_{n+1} = \phi X_n$

One-Step-Ahead Prediction of Wind Speed Series

ARMA Models: Prediction and Forecasting

Linear Predictor Prediction Equations Examples



One-Step-Ahead Prediction

Let {X_t} be a stationary process with mean μ and ACVF γ(·). Suppose we know X₁ and X₃, and want to predict X₂ using linear combinations of X₁ and X₃

- Let {X_t} be a stationary process with mean μ and ACVF γ(·). Suppose we know X₁ and X₃, and want to predict X₂ using linear combinations of X₁ and X₃
- Solution: To calculate $P_{X_1,X_3}X_2$ we minimize

MSPE =
$$\mathbb{E} \left[(X_2 - P_{X_1, X_3} X_2)^2 \right]$$

= $\mathbb{E} \left[(X_2 - c_0 - c_1 X_3 - c_2 X_1)^2 \right]$

ARMA Models: Prediction and Forecasting

- Let {X_t} be a stationary process with mean μ and ACVF
 γ(·). Suppose we know X₁ and X₃, and want to predict X₂ using linear combinations of X₁ and X₃
- Solution: To calculate $P_{X_1,X_3}X_2$ we minimize

MSPE =
$$\mathbb{E} \left[(X_2 - P_{X_1, X_3} X_2)^2 \right]$$

= $\mathbb{E} \left[(X_2 - c_0 - c_1 X_3 - c_2 X_1)^2 \right]$

Proceed as for the forecasting case to get the optimal coefficients:

- Let {X_t} be a stationary process with mean μ and ACVF
 γ(·). Suppose we know X₁ and X₃, and want to predict X₂ using linear combinations of X₁ and X₃
- Solution: To calculate $P_{X_1,X_3}X_2$ we minimize

MSPE =
$$\mathbb{E} \left[(X_2 - P_{X_1, X_3} X_2)^2 \right]$$

= $\mathbb{E} \left[(X_2 - c_0 - c_1 X_3 - c_2 X_1)^2 \right]$

- Proceed as for the forecasting case to get the optimal coefficients:
 - Calculate derivatives

- Let {X_t} be a stationary process with mean μ and ACVF
 γ(·). Suppose we know X₁ and X₃, and want to predict X₂ using linear combinations of X₁ and X₃
- Solution: To calculate $P_{X_1,X_3}X_2$ we minimize

MSPE =
$$\mathbb{E} \left[(X_2 - P_{X_1, X_3} X_2)^2 \right]$$

= $\mathbb{E} \left[(X_2 - c_0 - c_1 X_3 - c_2 X_1)^2 \right]$

- Proceed as for the forecasting case to get the optimal coefficients:
 - Calculate derivatives
 - Set the derivatives equal to zero

ARMA Models: Prediction and Forecasting

- Let {X_t} be a stationary process with mean μ and ACVF
 γ(·). Suppose we know X₁ and X₃, and want to predict X₂ using linear combinations of X₁ and X₃
- Solution: To calculate $P_{X_1,X_3}X_2$ we minimize

MSPE =
$$\mathbb{E} \left[(X_2 - P_{X_1, X_3} X_2)^2 \right]$$

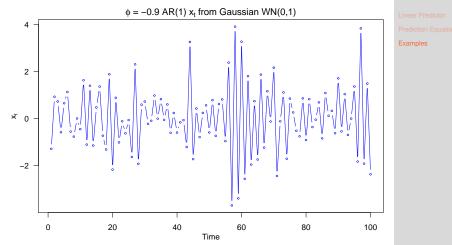
= $\mathbb{E} \left[(X_2 - c_0 - c_1 X_3 - c_2 X_1)^2 \right]$

- Proceed as for the forecasting case to get the optimal coefficients:
 - Calculate derivatives
 - Set the derivatives equal to zero
 - Solve the linear system of equation

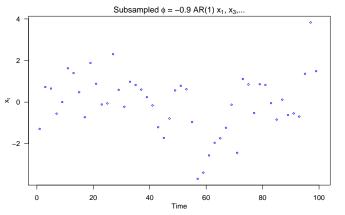
ARMA Models: Prediction and Forecasting

Another AR(1) Example with $\phi = -0.9$

ARMA Models: Prediction and Forecasting



Subsampled X_1, X_3, \cdots and Removed X_2, X_4, \cdots



ARMA Models: Prediction and Forecasting

Linear Predictor Prediction Equations

The best linear predictor of X_2 given X_1, X_3 is

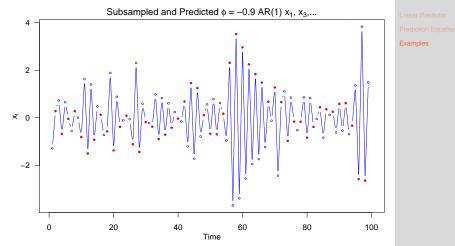
$$\hat{X}_2 = \frac{\phi}{1+\phi^2} (X_1 + X_3),$$

and the MSPE is

$$\frac{\sigma^2}{1+\phi^2}$$

Predict X_2, X_4, \cdots **Using Best Linear Predictor**

ARMA Models: Prediction and Forecasting



Prediction Errors from Best Linear Predictor

