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Level of Lake Huron 1875–1972
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Mauna Loa Atmospheric CO2 Concentration
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US Unemployment Rate 1948 Jan. – 2021 July

[Source: St. Louis Federal Reserve Bank’s FRED system]
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Airline Passengers Example
The data set airpassengers, which are the monthly totals of
international airline passengers from 1960 to 1971.
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Here we stabilize the variance with a log10 transformation
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Global Annual Temperature Anomalies

[Source: NASA GISS Surface Temperature Analysis]
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A Simulated Time Series
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Objectives of Time
Series Analysis



Autocorrelation and
Time Series Models

Objectives of Time
Series Analysis

Time Series Models

Mean and
Autocovaraince
Functions

Stationarity

6.10

Some Objectives of Time Series Analysis

Statistical Modeling: Find a statistical model that adequately
explains the observed time series

For example, identify a model which can account for the
fact that the depths of Lake Huron are correlated with differ
years and with a decreasing long-term trend

The fitted model can be used for further statistical
inference, for instant, to answer the question like: Is there
evidence of decreasing trend in the Lake Huron depths?
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Some Objectives of Time Series Analysis, Cont’d

Forecasting is perhaps the most common objective. One
observe a time series of given length and wish to predict or
forecast future values of the time series based on those
already observed.



Autocorrelation and
Time Series Models

Objectives of Time
Series Analysis

Time Series Models

Mean and
Autocovaraince
Functions

Stationarity

6.12

Some Objectives of Time Series Analysis, Cont’d

Adjustment: an example would be seasonal adjustment,
where the seasonal component is estimated and then
removed to better understand the underlying trend

Simulation: use a time series model (which adequately
describes a physical process) as a surrogate to simulate
repeatedly in order to approximate how the physical
process behaves

Control: adjust various input (control) parameters to make
the time series fit more closely to a given standard (many
examples from statistical quality control)
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Time Series Models
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Lake Huron Time Series

Time series analysis is the area of statistics which deals
with the analysis of dependency between different
observations (typically {ηt})

Some key features of the Lake Huron time series:

decreasing trend

some “random” fluctuations around the decreasing trend

For example, we can extract the ‘noise’ component by
assuming a linear trend



Autocorrelation and
Time Series Models

Objectives of Time
Series Analysis

Time Series Models

Mean and
Autocovaraince
Functions

Stationarity

6.15

Exploring the Dependence Structure of “Noise” {ηt}

{ηt} exhibit a temporal dependence structure, meaning that the
nearby (in time) values tend to be more alike than those that
are far part. To observe this, let’s create a few time lag plots
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Further Exploration of the Temporal Dependence Structure

Let’s plot the correlation as a function of the time lag

We will learn how to use this information to suggest an
appropriate time series model
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Time Series Models

A time series model is a probabilistic model that describes
how the series data yt could have been generated. More
specifically, it is a probability model for {Yt ∶ t ∈ T}, a
collection of random variables indexed in time

We will keep our models for Yt as simple as possible by
assuming stationarity, meaning that some characteristics
of the distribution of Yt depend only on the “time lag” not
on the specific time points

While most time series are not stationary, we can model
the non-stationary parts (e.g., by de-trending or
de-seasonalizing) to obtain a stationary component, ηt.
We typically assume the process is second-order
stationary, meaning

E[ηt] = 0, ∀t ∈ T and,
Cov(ηt, ηt′) = γ(t

′
− t) = Cov(ηt+s, ηt′+s)
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Time Series Models

A time series model is a specification of the probabilistic
distribution of a sequence of random variables (RVs) ηt

(The observed time series is a realization of such a
sequence of random variables)

The simplest time series is i.i.d. (independent and
identically distributed) noise

{ηt} is a sequence of independent and identically
distributed zero-mean (i.e., E(ηt) = 0,∀t) random variables
⇒ no temporal dependence

It is of little value of using i.i.d. noise model to conduct
forecast as there is no information from the past
observations

But, we will use i.i.d. model as a building block to develop
time series models that can accommodate time dependence
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Example Realizations of i.i.d. Noise
Gaussian (normal) i.i.d. noise with mean 0 and variance
σ2 > 0

f(ηt) =
1

√
2πσ2

exp(−
η2t
2σ2
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Bernoulli i.i.d. noise with “success” probability

P(ηt = 1) = p = 1 − P(ηt = −1)
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Means and Autocovarainces

A time series model could also be a specification of the means
and autocovariances of the RVs

The mean function of {ηt} is

µt = E(ηt).

µt is the population mean at time t, which can be
computed as:

µt = {
∫
∞

−∞
ηtf(ηt)dηt when ηt is a continuous RV;

∑
∞

−∞
ηtp(ηt), when ηt is a discrete RV,

where f(⋅) and p(⋅) are the probability density function and
probability mass function of ηt, respectively
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Examples of Mean Functions

Example 1: What is the mean function for {ηt}, an i.i.d.
N(0, σ2) process?

Example 2: For each time point, let Yt = β0 + β1t + ηt with
β0 and β1 some constants and ηt is defined above. What
is µY (t)?
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Review: The Covariance Between Two RVs
The covariance between the RVs X and Y is

Cov(X,Y ) = E{(X − µX)(Y − µY )}

= E(XY ) − µXµY .

It is a measure of linear dependence between the two
RVs. When X = Y we have

Cov(X,X) = Var(X).

For constants a, b, c, and RVs X, Y , Z:

Cov(aX + bY + c,Z) = Cov(aX,Z) +Cov(bY,Z)

= aCov(X,Z) + bCov(Y,Z)

⇒

Var(X + Y ) = Cov(X,X) +Cov(X,Y ) +Cov(Y,X) +Cov(Y,Y )

= Var(X) +Var(Y ) + 2Cov(X,Y )
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Autocovariance Function

The autocovariance function of {ηt} is

γ(s, t) = Cov(ηs, ηt) = E[(ηs − µs)(ηt − µt)]

It measures the strength of linear dependence between
two RVs ηs and ηt

Properties:

γ(s, t) = γ(t, s) for each s and t

When s = t we have

γ(t, t) = Cov(ηt, ηt) = Cov(ηt) = σ
2
t

the value of the variance function at time t

γ(s, t) is a non-negative definite function (will come back to
this later)
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Autocorrelation Function

The autocorrelation function of {ηt} is

ρ(s, t) = Corr(ηs, ηt) =
γ(s, t)

√
γ(s, s)γ(t, t)

It measures the “scale invariant” linear association
between ηs and ηt

Properties:

−1 ≤ ρ(s, t) ≤ 1 for each s and t

ρ(s, t) = ρ(t, s) for each s and t

ρ(t, t) = 1 for each t

ρ(⋅, ⋅) is a non-negative definite function
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Stationarity

We typically need “replicates” to estimate population
quantities. For example, we use

X̄ =
1

n

n

∑
i=1

Xi

to be the estimate of µX , the population mean of the
single RV, X

However, in time series analysis, we have n = 1 (i.e., no
replication) because we only have one realized value at
each time point

Stationarity means that some characteristic of {ηt} does
not depend on the time point, t, only on the “time lag”
between time points so that we can create “replicates”

Next, we will discuss strict stationarity and weak sta-
tionarity
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Strictly Stationary Processes

A time series, {ηt}, is strictly stationary if

[η1, η2,⋯ηT ]
d
= [η1+h, η2+h,⋯ηT+h],

for all integers h and T ≥ 1⇒ the joint distribution are
unaffected by time shifts

Under such the strict stationarity

{ηt} is identically distributed but not (necessarily)
independent

µt = µ is independent of time t

γ(s, t) = γ(s + h, t + h), for any s, t, and h
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Weakly Stationary Processes

{ηt} is weakly stationary if

E(ηt) = µt = µ

Cov(ηt, ηt+h) = γ(t, t + h) = γ(h), finite constant that can
depend on h but not on t

Other names for this type of stationarity include
second-order, covariance, wide senese. The quantity h is
called the lag

Weak and strict stationarity

A strictly stationary process {ηt} is also weakly stationary
as long as µ is finite

Weak stationarity does not imply strict stationarity!
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Autocovariance Function of Stationary Processes

The autocovariance function (ACVF) of a stationary process
{ηt} is defined to be

γ(h) = Cov(ηt, ηt+h)

= E[(ηt − µ)(ηt+h − µ)],

which measures the lag-h time dependence

Properties of the ACVF:

γ(0) = Var(ηt)

γ(−h) = γ(h) for each h

γ(s − t) as a function of (s − t) is non-negative definite
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Autocorrelation Function of Stationary Processes

The autocorrelation function (ACF) of a stationary process {ηt}
is defined to be

ρ(h) =
γ(h)

γ(0)

which measures the “scale invariant” lag-h time dependence

Properties of the ACF:

−1 ≤ ρ(h) ≤ 1 and ρ(0) = 1 for each h

ρ(−h) = ρ(h) for each h

ρ(s − t) as a function of (s − t) is non-negative definite
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Summary

In this lecture, we discuss

Objectives of time series analysis

Time series models

Mean and auto-covariance/correlation functions

Stationarity assumption in time series

The most important R function of this lecture is acf, which
calculates and plots the sample autocorrelation
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