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7.3

Time Series Modeling Strategy

Additive Decompstion:

Yt = µt + st + ηt, t = 1,2,⋯, T

1 Plot the data yt to explore the form of µt and st, and check
for non-constant variation in ηt

2 Transform (if necessary) to stabilize variance of ηt

3 Estimate µt and st to obtain residuals η̂t

4 Use residuals to select a time series model for ηt

5 Estimate parameters in µt, st, and ηt (ideally
simultaneously in one step)

6 Check for fit of model (poor fit⇒ return to step 1)

7 Use model for inference: predicting future yt’s, describing
changes in yt over time, hypothesis testing, etc
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7.4

Recap of the Past Few Lectures

We discussed the use of regression techniques to model
the (deterministic) µt and st

Residuals typically suggest temporal dependence in {ηt}

Time series models concern the modeling of temporal
dependence in {ηt}

Stationarity assumption typically employed to overcome
the issue of “one sample”

Weakly stationary: constant mean and variance over time,
with covariance depending only on time lags
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7.5

The Implications of Temporal Dependence
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7.6

The White Noise Process

Let’s assume E(ηt) = µ and Var(ηt) = σ2 <∞. {ηt} is a white
noise or WN(µ,σ2) process if

γ(h) = 0,

for h ≠ 0

{ηt} is stationary

However, distributions of ηt and ηt+1 can be different!

All i.i.d. noise with finite variance (σ2 < 0) is white noise but
the converse need not be true
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Examples Realizations of White Noise Processes
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7.8

The Moving Average Process of First Order: MA(1)

Let {Zt} be a WN(0, σ2) process and θ be some constant ∈ R.
For each integer t, let

ηt = Zt + θZt−1.

The sequences of RVs {ηt} is called the moving average
process of order 1 or MA(1) process

One can show that the MA(1) process {ηt} is stationary
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7.9

MA(1): Mean Function

Need to show the mean function is NOT a function of time t

E[ηt] = E[Zt + θZt−1]
= E[Zt] + θE[Zt−1]
= 0 + θ × 0
= 0, ∀t

,
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MA(1): Covariance Function

Need to show the autovariance function γ(⋅, ⋅) is a function of
time lag only

γ(t, t + h) = Cov(ηt, ηt+h)
= Cov(Zt + θZt−1, Zt+h + θZt+h−1)
= Cov(Zt, Zt+h) +Cov(Zt, θZt+h−1)
+Cov(θZt−1, Zt+h) +Cov(θZt−1, θZt+h−1)

if h = 0, we have γ(t, t + h) = σ2 + θ2σ2 = σ2(1 + θ2)
if h = ±1, we have γ(t, t + h) = θσ2

if ∣h∣ ≥ 2, we have γ(t, t + h) = 0

⇒ γ(t, t + h) only depends on h but not on t,
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7.11

MA(1): ACVF & ACF

ACVF:

γ(h) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

σ2(1 + θ2) h = 0;
θσ2 ∣h∣ = 1;
0 ∣h∣ ≥ 2

We can get ACF by dividing everything by γ(0) = σ2(1 + θ2)

ρ(h) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 h = 0;
θ

1+θ2 ∣h∣ = 1;
0 ∣h∣ ≥ 2.
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Examples Realizations of MA(1) Processes



Stationary Processes

Review

Some Examples of
Stationary Processes

Estimation and
Inference for Mean
Functions

Differencing

7.13

First-order autoregressive process: AR(1)

Let {Zt} be a WN(0, σ2) process, and −1 < ϕ < 1 be a constant.
Let’s assume {ηt} is a stationary process with

ηt = ϕηt−1 +Zt,

for each integer t, where ηs and Zt are uncorrelated for each
s < t⇒ future noise is uncorrelated with the current time point

We will see later there is only one unique solution to this
equation. Such a sequence {ηt} of RVs is called an AR(1)
process
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7.14

Properties of the AR(1) process
Want to find the mean value µ under the weakly stationarity
assumption

E[ηt] = E[ϕηt−1 +Zt]
µ = ϕE[ηt−1] + E[Zt]
µ = ϕµ + 0
⇒ µ = 0, ∀t

,

Want to find γ(h) under the weakly stationarity assumption

Cov(ηt, ηt−h) = Cov(ϕηt−1 +Zt, ηt−h)
γ(−h) = ϕCov(ηt−1, ηt−h) +Cov(Zt, ηt−h)
γ(h) = ϕγ(h − 1) + 0

⇒ γ(h) = ϕγ(h − 1) = ⋯ = ϕ∣h∣γ(0)

Next, need to figure out γ(0)
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7.15

Properties of the AR(1) process Cont’d

Var(ηt) = Var(ϕηt−1 +Zt)
γ(0) = ϕ2γ(0) + σ2

⇒ (1 − ϕ2)γ(0) = σ2

⇒ γ(0) = σ2

1 − ϕ2

,
Therefore, we have

γ(h) =
⎧⎪⎪⎨⎪⎪⎩

σ2

1−ϕ2 h = 0;
ϕ∣h∣σ2

1−ϕ2 ∣h∣ ≥ 1,

and

ρ(h) = { 1 h = 0;
ϕ∣h∣ ∣h∣ ≥ 1.
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Examples Realizations of AR(1) Processes
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The Random Walk Process

Let {Zt} be a WN(0, σ2) process and for t ≥ 1 definite

ηt = Z1 +Z2 +⋯ +Zt =
t

∑
s=1

Zs.

The sequence of RVs {ηt} is called a random walk process

Special case: If we have {Zt} such that for each t

P(Zt = z) = {
1
2
, z = 1;

1
2
, z = −1,

then {ηt} is a simple symmetric random walk

The random walk process is not stationary!
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Example Realizations of Random Walk Processes
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Gaussian Processes

{ηt} is a Gaussian process (GP) if the joint distribution of any
collection of the RVs has a multivariate normal (aka Gaussian)
distribution

The distribution of a GP is fully characterized by µ(⋅), the
mean function, and γ(⋅, ⋅), the autocovariance function.
The joint probability density function of η = (η1, η2,⋯, ηT )T
is

f(η) = 1

(2π)T
2 ∣Σ∣ 12

exp(−1
2
(η −µ)TΣ−1(η −µ)) ,

where µ = (µ1, µ2,⋯, µT )T and the (i, j) element of the
covariance matrix Σ is γ(i, j)

If a GP {ηt} is weakly stationary then the process is also
strictly stationary



Stationary Processes

Review

Some Examples of
Stationary Processes

Estimation and
Inference for Mean
Functions

Differencing

7.20

Estimating the Mean of Stationary Processes
Let {ηt} be stationary with mean µ and ACVF γ(s, t) = γ(s − t)

A natural estimator of µ is the sample mean

η̄ = 1

T

T

∑
t=1

ηt.

η̄ is an unbiased estimator of µ, i.e.

Since {ηt} is stationary, we have

Var(η̄) = 1

T 2
Var(

T

∑
i=1

ηt)

= 1

T 2

T

∑
s=1

T

∑
t=1

Cov(ηs, ηt)

= 1

T 2

T

∑
s=1

T

∑
t=1

γ(s − t)

Exercise: Show

Var(η̄) = 1

T

T−1

∑
h=−(T−1)

(1 − ∣h∣
T
)γ(h)
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7.21

AR(1) Example

Suppose {η1, η2, η3} is an AR(1) process with ∣ϕ∣ < 1 and
innovation variance σ2. Show that the variance of η̄ is

σ2

9(1−ϕ2)
(3 + 4ϕ + 2ϕ2)

Solution:
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7.22

The Sampling Distribution of η̄

Let

vT =
(T−1)

∑
h=−(T−1)

(1 − ∣h∣
T
)γ(h)

If {ηt} is Gaussian we have
√
T (η̄ − µ) ∼ N(0, vT )

The result above is approximate for many non-Gaussian
time series

In practice we also need to estimate γ(h) from the data
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Confidence Intervals for µ

If γ(h)→ 0 as h→∞ then

v = lim
T→∞

vT =
∞

∑
h=−∞

γ(h) exists.

Further, if {ηt} is Gaussian and

∞

∑
h=−∞

∣γ(h)∣ <∞,

then an approximate large-sample 95% CI for µ is given by

[η̄ − 1.96
√

v

T
, η̄ + 1.96

√
v

T
]
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Strategies for Estimating v

Parametric:

Assume a parametric model γθ(⋅), and calculate

v̂ =
∞

∑
h=−∞

γθ̂(h)

based on the ACVF for that model

The standard error, v, will depend on the parameters θ of
the parametric model

Nonparametric:

Estimate v by

v̂ =
∞

∑
h=−∞

γ̂(h),

where γ̂(⋅) is an nonparametric estimate of ACVF
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Examples of Parametric Forms for v

i.i.d. Gaussian Noise: v = γ(0) = σ2 ⇒ CI reduces to the
classical case:

⎡⎢⎢⎢⎢⎣
η̄ − 1.96

√
σ2

T
, η̄ + 1.96

√
σ2

T

⎤⎥⎥⎥⎥⎦

MA(1) process: We have

v =
∞

∑
h=−∞

γ(h) = γ(−1) + γ(0) + γ(1)

= γ(0) + 2γ(1)
= σ2(1 + θ2 + 2θ) = σ2(1 + θ)2

Exercise: Show for an AR(1) process we have

v = σ2

(1 − ϕ)2
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Differencing

Instead of modeling trends, one can consider removing trends
by differencing

Define the first order difference operator ∇ as

∇Yt = Yt − Yt−1 = (1 −B)Yt,

where B is the backshift operator and is defined as
BYt = Yt−1.

Similarly the general order difference operator ∇qYt is
defined recursively as ∇[∇q−1Yt]

The backshift operator of power q is defined as BqYt = Yt−q

In next slide we will see an example regarding the relationship
between ∇q and Bq
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Difference and Backshift Notation

The second order difference is given by

∇2Yt = ∇[∇Yt]
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Difference and Backshift Notation

The second order difference is given by

∇2Yt = ∇[∇Yt]
= ∇[Yt − Yt−1]



Stationary Processes

Review

Some Examples of
Stationary Processes

Estimation and
Inference for Mean
Functions

Differencing

7.29

Difference and Backshift Notation

The second order difference is given by

∇2Yt = ∇[∇Yt]
= ∇[Yt − Yt−1]
= (Yt − Yt−1) − (Yt−1 − Yt−2)
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Difference and Backshift Notation

The second order difference is given by

∇2Yt = ∇[∇Yt]
= ∇[Yt − Yt−1]
= (Yt − Yt−1) − (Yt−1 − Yt−2)
= Yt − 2Yt−1 + Yt−2
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Difference and Backshift Notation

The second order difference is given by

∇2Yt = ∇[∇Yt]
= ∇[Yt − Yt−1]
= (Yt − Yt−1) − (Yt−1 − Yt−2)
= Yt − 2Yt−1 + Yt−2

= (1 − 2B +B2)Yt

In the next slide we will see an example of using differening to
remove the trend
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Removing Trend via Differening

Consider a time series data with a linear trend (i.e.,
{Yt = β0 + β1t + ηt}) where ηt is a stationary time series. Then
first order differencing results in a stationary series with no
trend. To see why

∇Yt = Yt − Yt−1

= (β0 + β1t + ηt) − (β0 + β1(t − 1) + ηt−1)
= β1 + ηt − ηt−1

This is the sum of a stationary series and a constant, and
therefore we have successfully remove the linear trend.
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Notes on Differening

A polynomial trend of order q can be removed by q-th
order differencing

By q-th order differencing a time series we are shortening
its length by q

Differencing does not allow you to estimate the trend, only
to remove it. Therefore it is not appropriate if the aim of
the analysis is to describe the trend
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Seasonal Differening

The lag-d difference operator, ∇d, is defined by

∇dYt = Yt − Yt−d = (1 −Bd)Yt.

Note: This is NOT ∇d!

Example: Consider data that arise from the model
Yt = β0 + β1t + st + ηt, which has a linear trend and
seasonal component that repeats itself every d time
points. Then by just seasonal differencing (lag-d
differening here) this series becomes stationary.

∇dYt = Yt − Yt−d

= [β0 + β1t + st + ηt] − [β0 + β1(t − d) + st−d + ηt−d]
= dβ1 + ηt − ηt−d
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Summary

In this lecture, we discuss

White Noise Processes, MA(1), AR(1)

Estimation and Inference of the Mean of Stationary
Processes

Differencing to Remove Trend and Seasonality

The most important R function for this lecture is arima.sim,
which can be used to simulate MA(1), AR(1), and more general
ARIMA models
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