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@ Plot the data y; to explore the form of u; and s;, and check
for non-constant variation in n;
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Time Series Modeling Strategy
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@ Plot the data y; to explore the form of u; and s;, and check
for non-constant variation in n;

@ Transform (if necessary) to stabilize variance of n;

© Estimate p; and s; to obtain residuals 7);
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Time Series Modeling Strategy Slationany frocesses

0% iiitmmcrmn
Additive Decompstion: QY sciiis

}/—t:‘LLt'l’St‘f‘nt, t:1,2,"',T

@ Plot the data y; to explore the form of u; and s;, and check
for non-constant variation in n;

@ Transform (if necessary) to stabilize variance of n;
© Estimate p; and s; to obtain residuals 7);

© Use residuals to select a time series model for n;
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Time Series Modeling Strategy Slationany frocesses
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@ Plot the data y; to explore the form of u; and s;, and check
for non-constant variation in n;

@ Transform (if necessary) to stabilize variance of n;
© Estimate p; and s; to obtain residuals 7);
© Use residuals to select a time series model for n;

@ Estimate parameters in p;, s;, and 7, (ideally
simultaneously in one step)

7.3



Time Series Modeling Strategy Stonny Fosesse

0% Jiiemncn

Additive Decompstion: QY s
K:ﬂt+st+77t7 t:1727"',T

@ Plot the data y; to explore the form of u; and s;, and check
for non-constant variation in n;

@ Transform (if necessary) to stabilize variance of n;
© Estimate p; and s; to obtain residuals 7);
© Use residuals to select a time series model for n;

@ Estimate parameters in p;, s;, and 7, (ideally
simultaneously in one step)

@ Check for fit of model (poor fit = return to step 1)
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Time Series Modeling Strategy S ACETE

0% Jiiemncn

Additive Decompstion: Q@ s sobcs
K:ﬂt+5t+nt7 t:1727"',T

@ Plot the data y; to explore the form of u; and s;, and check
for non-constant variation in n;

@ Transform (if necessary) to stabilize variance of n;
© Estimate p; and s; to obtain residuals 7);
@ Use residuals to select a time series model for 7,

@ Estimate parameters in p;, s;, and 7, (ideally
simultaneously in one step)

@ Check for fit of model (poor fit = return to step 1)

@ Use model for inference: predicting future y;’s, describing
changes in y; over time, hypothesis testing, etc

7.3



Stationary Processes

Recap of the Past Few Lectures
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@ We discussed the use of regression techniques to model
the (deterministic) u; and s;

74



Stationary Processes

Recap of the Past Few Lectures

0% Jiiomcnmn
@ STATSTICALSGIENCES

@ We discussed the use of regression techniques to model
the (deterministic) u; and s;

@ Residuals typically suggest temporal dependence in {n;}

74



Stationary Processes

Recap of the Past Few Lectures

0% Jiiomcnmn
@ STATSTICALSGIENCES

@ We discussed the use of regression techniques to model
the (deterministic) u; and s;

@ Residuals typically suggest temporal dependence in {n;}

@ Time series models concern the modeling of temporal
dependence in {n;}

74



Stationary Processes

Recap of the Past Few Lectures
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@ We discussed the use of regression techniques to model
the (deterministic) u; and s,

@ Residuals typically suggest temporal dependence in {n;}

@ Time series models concern the modeling of temporal
dependence in {n;}

@ Stationarity assumption typically employed to overcome
the issue of “one sample”
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Stationary Processes

Recap of the Past Few Lectures

0% iiitmmcrmn
@ STATSTICALSGIENCES

@ We discussed the use of regression techniques to model
the (deterministic) u; and s,

@ Residuals typically suggest temporal dependence in {n;}

@ Time series models concern the modeling of temporal
dependence in {n;}

@ Stationarity assumption typically employed to overcome
the issue of “one sample”

@ Weakly stationary: constant mean and variance over time,
with covariance depending only on time lags
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The Implications of Temporal Dependence

Residuals

o B N

Stationary Processes
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@ There is a consistent relationship between conservative

residuals

The usual regression assumptions are violated, and ¢- and
F-tests are not valid ®

We can get better predictions of future values by modeling
autocorrelation ©
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Stationary Processes

The White Noise Process
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Let's assume E(7;) =  and Var(n;) = 02 < c0. {n;} is a white
noise or WN(y,o2) process if Sl

v(h) =0,

forh 0

o {n;} is stationary
@ However, distributions of 7; and 7.1 can be different!

@ Alli.i.d. noise with finite variance (o2 < 0) is white noise but
the converse need not be true
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Stationary Processes

Examples Realizations of White Noise Processes
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The Moving Average Process of First Order: MA(1)

Let {Z;} be a WN(0,0?) process and § be some constant € R.
For each integer ¢, let

M = Zt + 9Zt—1-

@ The sequences of RVs {1} is called the moving average
process of order 1 or MA(1) process

@ One can show that the MA(1) process {7} is stationary

Stationary Processes

0% Jiiomcnmn
@ STATSTICALSGIENCES

Some Examples of
Stationary Processes

7.8



MA(1): Mean Function

Need to show the mean function is NOT a function of time ¢

E[m] =E[Z +0Z;-1]
= E[Zt] + 9E|:Zt,1]
=0+6x0

=0,

Vi

Stationary Processes
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Some Examples of
Stationary Processes
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Stationary Processes

MA(1): Covariance Function

‘ school of
@ B,
Need to show the autovariance function ~(-,-) is a function of
tlme lag only Some Examples of
Stationary Processes

Y(t,t+h) = Cov(ne, Ne+n)
=Cov(Zy+0Z4_1, Zpsn + 021 p-1)
=Cov(Zy, Zysn) + Cov(Zy,0Z411-1)
+Cov(0Zi-1,Z1) + Cov(0Z1-1,0Z1ip-1)



Stationary Processes

MA(1): Covariance Function

0% iiewmon
Q& STSTCALSGEACES

Need to show the autovariance function ~(-,-) is a function of
time lag only

Some Examples of
Stationary Processes

y(t,t+h) = Cov(ne, Nesn)
=Cov(Zy+0Z4_1, Zpsn + 021 p-1)
=Cov(Zy, Zysn) + Cov(Zy,0Z-1)
+Cov(0Zi-1,Z1) + Cov(0Z1-1,0Z1ip-1)

if h=0, we have  ~(t,t+h)=02+6%02=02(1+67)
if h==+1, we have ~(t,t+h) =00
if |h| >2, we have  ~(t,t+h) =0

= ~(t,t + h) only depends on & but not on ¢ @



MA(1 ) . ACVF & ACF Stationary Processes
' School of
o .

ACVF:

Some Examples of
Stationary Processes

o?(1+6%) h=0;
MO S I TP

0 |h| >2

We can get ACF by dividing everything by ~(0) = o2(1 + 62)

1 h=0;
ph) =1 1 |hl=1;
0 |hl>2.



Examples Realizations of MA(1) Processes
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First-order autoregressive process: AR(1)

Let {Z;} be a WN(0,0?) process, and -1 < ¢ < 1 be a constant.
Let's assume {n;} is a stationary process with

e = Pne-1 + Zt,

for each integer ¢, where 1, and Z, are uncorrelated for each
s < t = future noise is uncorrelated with the current time point

We will see later there is only one unique solution to this
equation. Such a sequence {7} of RVs is called an AR(1)
process

Stationary Processes

0% Jiiomcnmn
@ STATSTICALSGIENCES

Some Examples of
Stationary Processes



Properties of the AR(1) process
Want to find the mean value p under the weakly stationarity
assumption

E[n:] = E[¢ni-1 + Z4]
1= 9E[n-1] + E[Z:]
p=ou+0

=>u=0, Vi

Stationary Processes
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Some Examples of
Stationary Processes



Stationary Processes

Properties of the AR(1) process

. . . ‘ School of
Want to find the mean value ;. under the weakly stationarity O‘g L0,

assumption
Some Examples of
E[T]f] _ E[¢nt_1 + Zf] Stationary Processes
p=@E[m1] +E[Z]
p=ou+0
=>u=0, Vi

©

Want to find v(4) under the weakly stationarity assumption

Cov(ne,me-n) = Cov(dme—1 + Ze, Mi-n)
¥(=h) = ¢Cov(ni-1,Me-n) + Cov(Zs, mi-n)
v(h) =¢y(h-1)+0
= 7(h) = py(h—1) = = ¢"I1(0)

Next, need to figure out v(0) 714



Properties of the AR(1) process Cont’d

Var(n,) = Var(¢n—1 + Zy)
7(0) = 6°7(0) + 0
= (1-¢*)7(0) = 0®

02

=10)=1—5

©

Therefore, we have

2
o h=0;
h _ 1_¢2 Y
e { oo b1,

and

1 h=0;

Stationary Processes
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Examples Realizations of AR(1) Processes Siatonary Frosesses
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The Random Walk Process

Let {Z;} be a WN(0,0?) process and for ¢ > 1 definite

t
=21+ Zy++Zy= Yy Zs.
s=1

@ The sequence of RVs {1} is called a random walk process
@ Special case: If we have {Z;} such that for each ¢

1, z=1;
P(Zt—Z)—{ g’ Z:—l,

then {n;} is a simple symmetric random walk

@ The random walk process is not stationary!

Stationary Processes
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Some Examples of
Stationary Processes



Example Realizations of Random Walk Processes

Stationary Processes

0% iiewmon
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Some Examples of
Stationary Processes
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Stationary Processes

Gaussian Processes
@ i,
{n:} is a Gaussian process (GP) if the joint distribution of any
collection of the RVs has a multivariate normal (aka Gaussian)
Some Examples of

dlStrIbUtIOﬂ Stationary Processes

@ The distribution of a GP is fully characterized by u(-), the
mean function, and ~(-,-), the autocovariance function.
The joint probability density function of = (11,72, -, n7)*
is

f(n) =

(%);E'; exp (—%(n -w)'s T (n- u)) ,

where p = (p1, po, - ur )’ and the (i,5) element of the
covariance matrix X is (4, )

o If a GP {n.} is weakly stationary then the process is also
strictly stationary



Stationary Processes

Estimating the Mean of Stationary Processes
Let {n;} be stationary with mean p and ACVF ~(s,t) = v(s-1t) O“g ?rﬂféﬂé‘ll“?éé#&s
@ A natural estimator of u is the sample mean

Estimation and
Inference for Mean

7] is an unbiased estimator of y, i.e. Functions



Estimating the Mean of Stationary Processes
Let {7;} be stationary with mean u and ACVF ~(s,t) = v(s - t)
@ A natural estimator of u is the sample mean

1%
n==2,M
T t=1
7] is an unbiased estimator of y, i.e.

@ Since {n} is stationary, we have

1 T
Var(7) = ﬁVar (Z 77t)

'ﬂ‘H *ﬂ‘,_.

i M'ﬂ i Mh]

T
2. 2 Covls,m)
T
P

Stationary Processes
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Estimation and
Inference for Mean
Functions



Estimating the Mean of Stationary Processes
Let {7;} be stationary with mean u and ACVF ~(s,t) = v(s - t)
@ A natural estimator of u is the sample mean

1%
n==2,M
T t=1
7] is an unbiased estimator of y, i.e.

@ Since {n} is stationary, we have

'ﬂ‘H *ﬂ‘,_.

i Mﬂ i Mh]

o Exercise: Show

1 |h|
Var(7) = f (Zj;_l)(l—T)’Y(h)

Stationary Processes

0% Jiiomcnmn
" STATISTICAL SCIENCES

Estimation and
Inference for Mean
Functions



AR(1 ) Example Stationary Processes
." MATHEMATICA[ AND

Qe

Estimation and
Inference for Mean
Functions

Suppose {n1,m2,m3} is an AR(1) process with |¢| < 1 and
innovation variance 2. Show that the variance of 7 is

2
m(3+4¢+2¢2)

Solution:



The Sampling Distribution of 7 SRR FIESEEE

0% Jiiomcnmn
@ STATSTICALSGIENCES

Let
T—
— ( 1) _ m h Estimation and
vr= ) |- ()

Inference for Mean
h=—(T-1)

Functions

o If {n.} is Gaussian we have

VT (5= 1) ~ N(0, v7)

@ The result above is approximate for many non-Gaussian
time series

@ In practice we also need to estimate (/) from the data



Confidence Intervals for 1

@ If y(h) > 0as h — oo then

v= Th_r)rol<> vr= Y, 7(h) exists.

h=—oc0
@ Further, if {n;} is Gaussian and

S ()] < oo,
h=—oc0

then an approximate large-sample 95% Cl for u is given by

v v
n—1. — 1+ 1. —
[" 96\@"“ 96\/;]

Stationary Processes
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Estimation and
Inference for Mean
Functions



Stationary Processes

Strategies for Estimating v

0% Jiiomcnmn
@ STATSTICALSGIENCES

@ Parametric:

o Assume a parametric model vg(-), and calculate

Estimation and
= Inference for Mean
N — N Functions
o= 3 75(h)
h=—o0

based on the ACVF for that model

o The standard error, v, will depend on the parameters 6 of
the parametric model

@ Nonparametric:

o Estimate v by
o= A(h),
h=-—oc0

where 4(-) is an nonparametric estimate of ACVF



Examples of Parametric Forms for v

@ i.i.d. Gaussian Noise: v = 7(0) = 02 = Cl reduces to the
classical case:

o2 02
n—1.96\/ —,n+1.96\/ —
s

@ MA(1) process: We have

v= hi v(h) =v(-1) +7(0) + (1)

=7(0) +2v(1)
=o?(1+6%+20) =c%(1+0)*

o Exercise: Show for an AR(1) process we have

0_2

(1-¢)?

Stationary Processes

0% Jiiomcnmn
@ STATSTICALSGIENCES

Estimation and
Inference for Mean
Functions



Stationary Processes

Differencing

0% Jinionmowmn
. . . @ STATSTCALSEENCES
Instead of modeling trends, one can consider removing trends

by differencing

o Define the first order difference operator v as
v}/f = )/f - Y;_l = (1 - B))/f7 Differencing
where B is the backshift operator and is defined as

BY; =Y.

o Similarly the general order difference operator v?Y; is
defined recursively as V[V 'Y;]

@ The backshift operator of power ¢ is defined as BY; = Y;_,

In next slide we will see an example regarding the relationship
between v? and B



Difference and Backshift Notation

“‘ NATHEMATICAL AND
Q@ STTSTICALSCiEkcEs
& STATTICAL S

The second order difference is given by

v2Y; = V[VY;]




Difference and Backshift Notation

The second order difference is given by

v2Y; = V[VY]
=V[Y: - Y]

Stationary Processes
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Stationary Processes

Difference and Backshift Notation

0% iiewmon
Q& STSTCALSGEACES

The second order difference is given by

Differencing

VY, = V[VY:]
=V[Y: - Y]
=(Yi-Yi1) - (Yio1 - Yi2)



Stationary Processes

Difference and Backshift Notation

0% iiewmon
Q& STSTCALSGEACES

The second order difference is given by

Differencing

VY, = V[VY:]
=V[Y; - Y]
= (Y- Y1) = (Yie1 = Vi2)
=Y; -2, 1 +Y 0

7.30



Stationary Processes

Difference and Backshift Notation

0% Jiiomcnmn
@ STATSTICALSGIENCES

The second order difference is given by

v2Y; = V[VY:]
=V[Y: - Y]
=(Y; Y1) - (Yee1 - Yioo)
=Y, -2V, 1 +Yio
= (1-2B+B*Y,

Differencing

In the next slide we will see an example of using differening to
remove the trend

7.31



Removing Trend via Differening

Consider a time series data with a linear trend (i.e.,

{Y; = Bo + B1t + n: }) where 7, is a stationary time series. Then
first order differencing results in a stationary series with no
trend. To see why

VY, =Y, -Yi,4
=(Bo+Pit+mn:) = (Bo+Pr(t—1) +m-1)
=B1+n =1

This is the sum of a stationary series and a constant, and
therefore we have successfully remove the linear trend.

Stationary Processes

0% iiitmmcrmn
@ STATSTICALSGIENCES

Differencing

7.32



Notes on Differening

@ A polynomial trend of order ¢ can be removed by ¢-th
order differencing

@ By ¢-th order differencing a time series we are shortening
its length by ¢

@ Differencing does not allow you to estimate the trend, only
to remove it. Therefore it is not appropriate if the aim of
the analysis is to describe the trend

Stationary Processes

0% iiitmmcrmn
@ STATSTICALSGIENCES

Differencing

7.33



Stationary Processes

Seasonal Differening
@ i,

@ The lag-d difference operator, Vv, is defined by
VaYi =Y, -V 4= (1- BYY;.

Note: This is NOT v¢!

Differencing

o Example: Consider data that arise from the model
Y; = Bo + Bit + s + ¢, which has a linear trend and
seasonal component that repeats itself every d time
points. Then by just seasonal differencing (lag-d
differening here) this series becomes stationary.

VaYe =Y~ Yiq
=[Bo + Bit +s¢ +m] = [Bo + Br(t —d) + 5¢—q + Mi-d]
=dpBy + 1 — M-

7.34



Summary

In this lecture, we discuss

@ White Noise Processes, MA(1), AR(1)

o Estimation and Inference of the Mean of Stationary
Processes

o Differencing to Remove Trend and Seasonality
The most important R function for this lecture is arima.sim,

which can be used to simulate MA(1), AR(1), and more general
ARIMA models

Stationary Processes

0% iiitmmcrmn
@ STATSTICALSGIENCES

Differencing
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