Lecture 6 Autocorrelation and Time Series Models

Reading: Forecasting, Time Series, and Regression (4th edition) by Bowerman, O'Connell, and Koehler: Chapter 6

MATH 4070: Regression and Time-Series Analysis

[Autocorrelation and](#page-34-0) Time Series Models

Whitney Huang Clemson University

Agenda

¹ [Objectives of Time Series Analysis](#page-8-0)

³ [Mean and Autocovaraince Functions](#page-20-0)

⁴ [Stationarity](#page-27-0)

[Autocorrelation and](#page-0-0) Time Series Models

MATHEMATICAL AND STATISTICAL SCIENCES

Level of Lake Huron 1875–1972

[Autocorrelation and](#page-0-0) Time Series Models

School of
MATHEMATICAL AND **STATISTICAL SCIENCES**

Mauna Loa Atmospheric CO₂ **Concentration**

 \cdots {r} $data(co2)$ $par(max = c(3.8, 4, 0.8, 0.6))$ $plot(co2, las = 1, xlab = "", ylab = "")$ $mtext{text("Time (year)", side = 1, line = 2)}$ $mtext{text}(expression(paste("C0" [2], "Concentration (ppm)"))$, side = 2, line = 2.5) **CAN**

US Unemployment Rate 1948 Jan. – 2021 July

[Source: St. Louis Federal Reserve Bank's FRED system]

Airline Passengers Example

The data set airpassengers, which are the monthly totals of international airline passengers from 1960 to 1971.

Here we stabilize the variance with a \log_{10} transformation

Global Annual Temperature Anomalies

[Source: NASA GISS Surface Temperature Analysis]

A Simulated Time Series

[Autocorrelation and](#page-0-0) Time Series Models

MATHEMATICAL AND STATISTICAL SCIENCES

[Objectives of Time](#page-8-0) Series Analysis

Statistical Modeling: Find a statistical model that adequately explains the observed time series

For example, identify a model which can account for the fact that the depths of Lake Huron are correlated with differ years and with a decreasing long-term trend

Statistical Modeling: Find a statistical model that adequately explains the observed time series

- For example, identify a model which can account for the fact that the depths of Lake Huron are correlated with differ years and with a decreasing long-term trend
- **•** The fitted model can be used for further statistical inference, for instant, to answer the question like: Is there evidence of decreasing trend in the Lake Huron depths?

[Autocorrelation and](#page-0-0) Time Series Models

Some Objectives of Time Series Analysis, Cont'd

Forecasting is perhaps the most common objective. One observe a time series of given length and wish to **predict** or **forecast** future values of the time series based on those already observed.

Forecasts from TBATS(1, {3,1}, -, {<12,5>})

Some Objectives of Time Series Analysis, Cont'd

- **Adjustment**: an example would be seasonal adjustment, where the seasonal component is estimated and then removed to better understand the underlying trend
- **Simulation**: use a time series model (which adequately describes a physical process) as a surrogate to *simulate repeatedly in order to approximate how the physical process behaves*
- **Control:** adjust various input (control) parameters to make the time series fit more closely to a given standard (many examples from statistical quality control)

[Autocorrelation and](#page-0-0) Time Series Models

[Autocorrelation and](#page-0-0) Time Series Models

MATHEMATICAL AND STATISTICAL SCIENCES

[Time Series Models](#page-13-0)

Lake Huron Time Series

- Time series analysis is the area of statistics which deals with the analysis of dependency between different observations (typically $\{\eta_t\}$)
- Some key features of the Lake Huron time series:
	- decreasing trend
	- some "random" fluctuations around the decreasing trend
- For example, we can extract the 'noise' component by assuming a linear trend

Exploring the Dependence Structure of "Noise" $\{\eta_t\}$

 $\{\eta_t\}$ exhibit a temporal dependence structure, meaning that the nearby (in time) values tend to be more alike than those that are far part. To observe this, let's create a few time lag plots

[Autocorrelation and](#page-0-0) Time Series Models

Further Exploration of the Temporal Dependence Structure

Let's plot the correlation as a function of the time lag

We will learn how to use this information to suggest an appropriate time series model

A time series model is a probabilistic model that describes how the series data y_t could have been generated. More specifically, it is a probability model for ${Y_t : t \in T}$, a collection of random variables indexed in time

[Autocorrelation and](#page-0-0) Time Series Models

- A time series model is a probabilistic model that describes how the series data y_t could have been generated. More specifically, it is a probability model for ${Y_t : t \in T}$, a collection of random variables indexed in time
- We will keep our models for Y_t as simple as possible by assuming stationarity, meaning that some characteristics of the distribution of Y_t depend only on the "time lag" not on the specific time points

- A time series model is a probabilistic model that describes how the series data y_t could have been generated. More specifically, it is a probability model for ${Y_t : t \in T}$, a collection of random variables indexed in time
- We will keep our models for Y_t as simple as possible by assuming stationarity, meaning that some characteristics of the distribution of Y_t depend only on the "time lag" not on the specific time points
- While most time series are not stationary, we can model the non-stationary parts (e.g., by **de-trending** or **de-seasonalizing**) to obtain a stationary component, η_t . We typically assume the process is second-order stationary, meaning

$$
\mathbb{E}[\eta_t] = 0, \quad \forall t \in T \quad \text{and},
$$

$$
\text{Cov}(\eta_t, \eta_{t'}) = \gamma(t'-t) = \text{Cov}(\eta_{t+s}, \eta_{t'+s})
$$

[Autocorrelation and](#page-0-0) Time Series Models

A time series model is a specification of the probabilistic distribution of a sequence of random variables (RVs) η_t

(The observed time series is a realization of such a sequence of random variables)

- The simplest time series is i.i.d. (*independent and identically distributed*) noise
	- \bullet $\{n_t\}$ is a sequence of independent and identically distributed zero-mean (i.e., $\mathbb{E}(\eta_t) = 0, \forall t$) random variables ⇒ no temporal dependence
	- It is of little value of using i.i.d. noise model to conduct forecast as there is no information from the past observations
	- **But**, we will use i.i.d. model as a building block to develop time series models that can accommodate time dependence

[Autocorrelation and](#page-0-0) Time Series Models

Example Realizations of i.i.d. Noise

Gaussian (normal) i.i.d. noise with mean 0 and variance $\sigma^2 > 0$

$$
f(\eta_t) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{\eta_t^2}{2\sigma^2})
$$

o Bernoulli i.i.d. noise with "success" probability

$$
\mathbb{P}(\eta_t = 1) = p = 1 - \mathbb{P}(\eta_t = -1)
$$

[Autocorrelation and](#page-0-0) Time Series Models

Means and Autocovarainces

A time series model could also be a specification of the means and autocovariances of the RVs

• The mean function of $\{\eta_t\}$ is

$$
\mu_t = \mathbb{E}(\eta_t).
$$

 \bullet μ_t is the population mean at time t, which can be computed as:

$$
\mu_t = \begin{cases} \int_{-\infty}^{\infty} \eta_t f(\eta_t) \, d\eta_t & \text{when } \eta_t \text{ is a continuous RV;} \\ \sum_{-\infty}^{\infty} \eta_t p(\eta_t), & \text{when } \eta_t \text{ is a discrete RV,} \end{cases}
$$

where $f(\cdot)$ and $p(\cdot)$ are the probability density function and probability mass function of η_t , respectively

[Autocorrelation and](#page-0-0) Time Series Models

Examples of Mean Functions

Example 1: What is the mean function for $\{\eta_t\}$, an i.i.d. $\mathrm{N}(0,\sigma^2)$ process?

Example 2: For each time point, let $Y_t = \beta_0 + \beta_1 t + \eta_t$ with β_0 and β_1 some constants and η_t is defined above. What is $\mu_Y(t)$?

[Autocorrelation and](#page-0-0) Time Series Models

Review: The Covariance Between Two RVs

• The covariance between the RVs X and Y is

$$
Cov(X, Y) = \mathbb{E}\{(X - \mu_X)(Y - \mu_Y)\}
$$

=
$$
\mathbb{E}(XY) - \mu_X \mu_Y.
$$

It is a measure of linear dependence between the two RVs. When $X = Y$ we have

 $Cov(X, X) = Var(X)$.

 \bullet For constants a, b, c, and RVs X, Y, Z:

$$
Cov(aX + bY + c, Z) = Cov(aX, Z) + Cov(bY, Z)
$$

= $aCov(X, Z) + bCov(Y, Z)$

⇒

$$
Var(X + Y) = Cov(X, X) + Cov(X, Y) + Cov(Y, X) + Cov(Y, Y)
$$

= Var(X) + Var(Y) + 2Cov(X, Y)

[Autocorrelation and](#page-0-0) Time Series Models

Autocovariance Function

• The autocovariance function of $\{\eta_t\}$ is

$$
\gamma(s,t) = \text{Cov}(\eta_s, \eta_t) = \mathbb{E}[(\eta_s - \mu_s)(\eta_t - \mu_t)]
$$

It measures the strength of linear dependence between two RVs η_s and η_t

Properties:

- $\gamma(s,t) = \gamma(t,s)$ for each s and t
- When $s = t$ we have

$$
\gamma(t,t) = \text{Cov}(\eta_t, \eta_t) = \text{Cov}(\eta_t) = \sigma_t^2
$$

the value of the variance function at time t

 $\bullet \gamma(s,t)$ is a non-negative definite function (will come back to this later)

[Autocorrelation and](#page-0-0) Time Series Models

Autocorrelation Function

• The autocorrelation function of $\{\eta_t\}$ is

$$
\rho(s,t) = \text{Corr}(\eta_s, \eta_t) = \frac{\gamma(s,t)}{\sqrt{\gamma(s,s)\gamma(t,t)}}
$$

It measures the "scale invariant" linear association between η_s and η_t

Properties:

- $-1 \leq \rho(s,t) \leq 1$ for each s and t
- $\rho(s,t) = \rho(t,s)$ for each s and t
- $\rho(t, t) = 1$ for each t
- $\rho(\cdot,\cdot)$ is a non-negative definite function

Stationarity

• We typically need "replicates" to estimate population quantities. For example, we use

$$
\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i
$$

to be the estimate of μ_X , the population mean of the **single** RV, X

Stationarity

• We typically need "replicates" to estimate population quantities. For example, we use

$$
\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i
$$

to be the estimate of μ_X , the population mean of the **single** RV, X

• However, in time series analysis, we have $n = 1$ (i.e., no replication) because we only have one realized value at each time point

• We typically need "replicates" to estimate population quantities. For example, we use

> $\bar{X} = \frac{1}{\sqrt{2}}$ n n ∑ $i=1$ X_i

to be the estimate of μ_X , the population mean of the **single** RV, X

- However, in time series analysis, we have $n = 1$ (i.e., no replication) because we only have one realized value at each time point
- Stationarity means that some characteristic of $\{n_t\}$ does not depend on the time point, t , only on the "time lag" between time points **so that we can create "replicates"**

Next, we will discuss strict stationarity and weak stationarity

[Autocorrelation and](#page-0-0) Time Series Models

Strictly Stationary Processes

• A time series, $\{\eta_t\}$, is strictly stationary if

 $[\eta_1, \eta_2, \cdots \eta_T] \stackrel{d}{=} [\eta_{1+h}, \eta_{2+h}, \cdots \eta_{T+h}],$

for all integers h and $T \geq 1 \Rightarrow$ the joint distribution are unaffected by time shifts

- Under such the strict stationarity
	- \bullet $\{n_t\}$ is identically distributed but not (necessarily) independent
	- \bullet $\mu_t = \mu$ is independent of time t

•
$$
\gamma(s,t) = \gamma(s+h,t+h)
$$
, for any s, t, and h

Weakly Stationary Processes

- \bullet $\{n_t\}$ is weakly stationary if
	- $\bullet \mathbb{E}(\eta_t) = \mu_t = \mu$
	- $Cov(\eta_t, \eta_{t+h}) = \gamma(t, t+h) = \gamma(h)$, finite constant that can depend on h but not on t
- Other names for this type of stationarity include second-order, covariance, wide senese. The quantity h is called the lag
- Weak and strict stationarity
	- A strictly stationary process $\{\eta_t\}$ is also weakly stationary as long as μ is finite
	- Weak stationarity does not imply strict stationarity!

[Autocorrelation and](#page-0-0) Time Series Models

Autocovariance Function of Stationary Processes

The autocovariance function (ACVF) of a stationary process $\{n_t\}$ is defined to be

$$
\gamma(h) = \text{Cov}(\eta_t, \eta_{t+h})
$$

=
$$
\mathbb{E}[(\eta_t - \mu)(\eta_{t+h} - \mu)],
$$

which measures the lag-h time dependence

Properties of the ACVF:

- $\gamma(0) = \text{Var}(\eta_t)$
- $\gamma(-h) = \gamma(h)$ for each h
- $\gamma(s-t)$ as a function of $(s-t)$ is non-negative definite

[Autocorrelation and](#page-0-0) Time Series Models

Autocorrelation Function of Stationary Processes

The autocorrelation function (ACF) of a stationary process $\{\eta_t\}$ is defined to be

$$
\rho(h) = \frac{\gamma(h)}{\gamma(0)}
$$

which measures the "scale invariant" lag-h time dependence

Properties of the ACF:

- \bullet −1 $\leq \rho(h) \leq 1$ and $\rho(0) = 1$ for each h
- $\rho(-h) = \rho(h)$ for each h
- $\rho(s-t)$ as a function of $(s-t)$ is non-negative definite

[Autocorrelation and](#page-0-0) Time Series Models

Summary

In this lecture, we discuss

- Objectives of time series analysis
- **o** Time series models
- Mean and auto-covariance/correlation functions
- Stationarity assumption in time series

The most important R function of this lecture is act , which calculates and plots the sample autocorrelation

[Autocorrelation and](#page-0-0) Time Series Models

