Lecture 8

Autoregressive Moving-Average (ARMA) Models

Reading: Bowerman, O'Connell, and Koehler (2005): Chapter 9; Cryer and Chen (2008): Chapter 4

MATH 4070: Regression and Time-Series Analysis

Autoregressive [Moving-Average](#page-52-0) (ARMA) Models

Whitney Huang Clemson University

Agenda

Estimation of Autocovariance Function γ(⋅)

Goal: Want to estimate

$$
\gamma(h) = \text{Cov}(\eta_t, \eta_{t+h}) = \mathbb{E}[(\eta_t - \mu)(\eta_{t+h} - \mu)]
$$

using data $\{\eta_t\}_{t=1}^T$

Estimation of Autocovariance Function γ(⋅)

Goal: Want to estimate

$$
\gamma(h) = \text{Cov}(\eta_t, \eta_{t+h}) = \mathbb{E}[(\eta_t - \mu)(\eta_{t+h} - \mu)]
$$

using data $\{\eta_t\}_{t=1}^T$

For $|h| < T$, consider

$$
\hat{\gamma}(h) = \frac{1}{T} \sum_{t=1}^{T-|h|} (\eta_t - \bar{\eta})(\eta_{t+|h|} - \bar{\eta}).
$$

We call $\hat{\gamma}(h)$ the sample ACVF

• The sample ACVF $\hat{\gamma}(h)$ is used as the **standard** estimate of $\gamma(h)$ and is even and non-negative definite

Autoregressive

Estimation of Autocovariance Function $γ(·)$

Goal: Want to estimate

$$
\gamma(h) = \text{Cov}(\eta_t, \eta_{t+h}) = \mathbb{E}[(\eta_t - \mu)(\eta_{t+h} - \mu)]
$$

using data $\{\eta_t\}_{t=1}^T$

For $|h| < T$, consider

$$
\hat{\gamma}(h) = \frac{1}{T} \sum_{t=1}^{T-|h|} (\eta_t - \bar{\eta})(\eta_{t+|h|} - \bar{\eta}).
$$

We call $\hat{\gamma}(h)$ the sample ACVF

- **•** The sample ACVF $\hat{\gamma}(h)$ is used as the **standard** estimate of $\gamma(h)$ and is even and non-negative definite
- The sample ACVF is a biased estimator of $\gamma(h)$, that is, $\mathbb{E}[\hat{\gamma}(h)] \neq \gamma(h)$

The Sample Autocorrelation Function

The sample autocorrelation function (ACF) is defined for $|h|$ < T by λ / λ

$$
\hat{\rho}(h)=\frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}.
$$

The Sample Autocorrelation Function

The sample autocorrelation function (ACF) is defined for $|h|$ < T by

$$
\hat{\rho}(h) = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}.
$$

• Rule of thumb: Box and Jenkins (1976) recommend using $\hat{\rho}(h)$ and $\hat{\gamma}(h)$ only for $\frac{|h|}{T} \leq \frac{1}{4}$ and $T \geq 50$

The Sample Autocorrelation Function

The sample autocorrelation function (ACF) is defined for $|h|$ < T by

$$
\hat{\rho}(h) = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}.
$$

- **e Rule of thumb**: Box and Jenkins (1976) recommend using $\hat{\rho}(h)$ and $\hat{\gamma}(h)$ only for $\frac{|h|}{T} \leq \frac{1}{4}$ and $T \geq 50$
- **•** This is because estimates $\hat{\rho}(h)$ and $\hat{\gamma}(h)$ are unstable for large ∣h∣ as there will be no enough data points going into the estimator

Calculating the Sample ACF in R

- **.** Use acf function to calculate the sample ACF
- **Lake Huron Example** (acf (LakeHuron) –note that this is NOT the right thing to do here; see the next slide))

Year

Sample ACF for the Lake Huron Example

- Recall that the ACF is used to characterize a stationary process
- Ensure the series is (approximately) stationary; if not, model and remove the non-stationary component.

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

Asymptotic Distribution of the Sample ACF [Bartlett, 1946]

Let $\{\eta_t\}$ be a stationary process we suppose that the ACF

$$
\boldsymbol{\rho} = (\rho(1), \rho(2), \cdots, \rho(k))^{T}
$$

is estimated by

$$
\hat{\boldsymbol{\rho}} = (\hat{\rho}(1), \hat{\rho}(2), \cdots, \hat{\rho}(k))^{T}
$$

 \bullet For large T

$$
\hat{\boldsymbol{\rho}} \stackrel{\cdot}{\sim} \mathrm{N}_k(\boldsymbol{\rho}, \frac{1}{T}W),
$$

where N_k is the k-variate normal distribution and W is an $k \times k$ covariance matrix with (i, j) element defined by

$$
w_{ij} = \sum_{h=1}^{\infty} a_{ih} a_{jh}, \quad 1 \le i \le k, \quad 1 \le j \le k
$$

where $a_{ih} = \rho(h + i) + \rho(h - i) - 2\rho(h)\rho(i)$

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

Using the ACF as a Test for i.i.d. Noise

When $\{\eta_t\}$ is an **i.i.d. process** with finite variance, Bartlett's result simplifies for each $h \neq 0$

$$
\hat{\rho}(h) \sim \mathcal{N}(0, \frac{1}{T}).
$$

This suggests a diagnostic for i.i.d. noise:

Plot the lag h versus the sample ACF $\hat{\rho}(h)$

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

Using the ACF as a Test for i.i.d. Noise

When $\{\eta_t\}$ is an **i.i.d. process** with finite variance, Bartlett's result simplifies for each $h \neq 0$

$$
S(h) \sim \mathcal{N}(0, \frac{1}{T}).
$$

This suggests a diagnostic for i.i.d. noise:

Plot the lag h versus the sample ACF $\hat{\rho}(h)$

 $\hat{\rho}$

2 Draw two horizontal lines at $\pm \frac{1.96}{\sqrt{T}}$ (blue dashed lines in R)

Using the ACF as a Test for i.i.d. Noise

When $\{\eta_t\}$ is an **i.i.d. process** with finite variance, Bartlett's result simplifies for each $h \neq 0$

$$
S(h) \sim \mathcal{N}(0, \frac{1}{T}).
$$

This suggests a diagnostic for i.i.d. noise:

Plot the lag h versus the sample ACF $\hat{\rho}(h)$

 $\hat{\rho}$

2 Draw two horizontal lines at $\pm \frac{1.96}{\sqrt{T}}$ (blue dashed lines in R)

3 About 95% of the $\{\hat{\rho}(h) : h = 1, 2, 3, \dots\}$ should be within the lines **if we have i.i.d. noise**

The Portmanteau Test [Box and Pierce, 1970] for i.i.d. Noise

Suppose we wish to test:

 H_0 : { $\eta_1, \eta_2, \dots, \eta_T$ } is an i.i.d. noise sequence H_1 : H_0 is false

 \bullet Under H_0 .

$$
\hat{\rho}(h) \sim \mathcal{N}(0, \frac{1}{T}) \stackrel{d}{=} \frac{1}{\sqrt{T}} \mathcal{N}(0, 1)
$$

Hence

$$
Q = T \sum_{i=1}^{k} \hat{\rho}^2(h) \sim \chi^2_{df=k}
$$

We reject H_0 if $Q > \chi_k^2(1-\alpha)$, the $1-\alpha$ quatile of the chi-squared distribution with k degrees of freedom

Autoregressive [Moving-Average](#page-0-0)

Ljung-Box Test [Ljung and Box, 1978]

Ljung and Box [1978] showed that

$$
Q_{\rm LB} = T(T - 2) \sum_{h=1}^{k} \frac{\hat{\rho}^2(h)}{T - h} \sim \chi_k^2.
$$

The Ljung-Box test can be more powerful than the Portmanteau test

Both the Portmanteau Test (aka Box-Pierce test) and Ljung-Box test can be carried out in R using the function Box.test, with the options type = c ("Box-Pierce", "Ljung-Box")

Examples in R
> Box.test(rnorm(100), 20)

Box-Pierce test

rnorm(100) data: X -squared = 12.197, df = 20, p-value = 0.9091

> Box.test(LakeHuron, 20)

Box-Pierce test

data: LakeHuron X -squared = 182.43, df = 20, p-value < 2.2e-16

> Box.test(LakeHuron, 20, type = "Ljung")

Box-Ljung test

data: LakeHuron X-squared = 192.6 , df = 20 , p-value < $2.2e-16$

Linear Processes

• A time series $\{\eta_t\}$ is a linear process with mean μ if we can write it as

$$
\eta_t = \mu + \sum_{j=-\infty}^{\infty} \psi_j Z_j, \quad \forall t,
$$

where μ is a real-valued constant, $\{Z_t\}$ is a $\text{WN}(0,\sigma^2)$ process and $\{\psi_j\}$ is a set of absolutely summable constants¹

Absolute summability of the constants guarantees that the infinite sum converges

¹A set of real-valued constants $\{\psi_i : j \in \mathbb{Z}\}\)$ is absolutely summable if $\sum_{j=-\infty}^{\infty} |\psi_j| < \infty$

Example: Moving Average Process of Order q**, MA(**q**)**

Let $\{Z_t\}$ be a ${\rm WN}(0,\sigma^2)$ process. For an integer $q>0$ and constants $\theta_1, \dots, \theta_q$ with $\theta_q \neq 0$, define

$$
\eta_t = Z_t + \theta_1 Z_{t-1} + \dots + \theta_q Z_{t-q}
$$

$$
= \theta_0 Z_t + \theta_1 Z_{t-1} + \dots + \theta_q Z_{t-q}
$$

$$
= \sum_{j=0}^q \theta_j Z_{t-j},
$$

where we let $\theta_0 = 1$

 ${n_t}$ is known as the moving average process of order q, or the $MA(q)$ process, and, by definition, is a linear process

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

Defining Linear Processes with Backward Shifts

 \bullet Recall the backward shift operator, B , is defined by $B\eta_t = \eta_{t-1}$

Defining Linear Processes with Backward Shifts

- Recall the backward shift operator, B , is defined by $B\eta_t = \eta_{t-1}$
- We can represent a linear process using the backward shift operator as $\eta_t = \mu + \psi(B) Z_t$, where we let $\psi(B) = \sum_{j=-\infty}^{\infty} \psi_j B^j$

Defining Linear Processes with Backward Shifts

- Recall the backward shift operator, B , is defined by $B\eta_t = \eta_{t-1}$
- We can represent a linear process using the backward shift operator as $\eta_t = \mu + \psi(B)Z_t$, where we let $\psi(B) = \sum_{j=-\infty}^{\infty} \psi_j B^j$
- \bullet Example: we can write a mean zero MA (1) process as

$$
\eta_t = \mu + \psi(B) Z_t,
$$

where $\mu = 0$ and $\psi(B) = 1 + \theta B$

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

Linear Filtering Preserves Stationarity

- Let ${Y_t}$ be a time series and ${\psi_i}$ be a set of absolutely summable constants that does not depend on time
- **Definition:** A linear time invariant filtering of ${Y_t}$ with coefficients $\{\psi_i\}$ that do not depend on time is defined by

$$
X_t = \psi(B)Y_t
$$

• Theorem: Suppose ${Y_t}$ is a zero mean stationary series with ACVF $\gamma_Y(\cdot)$. Then $\{X_t\}$ is a zero mean stationary process with ACVF

$$
\gamma_X(h) = \sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \psi_j \psi_k \gamma_Y(j-k+h)
$$

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

Example: The MA(q**) Process is Stationary**

By the filtering preserves stationarity result, the $MA(q)$ process is a stationary process with mean zero and ACVF

$$
\gamma(h) = \sigma^2 \sum_{j=0}^{q} \theta_j \theta_{j+h}
$$

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

Example: The MA(q**) Process is Stationary**

By the filtering preserves stationarity result, the $MA(q)$ process is a stationary process with mean zero and ACVF

$$
\gamma(h) = \sigma^2 \sum_{j=0}^q \theta_j \theta_{j+h}
$$

$$
\gamma(h) = \sum_{j=0}^{q} \sum_{k=0}^{q} \theta_j \theta_k \gamma_Z (j - k + h)
$$

$$
= \sigma^2 \sum_{j=0}^{q} \sum_{k=0}^{q} \theta_j \theta_k \mathbb{1}(k = j + h)
$$

$$
= \sigma^2 \sum_{j=0}^{q} \theta_j \theta_{j+h}
$$

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

Processes with a Correlation that Cuts Off

• A time series η_t is q-correlated if

 η_t and η_s are uncorrelated $\forall |t-s| > q$,

i.e.,
$$
\text{Cov}(\eta_t, \eta_s) = 0, \forall |t - s| > q
$$

• A time series $\{\eta_t\}$ is q-dependent if

 η_t and η_s are independent ∀ $|t - s| > q$.

• Theorem: if $\{\eta_t\}$ is a stationary q-correlated time series with zero mean, then it can be always be represented as an $MA(q)$ process

AR(p**): Autoregressive Process of Order** p

- This process is attributed to George Udny Yule. The AR(1) process has also been called the Markov process
- Let $\{Z_t\}$ be a $\text{WN}(0,\sigma^2)$ process and let $\{\phi_1, \cdot\cdot\cdot, \phi_p\}$ be a set of constants for some integer $p > 0$ with $\phi_n \neq 0$
- The (zero-mean) $AR(p)$ process is defined to be the solution to the equation

$$
\eta_t = \sum_{j=1}^p \phi_j \eta_{t-j} + Z_t \Rightarrow \underbrace{\eta_t - \sum_{j=1}^p \phi_j \eta_{t-j}}_{\phi(B)\eta_t} = Z_t,
$$

where we let $\phi(B)$ = $1-\sum_{j=1}^p \phi_j B^j$

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

A Stationary Solution for AR(1)

- We want the solution to the AR equation to yield a stationary process. Let's first consider AR(1). We will demonstrate that **a stationary solution exists for** $|\phi_1| < 1$.
- We first write

$$
\eta_t = \phi_1 \eta_{t-1} + Z_t = \phi_1 (\phi_1 \eta_{t-2} + Z_{t-1}) + Z_t
$$

\n
$$
= \phi_1^2 \eta_{t-2} + \phi_1 Z_{t-1} + Z_t
$$

\n:
\n:
\n
$$
= \phi_1^k \eta_{t-k} + \sum_{j=0}^{k-1} \phi_1^j Z_{t-j}
$$

\n:
\n:
\n
$$
= \sum_{j=0}^{\infty} \phi_1^j Z_{t-j}
$$

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

Now let $\psi_j = \phi_1^j$. We then have

$$
\eta_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}.
$$

Using the fact that, for $|a| < 1$, $\sum_{j=0}^{\infty} a^j = \frac{1}{1-a}$, the sequence $\{\psi_i\}$ is absolutely summable

• Thus, since $\{\eta_t\}$ is a linear process, it follows by the filtering preserves stationarity result that $\{\eta_t\}$ is a zero mean stationary process with ACVF

$$
\gamma(h) = \sigma^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+h}
$$

$$
= \sigma^2 \sum_{j=0}^{\infty} \phi_1^j \phi_1^{j+h}
$$

$$
= \sigma^2 \phi^h \sum_{j=0}^{\infty} (\phi_1^2)^j
$$

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

Now $|\phi_1|$ < 1 implies that $|\phi_1^2|$ < 1 and therefore we have

$$
\gamma(h) = \frac{\sigma^2 \phi_1^h}{1 - \phi_1^2}
$$

When $|\phi_1| \geq 1$ • No stationary solutions exist for $|\phi_1| = 1$

Now $|\phi_1|$ < 1 implies that $|\phi_1^2|$ < 1 and therefore we have

$$
\gamma(h) = \frac{\sigma^2 \phi_1^h}{1 - \phi_1^2}
$$

When $|\phi_1| \geq 1$

- No stationary solutions exist for $|\phi_1| = 1$
- When $|\phi_1| > 1$, dividing by ϕ_1 for both sides we get

$$
\phi_1^{-1} \eta_t = \eta_{t-1} + \phi_1^{-1} Z_t
$$

\n
$$
\Rightarrow \eta_{t-1} = \phi_1^{-1} \eta_t - \phi_1^{-1} Z_t
$$

A linear combination of **future** Z_t 's \Rightarrow we have a stationary solution, but, η_t depends on future $\{Z_t\}$'s–This process is said to be not causal

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

Now $|\phi_1|$ < 1 implies that $|\phi_1^2|$ < 1 and therefore we have

$$
\gamma(h) = \frac{\sigma^2 \phi_1^h}{1 - \phi_1^2}
$$

When $|\phi_1| \geq 1$

- No stationary solutions exist for $|\phi_1| = 1$
- When $|\phi_1| > 1$, dividing by ϕ_1 for both sides we get

$$
\phi_1^{-1} \eta_t = \eta_{t-1} + \phi_1^{-1} Z_t
$$

\n
$$
\Rightarrow \eta_{t-1} = \phi_1^{-1} \eta_t - \phi_1^{-1} Z_t
$$

A linear combination of **future** Z_t 's \Rightarrow we have a stationary solution, but, η_t depends on future $\{Z_t\}$'s–This process is said to be not causal

If we assume that η_s and Z_t are uncorrelated for each $t > s$, $|\phi_1|$ < 1 is the only stationary solution to the AR equation

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

The Autoregressive Operator

AR(1) process

$$
\eta_t = \phi_1 \eta_{t-1} + Z_t \Rightarrow (1 - \phi_1 B)\eta_t = Z_t \Rightarrow \eta_t = (1 - \phi_1 B)^{-1} Z_t
$$

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

The Autoregressive Operator

• AR(1) process

$$
\eta_t = \phi_1 \eta_{t-1} + Z_t \Rightarrow (1 - \phi_1 B)\eta_t = Z_t \Rightarrow \eta_t = (1 - \phi_1 B)^{-1} Z_t
$$

Recall $\sum_{j=0}^{\infty} a^j = \frac{1}{1-a} = (1-a)^{-1}$. We have

$$
\eta_t = \sum_{j=0}^\infty (\phi_1 B)^j Z_t = \sum_{j=0}^\infty \phi_1^j B^j Z_t = \sum_{j=0}^\infty \phi^j Z_{t-j}
$$

⇒ **This is another way to show that AR(1) is a linear process**

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

The Autoregressive Operator

• AR(1) process

$$
\eta_t = \phi_1 \eta_{t-1} + Z_t \Rightarrow (1 - \phi_1 B)\eta_t = Z_t \Rightarrow \eta_t = (1 - \phi_1 B)^{-1} Z_t
$$

• Recall
$$
\sum_{j=0}^{\infty} a^j = \frac{1}{1-a} = (1-a)^{-1}
$$
. We have

$$
\eta_t = \sum_{j=0}^{\infty} (\phi_1 B)^j Z_t = \sum_{j=0}^{\infty} \phi_1^j B^j Z_t = \sum_{j=0}^{\infty} \phi^j Z_{t-j}
$$

⇒ **This is another way to show that AR(1) is a linear process**

• Here $1 - \phi_1 B$ is the AR characteristic polynomial

The Second-Order Autoregressive Process: AR(2)

Now consider the series satisfying

$$
\eta_t = \phi_1 \eta_{t-1} + \phi_2 \eta_{t-2} + Z_t,
$$

where, again, we assume that Z_t is independent of $\eta_{t-1}, \eta_{t-2}, \cdots$

• The AR characteristic polynomial is

$$
\phi(B) = 1 - \phi_1 B - \phi_2 B^2
$$

The Second-Order Autoregressive Process: AR(2)

Now consider the series satisfying

$$
\eta_t = \phi_1 \eta_{t-1} + \phi_2 \eta_{t-2} + Z_t,
$$

where, again, we assume that Z_t is independent of $\eta_{t-1}, \eta_{t-2}, \dots$

• The AR characteristic polynomial is

$$
\phi(B) = 1 - \phi_1 B - \phi_2 B^2
$$

• The corresponding AR characteristic equation is

$$
\phi(B) = 1 - \phi_1 B - \phi_2 B^2 = 0
$$

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

Stationarity of the AR(2) Process

- A stationary solution exists if and only if the roots of the AR characteristic equation exceed 1 in absolute value
- \bullet For the AR(2) the roots of the quadratic characteristic equation are

$$
\frac{\phi_1 \pm \sqrt{\phi_1^2 - 4\phi_2}}{-2\phi_2}
$$

These roots exceed 1 in absolute value if

$$
\phi_1 + \phi_2 < 1, \quad \phi_2 - \phi_1 < 1, \quad \text{and } |\phi_2| < 1
$$

We say that the roots should lie outside the unit circle in the complex plane. This statement will generalize to the $AR(p)$ case

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

The Autocorrelation Function for the AR(2) Process

Yule-Walker equations:

$$
\eta_t = \phi_1 \eta_{t-1} + \phi_2 \eta_2 + Z_t
$$

\n
$$
\Rightarrow \eta_t \eta_{t-h} = \phi_1 \eta_{t-1} \eta_{t-h} + \phi_2 \eta_{t-2} \eta_{t-h} + Z_t \eta_{t-h}
$$

\n
$$
\Rightarrow \gamma(h) = \phi_1 \gamma(h-1) + \phi_2 \gamma(h-2)
$$

\n
$$
\Rightarrow \rho(h) = \phi_1 \rho(h-1) + \phi_2 \rho(h-2),
$$

2

$$
h=1,2,\cdots
$$

• Setting
$$
h = 1
$$
, we have
\n
$$
\rho(1) = \phi_1 \underbrace{\rho(0)}_{=1} + \phi_2 \underbrace{\rho(-1)}_{= \rho(1)} \Rightarrow \rho(1) = \frac{\phi_1}{1 - \phi_2}
$$

$$
\bullet \ \rho(2) = \phi_1 \rho(1) + \phi_2 \rho(0) = \frac{\phi_2(1-\phi_2)+\phi_1^2}{1-\phi_2}
$$

The Variance for the AR(2) Model

Taking the variance of both sides of AR(2) equations:

$$
\eta_t = \phi_1 \eta_{t-1} + \phi_2 \eta_{t-2} + Z_t,
$$

yields

$$
\gamma(0) = \text{Var}(\phi_1 \eta_{t-1} + \phi_2 \eta_{t-2}) + \text{Var}(Z_t)
$$

= $(\phi_1^2 + \phi_2^2)\gamma(0) + 2\phi_1\phi_2\gamma(1) + \sigma^2$
= $(\phi_1^2 + \phi_2^2)\gamma(0) + 2\phi_1\phi_2\left(\frac{\phi_1\gamma(0)}{1 - \phi_2}\right) + \sigma^2$
= $\frac{(1 - \phi_2)\sigma^2}{(1 - \phi_2)(1 - \phi_1^2 - \phi_2^2) - 2\phi_2\phi_1^2}$
= $\left(\frac{1 - \phi_2}{1 + \phi_2}\right)\frac{\sigma^2}{(1 - \phi_2)^2 - \phi_1^2}$

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

The General Autoregressive Processes

Consider now the pth-order autoregressive model:

$$
\eta_t = \phi_1 \eta_{t-1} + \phi_2 \eta_{t-2} + \dots + \phi_p \eta_{t-p} + Z_t
$$

• AR characteristic polynomial:

$$
\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p
$$

AR characteristic equation:

$$
1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p = 0
$$

Yule-Walker equations:

$$
\rho(1) = \phi_1 + \phi_2 \rho(1) + \dots + \phi_p \rho(p-1)
$$

\n
$$
\rho(2) = \phi_1 \rho(1) + \phi_2 + \dots + \phi_p \rho(p-2)
$$

\n:
\n:
\n
$$
\rho(p) = \phi_1 \rho(p-1) + \phi_2 \rho(p-2) + \dots + \phi_p
$$

• Variance:

$$
\gamma(0) = \phi_1 \gamma(1) + \phi_2 \gamma(2) + \dots + \phi_p \gamma(p) + \sigma^2
$$

$$
= \frac{\sigma^2}{1 - \phi_1 \rho(1) - \dots - \phi_p \rho(p)}
$$

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

ARMA(p**,** q**) Processes**

 $\{\eta_t\}$ is an ARMA(p, q) process if it satisfies

$$
\eta_t - \sum_{i=1}^p \phi_i \eta_{t-i} = Z_t + \sum_{j=1}^q \theta_j Z_{t-j},
$$

where $\{Z_t\}$ is a $\text{WN}(0,\sigma^2)$ process.

Let $\phi(B)$ = $1-\sum_{i=1}^p\phi_iB^i$ and $\theta(B)$ = $1+\sum_{j=1}^q\theta_jB^j$. Then we can write it as

$$
\phi(B)\eta_t = \theta(B)Z_t
$$

• An ARMA(p, q) process $\{\tilde{\eta}_t\}$ with mean μ can be written as

 $\phi(B)(\tilde{\eta}_t - \mu) = \theta(B)Z_t$

A Stationary Solution to the ARMA Equation

A zero-mean ARMA process is stationary if it can be written as a linear process, i.e., η_t = $\psi(B)Z_t$, where $\psi(B)$ = $\sum_{j=-\infty}^{\infty}\psi_jB^j$ for an absolutely summable sequence $\{\psi_i\}$

• This only happens if one can "divide" by $\phi(B)$, i.e., it is stationary only if the following makes senese:

$$
(\phi(B))^{-1} \phi(B) \eta_t = (\phi(B))^{-1} \theta(B) Z_t
$$

 \bullet Let's forget about B is the backshift operator and replace it with z. Now consider whether we can divide $\theta(z)$ by $\phi(z)$

The Roots of AR Characteristic Polynomial and Stationarity

- A root of the polynomial $f(z) = \sum_{j=0}^{p} a_j z^j$ is a value ξ such that $f(\xi) = 0 \Rightarrow$ it can be real-valued **R** or complex-valued **C**
- For example, a root can take the form $\xi = a + bi$ for real number a and b. The modulus of a complex number $|\xi|$ is defined by √

$$
|\xi| = \sqrt{a^2 + b^2}
$$

• For any $ARMA(p,q)$ process, a stationary and unique solution exists if and only if

$$
\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p \neq 0,
$$

for all $|z|=1$.

Note: Stationarity of the ARMA process has nothing to do with the MA polynomial!

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

AR(4) Example

Consider the following AR(4) process

 $n_t = 2.7607n_{t-1} - 3.8106n_{t-2} + 2.6535n_{t-3} - 0.9238n_{t-4} + Z_t$

the AR characteristic polynomial is

 $\phi(z) = 1 - 2.7607z + 3.8106z^2 - 2.6535z^3 + 0.9238z^4$

- Hard to find the roots of $\phi(z)$ –we use the polyroot function in R:
- **.** Use Mod in R to calculate the modulus of the roots

Conclusion:

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

Causal ARMA Processes

An ARMA process is causal if there exists constants $\{\psi_i\}$ with $\sum_{j=0}^{\infty} |\psi_j| < 0$ and $\eta_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}$, that is, we can write $\{\eta_t\}$ as an $MA(\infty)$ process depending only on the current and past values of $\{Z_t\}$

• Equivalently, an ARMA process is causal if and only if

$$
\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p \neq 0,
$$

for all $|z| \leq 1$

• The previous AR(4) example is causal since each zero, ξ , of $\phi(\cdot)$ is such that $|\xi| > 1$

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

Invertible ARMA Processes

An ARMA process is invertible if there exists constants $\{\pi_i\}$ with $\sum_{j=0}^{\infty}|\pi_j|<\infty$ and

$$
Z_t = \sum_{j=0}^{\infty} \pi_j \eta_{t-j},
$$

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

[Autoregressive-Moving](#page-41-0) Average Model: Stationarity, Causality, and Invertibility

that is, we can write $\{Z_t\}$ as an AR(∞) process depending only on the current and past values of $\{\eta_t\}$

• A process is invertible if and only if

$$
\theta(z) = 1 + \theta_1 z + \dots + \theta_q z^q \neq 0,
$$

for all $|z| \leq 1$

• An ARMA process

$$
\phi(B)\eta_t = \theta(B)Z_t,
$$

with $\phi(z) = 1 - 0.5z$ and $\theta(z) = 1 + 0.4z$ has a root of the MA characteristic polynomial at $z = \frac{-1}{0.4} = -2.5$

Partial Autocorrelation Functions (PACF)

The partial autocorrelation function (PACF) represents the partial correlation of a stationary time series $\{\eta_t\}$ with its own lagged values, while regressing out the effects of the time series at all shorter lags

- PACF of lag h is the autocorrelation between η_t and η_{t+h} with the linear dependence between η_t and $\eta_{t+1}, \dots, \eta_{t+h-1}$ removed
- PACF plots are a commonly used tool for identifying the order of an AR model, as the theoretical PACF "shuts off" past the order of the model
- \bullet One can use the function pacf in R to plot the PACF plots

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

[Partial Autocorrelation](#page-47-0) **Functions**

An Example of PACF Plot

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

Lake Huron Series PACF Plot

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

[Partial Autocorrelation](#page-47-0) **Functions**

PACF Plot for a MA Process

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

PACF Plot for a ARMA Process

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

Identifying Plausible Stationary ARMA Models

We can use the sample ACF and PACF to help identify plausible models:

For ARMA (p, q) we will see a combination of the above

Autoregressive [Moving-Average](#page-0-0) (ARMA) Models

[Partial Autocorrelation](#page-47-0) Functions