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Regression with Time Series Errors,
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6.4; Chapter 11.3-11.4
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Time Series Regression

Suppose we have the following time series model for {Y;}:
Y;f =my + N,
where

@ m, captures the mean of {Y;}, i.e., E(Y;) = my

@ {n,} is a zero mean stationary process with ACVF ~, (-)

The component {m;} may depend on time ¢, or possibly on
other explanatory series
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Example Models for m,: Trends and Seasonality Time Series Errors,
Unit Root Tests,

Spurious
@ Constant trend model: For each ¢ let m; = 3y for some Correlations, and

Prewhitening
unknown parameter Sy
0% o
; ; . @ stnsicasiecrs
@ Simple linear regression: For unknown parameters /3, and

ﬂl Time Series
) Regression Models
mye = PBo + Prae,

where {x;} is some explanatory variable indexed in time
(may just be a function of time or could be other series)

@ Harmonic regression: For each ¢ let

my = Acos(2rwt + ¢),

where A > 0 is the amplitude (an unknown parameter),
w > 0 is the frequency of the sinusoid (usually known), and
¢ € (-, 7] is the phase (usually unknown). We can rewrite
this model as

my = Boxe + BT,

where z; ; = cos(2nwt) and za 4 = sin(2mwt)



Regression with

Multlple Llneal‘ RegreSSIOI‘l MOde| Time_Series Errors,
Suppose there are p explanatory series {x;,}"_,, the time O purove
series model for {Y;} is Prewhitening

Correlations, and

0% e
Yi=my + 1, @ stnsicasiecrs

Where Time Series

p Regression Models
me = o + Z Bz,
J=1

and {n:} is a mean zero stationary process with ACVF ~,(-)
We can write the linear model in matrix notation:

Y =XB+n,

where Y = (Y1,--,Y,,)T is the observation vector, the
coefficient vector is B = (8o, B1,+, Bp) Ty m = (1,-+,mn) 7 is the
error vector, and the design matrix is

1 z11 221 - Tpa
1 =z T e
x|l e e e
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Regression with

Model Estimates & Distribution for i.i.d. Errors e o TS,
Unit Root Tests,
Spurious

Suppose {n;} is i.i.d. N(0,0%). Then the ordinary least squares Correlations, and

Prewhitening

(OLS) estimate of 8 is

A -1

Bows = (X"X) XY,
Time Series
Regression Models

with A . A
2 (Y -XBors) (Y -XBors)
n-(p+1)

@ Gauss-Markov theorem: BOLS is the best linear unbiased
estimator (BLUE) of 3

@ We have .

Bors ~N(B,0* (XTX) )
is independent of

(n-(p+1))e*

2 ~ Xn-(p+1)
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Temperatures and Tree Ring Proxies [Jones & Mann, 2004] Time Series Errors,
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NH temperatures (C) and climate proxies
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Residuals from a linear regression fit are correlated in time =
OLS is not appropriate here ®



Generalized Least Squares Regression

When dealing with time series the errors {n;} are typically
correlated in time

@ Assuming the errors {n;} are a stationary Gaussian
process, consider the model

Y =XB8+n,

where n has a multivariate normal distribution, i.e.,
n-~ N(07 Z)

@ The generalized least squares (GLS) estimate of 3 is
Bars = (XTx'x) " XxTu Y,

with

2 (Y _XBGLS)T (Y - XBGLS)
7 n—(p+1)
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Gauss-Markov theorem: B¢rs is the best linear unbiased @ SSTon S
estimator (BLUE) of 3

Generalized Least
Squares Regression

@ We have R T
Bais ~N(B,0* (X" X))

@ The variance of linear combinations of BGLS is less than or
equal to the variance of linear combinations of BoLs, that
is:

Var (¢" Bars) < Var (¢’ Bors)



Applying GLS in Practice

The main problem in applying GLS in practice is that
depends on ¢, 8, and o2 and we have to estimate these

@ A two-step procedure

@ Estimate B by OLS, calculating the residuals
N =Y - XBous, and fit an ARMA to 7 to get &

© Re-estimate 3 using GLS

@ Alternatively, we can consider one-shot maximum
likelihood methods
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Likelihood-Based Regression Methods

Model:
Y =XB+n,

where n ~ N(0,X)
=Y ~N(X3,%)

We maximum the Gaussian likelihood
L.(3,0.,0,0%)
- ) S exp -5 (V - X8) 27 (v - X))

with respect to the regression parameters 3 and ARMA
parameters ¢, 8, o simultaneously
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Comparison of Two-Step and One-Step Estimation Time Seres Errors,
Procedures Unnsngitozzsts.

Correlations, and
Prewhitening

Let’s conduct a Monte Carlo simulation with the following
data-generating mechanism:

Y, =3+0.5z, + 1y,
Generalized Least
Squares Regression

where Ny = 0.8np-1 + Zy =047 1, Zy ~ N(O, 1)

@ Simulate 500 replications, each with 200 data points

O Apply the two-step procedure: fit OLS, extract residuals,
estimate ARMA model for X, then refit using GLS.

@ Apply the one-step procedure to jointly estimate
regression and ARMA parameters

© Compare the estimation performance

14.12



Comparing Regression Slope Estimates

0.65 — A o
Br T

om | 5l 5N

0.55 - i : %
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0.45 i E %

0.40 — i T T

OII_S GI{S M:.E

Method | OLS | GLS | MLE
Bias -4e-4 | 9e-4 9e-4
Sd 0.046 | 0.035 | 0.035
Cl coverage | 90.8% | 93.6% | 93.6%
Cl width 0.162 | 0.129 | 0.129
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Comparing ARMA Estimates Time Seris Errors,
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0.8
0.7 A H [
| | Generalized Least
1 } Squares Regression
0.6 ! 1
0.5 E E
o
0.4 o}
T I
Two-step (GLS) One-step (MLE)
Method | GLS | MLE
Bias -0.038 | -0.036
Sd 0.090 | 0.089

Cl coverage | 96.6% | 96.2%
Cl width 0.330 | 0.328
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An Example: Lake Huron Levels Time Series Errors,
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Model:
0% e
Yi=mg+m @ stnsicasiecrs
where
Generalized Least
Squares Regression
my = Bo + Bt

{n:} is some ARMA(p, ¢q) process

@ Scientific Question: Is there evidence that the lake level
has changed linearly over the years 1875-1972?

@ Statistical Hypothesis:

14.15



Regression with

Flttlng ReSUIt form the TWO'Step Procedure Time Series Errors,
Unit Root Tests,
Spu_rious
@ OLS: ey

Im(formula = LakeHuron ~ years) s
0% it
Q@ sTnsTcALSoevces
Residuals:

Min 1Q Median 3Q Max
-2.50997 -0.72726 ©.00083 0.74402 2.53565

Generalized Least
Squares Regression

Coefficients:
Estimate Std. Error t value
(Intercept) 625.554918 7.764293 80.568

years -0.024201 ©0.004036 -5.996
O AR: . .
arima(x = lm$residuals, order = c(2, @, @), include.mean = FALSE)
Coefficients:
arl ar2

1.0050 -0.2925
s.e. 0.0976 0.1002

© Refit GLS
Will leave it to you as an exercise
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Fitting Result from One-Step MLE

> mle <- arima(LakeHuron, order = c(2, @, @),

+ xreg = cbind(rep(l,length(LakeHuron)), years),
+ include.mean = FALSE)

> mle

Call:

arima(x = LakeHuron, order = c(2, @, @), xreg = cbind(rep(1, length(LakeHuron)),

years), include.mean = FALSE)

Coefficients:
arl ar2 rep(l, length(LakeHuron))
1.0048 -0.2913 620.5115
s.e. 0.0976 0.1004 15.5771
years
-0.0216

s.e. 0.0081

sigmaA2 estimated as 0.4566: log likelihood = -101.2, aic = 212.4
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MLE Fit Diagnostics
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> plot.residuals(years, resid(mle), xlab

Box-Ljung test

data: vy
X-squared = 6.2088, df = 19, p-value

0.

= "Year", ylab = "Residuals")

9974
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Comparing Confidence Intervals Time Seres Errors,

Unit Root Tests,

Spurious
Regression Slope 3;: © orewhitening
Method | 2.5% | Point Est. | 97.5% @ b,
OoLS -0.0322 | -0.0242 -0.0162
MLE -0.0374 | -0.0216 -0.0057
Generalized Least
Squares Regression
AR ¢1:
Method | 2.5% | Point Est. | 97.5%
GLS 0.813 | 1.005 1.196
MLE 0.813 | 1.005 1.196
AR ¢2:
Method | 2.5% | Point Est. | 97.5%
GLS -0.489 | -0.293 -0.096
MLE -0.488 | -0.291 -0.095
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Unit Root Tests: Tests for Non-Stationarity

Suppose we have X, -, X,, that follow the model
(Xt —p) = (X1 — p) + Zs,
where {Z;} is a WN(0, o%) process
@ A unit root test considers the following hypotheses:

Hy:¢=1versus H, :|p| <1

Regression with
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Unit Root Tests: Tests for Non-Stationarity Time Serios Errors,
Unit Root Tests,

Suppose we have X, ,---, X,, that follow the model Correlations, and
Prewhitening

(Xt - ﬂ) = ¢(Xt—1 - /u') + Zy, 0% itiommon o

" STATISTICAL SCIENCES

where {Z;} is a WN(0, 0?) process
@ A unit root test considers the following hypotheses:

Unit R Te i
Hy:¢=1versus H, : |9 < 1 Time Series Analysis

o Note that where |¢| < 1 the process is stationary (and
causal) while ¢ = 1 leads to a nonstationary process

14.20



Regression with

Unit Root Tests: Tests for Non-Stationarity TS G oo Eae
Unit Root Tests,

Suppose we have X, ,---, X,, that follow the model Correlations, and
Prewhitening

(Xt - /‘) = ¢(Xt—1 - /u') + Zy, 0% itiommon o

@ s scices
where {Z;} is a WN(0, 0?) process
@ A unit root test considers the following hypotheses:

Unit Root Tests in

HO : ¢ =1 versus Ha : |¢| <1 Time Series Analysis

o Note that where |¢| < 1 the process is stationary (and
causal) while ¢ = 1 leads to a nonstationary process
o Exercise: Letting Y; = vX; = X; - X;_1, show that

Yi=(1-9)u+(p-1)Xi1 + Z,
=¢o + 01 X1 + Zy,

where ¢; = (1 - ¢)u and ¢; = (¢ - 1)

14.20



Unit Root Tests via Ordinary Least Squares Argument

@ We can estimate ¢; and ¢; using ordinary least squares
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Unit Root Tests via Ordinary Least Squares Argument

@ We can estimate ¢; and ¢} using ordinary least squares

@ Using the estimate of ¢*, ¢*, and its standard error,
SE(#7), the Dickey-Fuller statistics is

_ o

- SE(47)
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Unit Root Tests via Ordinary Least Squares Argument

@ We can estimate ¢; and ¢ using ordinary least squares

@ Using the estimate of ¢*, ¢%, and its standard error,
SE(#7), the Dickey-Fuller statistics is

_ 4
SE(7)

@ Under Hj this statistic follows a Dickey-Fuller distribution.

For a level « test we reject if the observed test statistic is
smaller than a critical value C,,

« | 001 005 0.0
Co | 343 286 257
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Unit Root Tests via Ordinary Least Squares Argument

@ We can estimate ¢; and ¢ using ordinary least squares

@ Using the estimate of ¢*, ¢%, and its standard error,
SE(#7), the Dickey-Fuller statistics is
_ 9
SE(¢7)

@ Under Hj this statistic follows a Dickey-Fuller distribution.

For a level « test we reject if the observed test statistic is
smaller than a critical value C,,

« | 001 005 0.0
Co | 343 286 257

@ We can extend to other processes (AR(p), ARMA(p, q),
and MA(q))—see Brockwell and Davis [2016, Section 6.3]
for further details
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Unit Root Test: Simulated Examples
Recall

w

20

15

10

VX;=¢g+ 1 Xeo1 + Zt,

where ¢ = (1- ¢)pand ¢f = (¢ 1)
Let's demonstrate the test with a simulated random walk (¢ = 1)
and a simulated white noise (¢ = 0)
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Unit Root Test: Simulated Examples Cont’d

> diff.rw <- diff(rw); n <- length(rw)
> ys <- diff.rw; xs <- rw[1l:(n-1)]
> ols.rw <- Im(ys ~ xs); summary(ols.rw)
Coefficients:
Estimate Std. Error t value Pr(>Itl)

(Intercept) 0.10125 ©0.05973 1.695 0.0906 .

XS -0.01438 0.00899 -1.000 0.1102
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Unit Root Test: Simulated Examples Cont’d

> diff.rw <- diff(rw); n <- length(rw)
> ys <- diff.rw; xs <- rw[1l:(n-1)]
> ols.rw <- Im(ys ~ xs); summary(ols.rw)
Coefficients:
Estimate Std. Error t value Pr(>I1tl)

(Intercept) 0.10125 ©0.05973 1.695 0.0906 .

XS -0.01438 0.00899 -1.000 0.1102

> diff.wn <- diff(wn)

> ys <- diff.wn; xs <- wn[l:(n-1)]

> ols.wn <- Im(ys ~ xs); summary(ols.wn)
Coefficients:

Estimate Std. Error t value Pr(>I1tl)
(Intercept) -0.001138 0.045329 -0.025 0.98
XS -1.002420 0.044843 -22.354 <2e-16
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Regression with

Augmented Dickey-Fuller Test in R Time Series Errors,

Unit Root Tests,
Spurious
Correlations, and

Augmented Dickey-Fuller (ADF) Test: to check for the —
presence of a unit root in a time series and determine if the @%% iiwmon o
series is stationary G ity

Unit Root Tests in

Hy : The time series has a unit root (non-stationary) Time Series Analysis
H, : The time series is stationary

If p-value < significance level (e.g., 0.05), reject Hy =
stationary

> library(tseries)

> adf.test(wn)
> adf.test(rw)

Warning in adf.test(wn) : p-value smaller than printec

Augmented Dickey-Fuller Test Augmented Dickey-Fuller Test
data: rw data: wn
Dickey-Fuller = -1.9203, Lag order = 7, p-value = Dickey-Fuller = -7.8953, Lag order = 7, p-value =
0.612 .01
alternative hypothesis: stationary alternative hypothesis: stationary

14.24



Lagged Regression and Cross-Covariances o i
Unit Root Tests,

. . Spurious
Consider the lagged regression model: Correlations, and

Prewhitening

= Bn + s 0% iiiitmncaan
Yi=Po+PrXi-a+er, Q"' STATSTCALSEECES

where X's are iid random variables with variance o3 and the
e’s are also white noise with variance o2 and are independent
of the X’s

Spurious Correlation
and Prewhitening
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Lagged Regression and Cross-Covariances o i
Unit Root Tests,

. . Spurious
Consider the lagged regression model: Correlations, and

Prewhitening

= O i
Yy = fo + BrXi-a + e, Q@5 Ui,

where X's are iid random variables with variance o3 and the

e’s are also white noise with variance o2 and are independent

of the X’s

The cross-covariance function of {¥;} and {X.} is

Spurious Correlation
and Prewhitening

Yxy (h) = E[(Xeen —px) (Ye—py)],
and the cross-correlation function (CCF) is

vxy (h)

Vrx (0)7y (0)

pxy(h) =

14.25



Lagged Regression and Cross-Covariances Time Seres Errors,
Unit Root Tests,
Spurious

Consider the lagged regression model: Correlations, and

Prewhitening

= O i
Yy = fo + BrXi-a + e, Q@5 Ui,
where X's are iid random variables with variance o3 and the
e’s are also white noise with variance o2 and are independent
of the X’s

The cross-covariance function of {¥;} and {X.} is

Spurious Correlation
and Prewhitening

xy (h) = E[(Xpen — px) (Ve — py)],

and the cross-correlation function (CCF) is

pXY(h) _ IYXY(h)

Vrx (0)7y (0)

If d >0, we say X; leads Y;, and we have CCF is identically
zero except for lag h = —d, where CCF is —222x

252 2
V ﬁlo-X-HTE
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Lagged Regression and Its CCF Time Seris Errors,
Unit Root Tests,
Spurious

Consider the following reggression model: Correlations, and

Prewhitening
Yi=Xeater, @ b,

where X; “5*N(0,1), &, “4? N(0,0.25), and X’s and ¢'s are
independent to each other. The CCF is ——— = 0.8944 when

. V140.25
h = -2, and 0 otherwise

Spurious Correlation
0.8 and Prewhitening

0.6 |

0.4 -

CCF
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H H Regression with
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@ The lagged regression discussed earlier may be too

restrictive, as X;, Y;, and ¢, could be temporally correlated 08 iiurcum
Q@ SHISToAL Sices

Spurious Correlation

Example: X; and Y; are independent, but both follow an AR(1) el

Error Rate

o =)

w IS
L I
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@ The lagged regression discussed earlier may be too

restrictive, as X;, Y;, and ¢, could be temporally correlated 08 iiurcum
Q@ SHISToAL Sices

@ Temporal dependence makes the horizon blue dashed
lines (+1.96/+/n) unreliable

Spurious Correlation

Example: X, and Y; are independent, but both follow an AR(1) o5 oes

Error Rate

o =)
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L I
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Regression with
Time Series Errors,

Spurious Correlations
Unit Root Tests,
Spurious
Correlations, and
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@ The lagged regression discussed earlier may be too

restrictive, as X;, Y;, and ¢, could be temporally correlated 08 iiurcum
Q@ SHISToAL Sices

@ Temporal dependence makes the horizon blue dashed
lines (+1.96/+/n) unreliable

@ This can lead to spurious correlations

Spurious Correlation

Example: X; and Y; are independent, but both follow an AR(1) e S

Error Rate

o =)

w IS
L I
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Spurious Correlations: An Example with Milk and Electricity
Data

milk

log(eleciricity)

L
ccr

124 127 1300 1600

1994 1996 1998 2000 2002 2004 2006

prs O

Time

@ Observed Correlation: Milk production and electricity
usage show a high correlation due to shared seasonal
patterns

@ Temporal Dependence: Both series exhibit seasonality
and autocorrelation, making raw correlations misleading

o Key Takeaway: Spurious correlations highlight the need
for detrending and deseasonalizing in time series analysis
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Understanding Prewhitening

Prewhitening: A technique to remove autocorrelation in a time
series before analyzing cross-correlations
Steps in Prewhitening:

o Fit a time series model (e.g., ARMA) to {X,} and filter it to
obtain residuals
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Understanding Prewhitening Time Serios Evrors,
. . . . . . Unit Roo_t Tests,
Prewhitening: A technique to remove autocorrelation in a time e
series before analyzing cross-correlations Riehblitening

Steps in Prewhitening: @%% iiwmon o

Q@ SHISToAL Sices
o Fit a time series model (e.g., ARMA) to {X,} and filter it to
obtain residuals

@ Apply the same model to {Y;} for consistent filtering

Spurious Correlation
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Understanding Prewhitening Time Serios Evrors,
. . . . . . Unit Roo_t Tests,
Prewhitening: A technique to remove autocorrelation in a time e
series before analyzing cross-correlations Riehblitening

Steps in Prewhitening: @%% iiwmon o

Q@ SHISToAL Sices
o Fit a time series model (e.g., ARMA) to {X,} and filter it to
obtain residuals

@ Apply the same model to {Y;} for consistent filtering
@ Compute the cross-correlation of the residuals
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Understanding Prewhitening Time Serios Evrors,
. . . . . . Unit Roo_t Tests,
Prewhitening: A technique to remove autocorrelation in a time e
series before analyzing cross-correlations Riehblitening

Steps in Prewhitening: @%% iiwmon o

Q@ SHISToAL Sices
o Fit a time series model (e.g., ARMA) to {X,} and filter it to
obtain residuals

@ Apply the same model to {Y;} for consistent filtering
@ Compute the cross-correlation of the residuals
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Understanding Prewhitening

Prewhitening: A technique to remove autocorrelation in a time
series before analyzing cross-correlations

Steps in Prewhitening:

o Fit a time series model (e.g., ARMA) to {X,} and filter it to

@ Apply the same model to {Y;} for consistent filtering
@ Compute the cross-correlation of the residuals

obtain residuals

x <- arima.sim(n = 100, list(ar = 0.9))
y <- arima.sim(n = 100, list(ar = 0.9))

par(las = 1, mgp = c(2.2, 1, @), mar = c(3.6, 3.6, 0.8, 0.6), mfrow = c(1, 2))

ccf(x, y)
prewhiten(x, y)

0.2

°
°

l‘ Hh“\.ln‘h ‘u

CCF

s

02 -

i

Regression with
Time Series Errors,
Unit Root Tests,
Spurious
Correlations, and
Prewhitening

0% e
@7 S

Spurious Correlation
and Prewhitening

14.29



Applying Prewhitening to the Milk and Electricity Data

Example
> me.dif = ts.intersect(diff(diff(milk, 12)),
+ diff(diff(log(electricity), 12)))
> prewhiten(as.vector(me.dif[, 11), as.vector(me.dif[, 2]), ylab = 'CCF")
> par(las = 1, mgp = c(2.2, 1, @), mar = ¢(3.6, 3.6, 0.8, 0.6))
> prewhiten(as.vector(me.dif[, 11), as.vector(me.dif[, 2]), ylab = 'CCF")
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