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14.3

Time Series Regression

Suppose we have the following time series model for {Yt}:

Yt =mt + ηt,

where

mt captures the mean of {Yt}, i.e., E(Yt) =mt

{ηt} is a zero mean stationary process with ACVF γη(⋅)

The component {mt} may depend on time t, or possibly on
other explanatory series
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14.4

Example Models for mt: Trends and Seasonality

Constant trend model: For each t let mt = β0 for some
unknown parameter β0

Simple linear regression: For unknown parameters β0 and
β1,

mt = β0 + β1xt,

where {xt} is some explanatory variable indexed in time
(may just be a function of time or could be other series)

Harmonic regression: For each t let

mt = A cos(2πωt + ϕ),

where A > 0 is the amplitude (an unknown parameter),
ω > 0 is the frequency of the sinusoid (usually known), and
ϕ ∈ (−π,π] is the phase (usually unknown). We can rewrite
this model as

mt = β0x1,t + β1x2,t,

where x1,t = cos(2πωt) and x2,t = sin(2πωt)
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14.5

Multiple Linear Regression Model
Suppose there are p explanatory series {xj,t}

p
j=1, the time

series model for {Yt} is

Yt =mt + ηt,

where

mt = β0 +

p

∑
j=1

βjxj,t,

and {ηt} is a mean zero stationary process with ACVF γη(⋅)
We can write the linear model in matrix notation:

Y =Xβ + η,

where Y = (Y1,⋯, Yn)
T is the observation vector, the

coefficient vector is β = (β0, β1,⋯, βp)
T , η = (η1,⋯, ηn)T is the

error vector, and the design matrix is

X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 x1,1 x2,1 ⋯ xp,1

1 x1,2 x2,2 ⋯ xp,2

⋮ ⋮ ⋮ ⋯ ⋮

1 x1,n x2,n ⋯ xp,n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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14.6

Model Estimates & Distribution for i.i.d. Errors

Suppose {ηt} is i.i.d. N(0, σ2). Then the ordinary least squares
(OLS) estimate of β is

β̂OLS = (X
TX)

−1
XTY ,

with

σ̂2
=
(Y −Xβ̂OLS)

T
(Y −Xβ̂OLS)

n − (p + 1)

Gauss-Markov theorem: β̂OLS is the best linear unbiased
estimator (BLUE) of β

We have
β̂OLS ∼ N(β, σ

2 (XTX)
−1
)

is independent of

(n − (p + 1))σ̂2

σ2
∼ χ2

n−(p+1)
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14.7

Temperatures and Tree Ring Proxies [Jones & Mann, 2004]
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Residuals from a linear regression fit are correlated in time⇒
OLS is not appropriate here /
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14.8

Generalized Least Squares Regression

When dealing with time series the errors {ηt} are typically
correlated in time

Assuming the errors {ηt} are a stationary Gaussian
process, consider the model

Y =Xβ + η,

where η has a multivariate normal distribution, i.e.,
η ∼ N(0,Σ)

The generalized least squares (GLS) estimate of β is

β̂GLS = (X
TΣ−1X)

−1
XTΣ−1Y ,

with

σ̂2
=
(Y −Xβ̂GLS)

T
(Y −Xβ̂GLS)

n − (p + 1)
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14.9

Distributional Properties of Estimators

Gauss-Markov theorem: βGLS is the best linear unbiased
estimator (BLUE) of β

We have
β̂GLS ∼ N(β, σ

2 (XTΣ−1X)
T
)

The variance of linear combinations of β̂GLS is less than or
equal to the variance of linear combinations of β̂OLS, that
is:

Var (cT β̂GLS) ≤ Var (c
T β̂OLS)
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14.10

Applying GLS in Practice

The main problem in applying GLS in practice is that Σ
depends on ϕ, θ, and σ2 and we have to estimate these

A two-step procedure

1 Estimate β by OLS, calculating the residuals
η̂ = Y −Xβ̂OLS, and fit an ARMA to η̂ to get Σ

2 Re-estimate β using GLS

Alternatively, we can consider one-shot maximum
likelihood methods
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14.11

Likelihood-Based Regression Methods

Model:
Y =Xβ + η,

where η ∼ N(0,Σ)
⇒ Y ∼ N(Xβ,Σ)

We maximum the Gaussian likelihood

Ln(β,ϕ,θ, σ
2
)

= (2π)−n/2∣Σ∣−1/2 exp [−
1

2
(Y −Xβ)

T
Σ−1 (Y −Xβ)]

with respect to the regression parameters β and ARMA
parameters ϕ, θ, σ2 simultaneously
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14.12

Comparison of Two-Step and One-Step Estimation
Procedures

Let’s conduct a Monte Carlo simulation with the following
data-generating mechanism:

Yt = 3 + 0.5xt + ηt,

where ηt = 0.8ηt−1 +Zt − 0.4Zt−1, Zt ∼ N(0,1).

1 Simulate 500 replications, each with 200 data points

2 Apply the two-step procedure: fit OLS, extract residuals,
estimate ARMA model for Σ̂, then refit using GLS.

3 Apply the one-step procedure to jointly estimate
regression and ARMA parameters

4 Compare the estimation performance
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14.13

Comparing Regression Slope Estimates

Method OLS GLS MLE
Bias -4e-4 9e-4 9e-4
Sd 0.046 0.035 0.035
CI coverage 90.8% 93.6% 93.6%
CI width 0.162 0.129 0.129
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14.14

Comparing ARMA Estimates

Method GLS MLE
Bias -0.038 -0.036
Sd 0.090 0.089
CI coverage 96.6% 96.2%
CI width 0.330 0.328
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14.15

An Example: Lake Huron Levels

Model:
Yt =mt + ηt

where

mt = β0 + β1t

{ηt} is some ARMA(p, q) process

Scientific Question: Is there evidence that the lake level
has changed linearly over the years 1875-1972?

Statistical Hypothesis:
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14.16

Fitting Result form the Two-Step Procedure

1 OLS:

2 AR:

3 Refit GLS
Will leave it to you as an exercise
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14.17

Fitting Result from One-Step MLE
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14.18

MLE Fit Diagnostics
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14.19

Comparing Confidence Intervals

Regression Slope β1:

Method 2.5% Point Est. 97.5%
OLS -0.0322 -0.0242 -0.0162
MLE -0.0374 -0.0216 -0.0057

AR ϕ1:

Method 2.5% Point Est. 97.5%
GLS 0.813 1.005 1.196
MLE 0.813 1.005 1.196

AR ϕ2:

Method 2.5% Point Est. 97.5%
GLS -0.489 -0.293 -0.096
MLE -0.488 -0.291 -0.095
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14.20

Unit Root Tests: Tests for Non-Stationarity

Suppose we have X1,⋯,Xn that follow the model

(Xt − µ) = ϕ(Xt−1 − µ) +Zt,

where {Zt} is a WN(0, σ2) process

A unit root test considers the following hypotheses:

H0 ∶ ϕ = 1 versus Ha ∶ ∣ϕ∣ < 1

Note that where ∣ϕ∣ < 1 the process is stationary (and
causal) while ϕ = 1 leads to a nonstationary process

Exercise: Letting Yt = ∇Xt =Xt −Xt−1, show that

Yt = (1 − ϕ)µ + (ϕ − 1)Xt−1 +Zt

= ϕ∗0 + ϕ
∗
1Xt−1 +Zt,

where ϕ∗0 = (1 − ϕ)µ and ϕ∗1 = (ϕ − 1)
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14.21

Unit Root Tests via Ordinary Least Squares Argument

We can estimate ϕ∗0 and ϕ∗1 using ordinary least squares

Using the estimate of ϕ∗1, ϕ̂∗1, and its standard error,
ŜE(ϕ̂∗1), the Dickey-Fuller statistics is

T =
ϕ̂∗1

ŜE(ϕ̂∗1)

Under H0 this statistic follows a Dickey-Fuller distribution.
For a level α test we reject if the observed test statistic is
smaller than a critical value Cα

α 0.01 0.05 0.10
Cα -3.43 -2.86 -2.57

We can extend to other processes (AR(p), ARMA(p, q),
and MA(q))–see Brockwell and Davis [2016, Section 6.3]
for further details
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14.22

Unit Root Test: Simulated Examples

Recall
∇Xt = ϕ

∗
0 + ϕ

∗
1Xt−1 +Zt,

where ϕ∗0 = (1 − ϕ)µ and ϕ∗1 = (ϕ − 1)

Let’s demonstrate the test with a simulated random walk (ϕ = 1)
and a simulated white noise (ϕ = 0)
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14.23

Unit Root Test: Simulated Examples Cont’d
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14.23

Unit Root Test: Simulated Examples Cont’d
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14.24

Augmented Dickey-Fuller Test in R

Augmented Dickey-Fuller (ADF) Test: to check for the
presence of a unit root in a time series and determine if the
series is stationary

H0 ∶ The time series has a unit root (non-stationary)
H1 ∶ The time series is stationary

If p-value < significance level (e.g., 0.05), reject H0 ⇒

stationary
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14.25

Lagged Regression and Cross-Covariances

Consider the lagged regression model:

Yt = β0 + β1Xt−d + εt,

where X ’s are iid random variables with variance σ2
X and the

ε’s are also white noise with variance σ2
ε and are independent

of the X ’s

The cross-covariance function of {Yt} and {Xt} is

γXY (h) = E [(Xt+h − µX) (Yt − µY )] ,

and the cross-correlation function (CCF) is

ρXY (h) =
γXY (h)

√
γX(0)γY (0)

.

If d > 0, we say Xt leads Yt, and we have CCF is identically
zero except for lag h = −d, where CCF is β1σX√

β2
1σ

2
X
+σ2

ε
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14.26

Lagged Regression and Its CCF

Consider the following reggression model:

Yt =Xt−2 + εt,

where Xt
i.i.d
∼ N(0,1), εt

i.i.d
∼ N(0,0.25), and X ’s and ε’s are

independent to each other. The CCF is 1√
1+0.25 = 0.8944 when

h = −2, and 0 otherwise
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14.27

Spurious Correlations

The lagged regression discussed earlier may be too
restrictive, as Xt, Yt, and εt could be temporally correlated

Temporal dependence makes the horizon blue dashed
lines (±1.96/

√
n) unreliable

This can lead to spurious correlations

Example: Xt and Yt are independent, but both follow an AR(1)
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Spurious Correlations

The lagged regression discussed earlier may be too
restrictive, as Xt, Yt, and εt could be temporally correlated

Temporal dependence makes the horizon blue dashed
lines (±1.96/

√
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This can lead to spurious correlations
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Spurious Correlations: An Example with Milk and Electricity
Data

Observed Correlation: Milk production and electricity
usage show a high correlation due to shared seasonal
patterns

Temporal Dependence: Both series exhibit seasonality
and autocorrelation, making raw correlations misleading

Key Takeaway: Spurious correlations highlight the need
for detrending and deseasonalizing in time series analysis
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Understanding Prewhitening

Prewhitening: A technique to remove autocorrelation in a time
series before analyzing cross-correlations
Steps in Prewhitening:

Fit a time series model (e.g., ARMA) to {Xt} and filter it to
obtain residuals

Apply the same model to {Yt} for consistent filtering

Compute the cross-correlation of the residuals
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Applying Prewhitening to the Milk and Electricity Data
Example
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