Lecture 13

Seasonal Time Series Models

Reading: Bowerman, O'Connell, and Koehler (2005): Chapter 11; Cryer and Chen (2008): Chapter 10

MATH 4070: Regression and Time-Series Analysis

[Seasonal Time](#page-31-0) Series Models

Whitney Huang Clemson University

Agenda

[Seasonal Time](#page-0-0) Series Models

Modeling Trend, Seasonality, and Noise

Recall the trend, seasonality, noise decomposition:

$$
Y_t = \mu_t + s_t + \eta_t,
$$

where

- \bullet μ_t : (deterministic) trend component;
- \bullet s_t : (deterministic) seasonal component with mean 0;
- \bullet η_t : random noise with $\mathbb{E}(\eta_t) = 0$

We have already described ways to estimate each component both separately and jointly (via likelihood-based method). But what about if $\{s_t\}$ is a "random" function of t ?

[Seasonal Time](#page-0-0)

Modeling Trend, Seasonality, and Noise

Recall the trend, seasonality, noise decomposition:

$$
Y_t = \mu_t + s_t + \eta_t,
$$

where

- \bullet μ_t : (deterministic) trend component;
- \bullet s_t : (deterministic) seasonal component with mean 0;
- \bullet η_t : random noise with $\mathbb{E}(\eta_t) = 0$

We have already described ways to estimate each component both separately and jointly (via likelihood-based method). But what about if $\{s_t\}$ is a "random" function of t ?

⇒ The seasonal ARIMA model allows us to model the case when s_t itself varies randomly from one cycle to the next

[Seasonal Time](#page-0-0)

Digression: Using ARIMA for Stochastic Trend Modeling

[Seasonal Time](#page-0-0) Series Models

[Seasonal ARIMA](#page-2-0) (SARIMA) Model

For a given time series, it may be challenging to identify the exact form of a deterministic trend μ_t . However, ARIMA models can effectively capture and account for a "stochastic" trend

The Seasonal ARIMA (SARIMA) Model

Let d and D be non-negative integers. Then $\{X_t\}$ is a seasonal ARIMA $(p, d, q) \times (P, D, Q)$ process with period s if

$$
Y_t = \nabla^d \nabla^D_s X_t = (1 - B)^d (1 - B^s)^D X_t,
$$

is a casual ARMA process define by

 $\phi(B)\Phi(B^s)Y_t = \theta(B)\Theta(B^s)Z_t,$

where $\{Z_t\} \sim \text{WN}(0, \sigma^2)$.

 ${Y_t}$ is causal if $\phi(z) \neq 0$ and $\Phi(z) \neq 0$, for $|z| \leq 1$, where

$$
\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p;
$$

$$
\Phi(z) = 1 - \Phi_1 z - \dots - \Phi_p z^p.
$$

All roots of the AR and SAR characteristic equations must be greater than 1 in modulus

An Example of a Seasonal AR Model

$$
\Rightarrow p = q = d = D = Q = 0, P = 1, \Phi_1 = 0.9, s = 12.
$$

 $Y_t = 0.9Y_{t-12} + Z_t$

[Seasonal Time](#page-0-0) Series Models

An Example of a Seasonal MA Model

$$
Y_t = Z_t + 0.75Z_{t-4},
$$

 $\Rightarrow p = q = d = D = P = 0, Q = 1, \Theta_1 = 0.75, s = 4.$

Example of a SARIMA Model

$$
(1 - B)(1 - B12)Xt = Yt
$$

$$
(1 + 0.25B)(1 - 0.9B12)Yt = (1 + 0.75B12)Zt
$$

 $\Rightarrow p = P = Q = d = D = 1, \ \phi = -0.25, \Phi = 0.9, \Theta_1 = 0.75, s = 12.$

[Seasonal Time](#page-0-0) Series Models

An Illustration of Seasonal Model

Consider a monthly time series $\{X_t\}$ with both a trend, and a seasonal component of period $s = 12$.

- Suppose we know the values of d and D such that Y_t = $(1 - B)^d (1 - B^{12})^D X_t$ is stationary
- We can arrange the data this way:

[Seasonal Time](#page-0-0) Series Models

The Inter-annual Model

Here we view each column (month) of the data table from the previous slide as a separate time series

• For each month m, we assume the same $ARMA(P,Q)$ model. We have

$$
Y_{m+12y} - \sum_{i=1}^{P} \Phi_i Y_{m+12(y-i)}
$$

= $U_{m+12y} + \sum_{j=1}^{Q} \Theta_j U_{m+12(y-j)},$

for each $y = 0, \dots, r-1$, where $\{U_{m+12y:y=0,\cdots,r-1}\}\sim\text{WN}(0,\sigma_U^2)$ for each m

The Inter-annual Model

Here we view each column (month) of the data table from the previous slide as a separate time series

• For each month m, we assume the same $ARMA(P,Q)$ model. We have

$$
Y_{m+12y} - \sum_{i=1}^{P} \Phi_i Y_{m+12(y-i)}
$$

= $U_{m+12y} + \sum_{j=1}^{Q} \Theta_j U_{m+12(y-j)},$

for each $y = 0, \dots, r-1$, where $\{U_{m+12y:y=0,\cdots,r-1}\}\sim\text{WN}(0,\sigma_U^2)$ for each m

• We can write this as

$$
\Phi(B^{12})Y_t = \Theta(B^{12})U_t,
$$

and this defines the inter-annual model

The Intra-Annual Model

We induce correlation between the months by letting the process ${U_t}$ follow an ARMA(p, q) model,

 $\phi(B)U_t = \theta(B)Z_t$,

where $Z_t \sim \text{WN}(0, \sigma^2)$

o This is the intra-annual model

[Seasonal Time](#page-0-0) Series Models

The Intra-Annual Model

We induce correlation between the months by letting the process $\{U_t\}$ follow an ARMA(p, q) model,

 $\phi(B)U_t = \theta(B)Z_t$,

where $Z_t \sim \text{WN}(0, \sigma^2)$

- **o** This is the intra-annual model
- The combination of the inter-annual and intra-annual models for the differenced stationary series,

$$
Y_t = (1 - B)^d (1 - B^{12})^D X_t,
$$

yields a SARIMA model for $\{X_t\}$

1. Transform data is necessary

[Seasonal Time](#page-0-0) Series Models

- 1. Transform data is necessary
- 2. Find d and D so that

$$
Y_t = (1 - B)^d (1 - B^s)^D X_t
$$

is stationary

- 1. Transform data is necessary
- 2. Find d and D so that

$$
Y_t = (1 - B)^d (1 - B^s)^D X_t
$$

is stationary

3. Examine the sample ACF/PACF of ${Y_t}$ at lags that are multiples of s for plausible values of P and Q

- 1. Transform data is necessary
- 2. Find d and D so that

$$
Y_t = (1 - B)^d (1 - B^s)^D X_t
$$

is stationary

3. Examine the sample ACF/PACF of ${Y_t}$ at lags that are multiples of s for plausible values of P and Q

4. Examine the sample ACF/PACF at lags $\{1, 2, \dots, s-1\}$, to identify possible values of p and q

5. Use maximum likelihood method to fit the models

6. Use model summaries, diagnostics, AIC (AICc) to determine the best SARIMA model

7. Conduct forecast

[Seasonal Time](#page-0-0) Series Models

Airline Passengers Example

We consider the data set airpassengers, which are the monthly totals of international airline passengers from 1960 to 1971.

[A Case Study of Airline](#page-19-0) **Passengers**

Here we stabilize the variance with a log_{10} transformation

Sample ACF/PACF Plots

[Seasonal Time](#page-0-0) Series Models

[A Case Study of Airline](#page-19-0) Passengers

The sample ACF decays slowly with a wave structure ⇒ seasonality

Sample ACF/PACF Plots

- The sample ACF decays slowly with a wave structure ⇒ seasonality
- The lag one PACF is close to one, indicating that differencing the data would be reasonable

Trying Different Orders of Differencing

[Seasonal Time](#page-0-0) Series Models

Choosing Candidate SARIMA Models

We choose a SARIMA $(p, 1, q) \times (P, 0, Q)_{12}$ model. Next we examine the sample ACF/PACF of the process $Y_t = (1 - B)X_t$

Now we need to choose P, Q, p , and q

Fitting a SARIMA $(1,1,0) \times (1,0,0)$ Model

Lag

```
> fit1 <- arima(diff.1.0, order = c(1, 0, 0), seasonal = list(order = c(1, 0, 0), period = 12))
    5 fit1
    Call:\arima(x = diff.1.0. order = c(1, 0, 0). seasonal = list(order = c(1, 0, 0).
        period = 12)Coefficients:
                               intercept
                ar1sar10.9291
                                  0.0039
           -0.2667s.e.0.0865
                     0.0235
                                  0.0096
    sigma^2 estimated as 0.0003298: log likelihood = 327.27, aic = -646.54
> Box.test(fit1$residuals, lag = 48, type = "Liung-Box")
         Box-Liuna test
data: fit1$residuals
X-squared = 55.372, df = 48, p-value = 0.21640.06
                                                              0.06
                                                                                                BOO
              esiduals
              SARIMA residuals
                                                            Sample Quantiles
               0.04
                                                              0.02
0.04
               0.02
                                                             0.00
               −0.00<br>0.02<br>0.04÷
                                                            −0.02
                                                                     \sqrt{\circ}\frac{5.004}{2.004}1960 1962 1964 1966 1968 1970
                                                                        −2 −1 0 1 2
                                      Year
                                                                              Theoretical Quantiles
                1.0
                                                               1.0
                0.80.8
             sample ACF
                                                            sample PACF
                                                            sample PACF
              sample ACF
                0.6
                                                              0.6
                0.4
                                                              0.4
                0.20.2
                0.0
                                                              0.0−0.2
                                                              −0.2
                      0 12 24 36 48
                                                                    0 12 24 36 48
```
Lag

[Seasonal Time](#page-0-0) Series Models

A Discussion of the Model Fit

- Residuals show greater spread in 1949-1955 and have heavier-than-normal tails
- The Ljung-Box test result indicates the fitted SARIMA $(1, 1, 0) \times (1, 0, 0)_{12}$ has sufficiently account for the temporal dependence
- **●** 95% CI for ϕ_1 and Φ_1 do not contain zero \Rightarrow no need to go with simpler model

Our estimated model is:

 $X_t = \log_{10}(\text{#Passengers})$ $Y_t = (1 - B)X_t = X_t - X_{t-1}$ $(1 + 0.2667B)(1 - 0.9291B^{12})(Y_t - 0.0039) = Z_t,$

where $\{Z_t\} \stackrel{i.i.d.}{\sim} \text{N}(0,\sigma^2)$ with $\hat{\sigma}^2$ = 0.00033

[Seasonal Time](#page-0-0) Series Models

Comparing with a SARIMA $(0, 1, 0) \times (1, 0, 0)$ **Model**
> (fit2 <- arima(diff.1.0, seasonal = list(order = c(1, 0, 0), period = 12)))

```
Call:arima(x = diff.1.0, seasonal = list(order = c(1, 0, 0), period = 12))
```
Coefficients: $sar1$ intercept

0.9081 0.0040 s.e. 0.0278 0.0108

sigma \triangle 2 estimated as 0.0003616: log likelihood = 322.75, aic = -639.51 > Box.test(fit2\$residuals, lag = 48, type = "Ljung-Box")

Box-Liuna test

data: fit2\$residuals X -squared = 80.641, df = 48, p-value = 0.002209

A Discussion of SARIMA(0, 1, 0) × (1, 0, 0) **Model Fit**

Here we drop the AR(1) term

- **•** Residual plots are similar to before, with greater spread in 1949-1955 and heavy tails
- Both $\hat{\sigma}^2$ and AIC increase (compared with model fit1)
- The lag 1 of ACF and PACF now lies outside the IID noise bounds. The Ljung-Box p -value of 0.0022, leads us to reject the IID residual assumption

In conclusion, the SARIMA $(1,1,0) \times (1,0,0)_{12}$ model fits better than SARIMA $(0, 1, 0) \times (1, 0, 0)_{12}$

[Seasonal Time](#page-0-0) Series Models

Forecasting the 1971 Data

SARIMA(1,1,0) x (1,0,0) SARIMA(0,1,0) x (1,0,0) 2.8 2.8 log10(passenger numbers) log10(passenger numbers) log10(passenger numbers) $\frac{1}{20}$ MWVVVVVVVVV Twwwwwhite 2.6 2.6 2.4 2.4 2.2 2.2 2.0 1960 1962 1964 1966 1968 1970 1972 1960 1962 1964 1966 1968 1970 1972 Year Year 800 800 1000s of airline passengers 1000s of airline passengers700 700 600 600 500 500 400 400 300 300 200 200 100 100 1960 1962 1964 1966 1968 1970 1972 1960 1962 1964 1966 1968 1970 1972 Year Year

[Seasonal Time](#page-0-0) Series Models

MATHEMATICAL AND STATISTICAL SCIENCES

Evaluating Forecast Performance

800 800 1000s of airline passengers 1000s of airline passengers 700 700 600 600 500 500 ment white 1960 1962 1964 1966 1968 1970 1972 400 400 300 300 200 200 100 $100 -$ 1960 1962 1964 1966 1968 1970 1972 Year Year

[Seasonal Time](#page-0-0) Series Models

The SARIMA $(1, 1, 0) \times (1, 0, 0)$ Model is Equivalent To?

Our model for the log passenger series $\{X_t\}$ is

$$
\phi(B)\Phi(B^{12})(1-B)X_t = Z_t,
$$

where $\phi(B) = 1 - \phi_1 B$ and $\Phi(B) = 1 - \Phi_1(B)$

Note that

$$
\phi(B)\Phi(B^{12}) = (1 - \phi_1 B)(1 - \Phi_1 B^{12})
$$

= 1 - \phi_1 B - \Phi_1 B^{12} + \phi_1 \Phi_1 B^{13}

The SARIMA $(1,1,0) \times (1,0,0)$ **Model is Equivalent To?**

Our model for the log passenger series $\{X_t\}$ is

$$
\phi(B)\Phi(B^{12})(1-B)X_t = Z_t,
$$

where $\phi(B) = 1 - \phi_1 B$ and $\Phi(B) = 1 - \Phi_1(B)$

Note that

$$
\phi(B)\Phi(B^{12}) = (1 - \phi_1 B)(1 - \Phi_1 B^{12})
$$

= 1 - \phi_1 B - \Phi_1 B^{12} + \phi_1 \Phi_1 B^{13}

Question: What is this SARIMA model equivalent to?

[Seasonal Time](#page-0-0)