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1 Autocovariance Estimation and Testing
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4 Partial Autocorrelation Functions
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8.3

Estimation of Autocovariance Function γ(⋅)

Goal: Want to estimate

γ(h) = Cov(ηt, ηt+h) = E [(ηt − µ)(ηt+h − µ)]

using data {ηt}Tt=1

For ∣h∣ < T , consider

γ̂(h) =
1

T

T−∣h∣
∑
t=1
(ηt − η̄)(ηt+∣h∣ − η̄).

We call γ̂(h) the sample ACVF

The sample ACVF γ̂(h) is used as the standard estimate
of γ(h) and is even and non-negative definite

The sample ACVF is a biased estimator of γ(h), that is,
E[γ̂(h)] ≠ γ(h)
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8.4

The Sample Autocorrelation Function

The sample autocorrelation function (ACF) is defined for
∣h∣ < T by

ρ̂(h) =
γ̂(h)

γ̂(0)
.

Rule of thumb: Box and Jenkins (1976) recommend
using ρ̂(h) and γ̂(h) only for ∣h∣

T
≤ 1

4
and T ≥ 50

This is because estimates ρ̂(h) and γ̂(h) are unstable for
large ∣h∣ as there will be no enough data points going into
the estimator
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8.5

Calculating the Sample ACF in R

Use acf function to calculate the sample ACF

Lake Huron Example (acf(LakeHuron)–note that this is
NOT the right thing to do here; see the next slide))
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8.6

Sample ACF for the Lake Huron Example

Recall that the ACF is used to characterize a stationary
process

Ensure the series is (approximately) stationary; if not,
model and remove the non-stationary component.
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8.7

Asymptotic Distribution of the Sample ACF [Bartlett, 1946]

Let {ηt} be a stationary process we suppose that the ACF

ρ = (ρ(1), ρ(2),⋯, ρ(k))
T

is estimated by

ρ̂ = (ρ̂(1), ρ̂(2),⋯, ρ̂(k))
T

For large T

ρ̂
⋅
∼ Nk(ρ,

1

T
W ),

where Nk is the k-variate normal distribution and W is an
k × k covariance matrix with (i, j) element defined by

wij =
∞
∑
h=1

aihajh, 1 ≤ i ≤ k, 1 ≤ j ≤ k

where aih = ρ(h + i) + ρ(h − i) − 2ρ(h)ρ(i)
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8.8

Using the ACF as a Test for i.i.d. Noise

When {ηt} is an i.i.d. process with finite variance, Bartlett’s
result simplifies for each h ≠ 0

ρ̂(h)
⋅
∼ N(0,

1

T
).

This suggests a diagnostic for i.i.d. noise:

1 Plot the lag h versus the sample ACF ρ̂(h)

2 Draw two horizontal lines at ± 1.96√
T

(blue dashed lines in R)

3 About 95% of the {ρ̂(h) ∶ h = 1,2,3,⋯} should be within the
lines if we have i.i.d. noise
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8.9

The Portmanteau Test [Box and Pierce, 1970] for i.i.d. Noise

Suppose we wish to test:

H0 ∶ {η1, η2,⋯, ηT } is an i.i.d. noise sequence
H1 ∶H0 is false

Under H0,

ρ̂(h)
⋅
∼ N(0,

1

T
)

d
=

1
√
T
N(0,1)

Hence

Q = T
k

∑
i=1
ρ̂2(h)

⋅
∼ χ2

df=k

We reject H0 if Q > χ2
k(1 − α), the 1 − α quatile of the

chi-squared distribution with k degrees of freedom
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8.10

Ljung-Box Test [Ljung and Box, 1978]

Ljung and Box [1978] showed that

QLB = T (T − 2)
k

∑
h=1

ρ̂2(h)

T − h

⋅
∼ χ2

k.

The Ljung-Box test can be more powerful than the
Portmanteau test

Both the Portmanteau Test (aka Box-Pierce test) and
Ljung-Box test can be carried out in R using the function
Box.test, with the options type = c(“Box-Pierce”,
“Ljung-Box”)
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8.11

Examples in R
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8.12

Linear Processes

A time series {ηt} is a linear process with mean µ if we
can write it as

ηt = µ +
∞
∑

j=−∞
ψjZj , ∀t,

where µ is a real-valued constant, {Zt} is a WN(0, σ2)

process and {ψj} is a set of absolutely summable
constants1

Absolute summability of the constants guarantees that the
infinite sum converges

1A set of real-valued constants {ψj ∶ j ∈ Z} is absolutely summable if
∑∞j=−∞ ∣ψj ∣ <∞
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8.13

Example: Moving Average Process of Order q, MA(q)

Let {Zt} be a WN(0, σ2) process. For an integer q > 0 and
constants θ1,⋯, θq with θq ≠ 0, define

ηt = Zt + θ1Zt−1 +⋯ + θqZt−q
= θ0Zt + θ1Zt−1 +⋯ + θqZt−q

=

q

∑
j=0

θjZt−j ,

where we let θ0 = 1

{ηt} is known as the moving average process of order q, or the
MA(q) process, and, by definition, is a linear process
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8.14

Defining Linear Processes with Backward Shifts

Recall the backward shift operator, B, is defined by
Bηt = ηt−1

We can represent a linear process using the backward
shift operator as ηt = µ + ψ(B)Zt, where we let
ψ(B) = ∑

∞
j=−∞ ψjB

j

Example: we can write a mean zero MA(1) process as

ηt = µ + ψ(B)Zt,

where µ = 0 and ψ(B) = 1 + θB
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8.15

Linear Filtering Preserves Stationarity

Let {Yt} be a time series and {ψj} be a set of absolutely
summable constants that does not depend on time

Definition: A linear time invariant filtering of {Yt} with
coefficients {ψj} that do not depend on time is defined by

Xt = ψ(B)Yt

Theorem: Suppose {Yt} is a zero mean stationary series
with ACVF γY (⋅). Then {Xt} is a zero mean stationary
process with ACVF

γX(h) =
∞
∑

j=−∞

∞
∑

k=−∞
ψjψkγY (j − k + h)
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8.16

Example: The MA(q) Process is Stationary

By the filtering preserves stationarity result, the MA(q) process
is a stationary process with mean zero and ACVF

γ(h) = σ2
q

∑
j=0

θjθj+h

γ(h) =
q

∑
j=0

q

∑
k=0

θjθkγZ(j − k + h)

= σ2
q

∑
j=0

q

∑
k=0

θjθk1(k = j + h)

= σ2
q

∑
j=0

θjθj+h
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8.17

Processes with a Correlation that Cuts Off

A time series ηt is q-correlated if

ηt and ηs are uncorrelated ∀∣t − s∣ > q,

i.e., Cov(ηt, ηs) = 0,∀∣t − s∣ > q

A time series {ηt} is q-dependent if

ηt and ηs are independent ∀∣t − s∣ > q.

Theorem: if {ηt} is a stationary q-correlated time series
with zero mean, then it can be always be represented as
an MA(q) process
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8.18

AR(p): Autoregressive Process of Order p

This process is attributed to George Udny Yule. The AR(1)
process has also been called the Markov process

Let {Zt} be a WN(0, σ2) process and let {ϕ1,⋯, ϕp} be a
set of constants for some integer p > 0 with ϕp ≠ 0

The (zero-mean) AR(p) process is defined to be the
solution to the equation

ηt =
p

∑
j=1

ϕjηt−j +Zt ⇒ ηt −
p

∑
j=1

ϕjηt−j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ϕ(B)ηt

= Zt,

where we let ϕ(B) = 1 −∑p
j=1 ϕjB

j
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8.19

A Stationary Solution for AR(1)

We want the solution to the AR equation to yield a
stationary process. Let’s first consider AR(1). We will
demonstrate that a stationary solution exists for ∣ϕ1∣ < 1.

We first write

ηt = ϕ1ηt−1 +Zt = ϕ1(ϕ1ηt−2 +Zt−1) +Zt

= ϕ21ηt−2 + ϕ1Zt−1 +Zt

⋮

= ϕk1ηt−k +
k−1
∑
j=0

ϕj1Zt−j

⋮

=
∞
∑
j=0

ϕj1Zt−j
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8.20

AR(1) Example Cont’d
Now let ψj = ϕ

j
1. We then have

ηt =
∞
∑
j=0

ψjZt−j .

Using the fact that, for ∣a∣ < 1, ∑∞j=0 a
j = 1

1−a , the sequence
{ψj} is absolutely summable

Thus, since {ηt} is a linear process, it follows by the
filtering preserves stationarity result that {ηt} is a zero
mean stationary process with ACVF

γ(h) = σ2
∞
∑
j=0

ψjψj+h

= σ2
∞
∑
j=0

ϕj1ϕ
j+h
1

= σ2ϕh
∞
∑
j=0
(ϕ21)

j
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8.21

AR(1) Example Cont’d

Now ∣ϕ1∣ < 1 implies that ∣ϕ21∣ < 1 and therefore we have

γ(h) =
σ2ϕh1
1 − ϕ21

When ∣ϕ1∣ ≥ 1
No stationary solutions exist for ∣ϕ1∣ = 1

When ∣ϕ1∣ > 1, dividing by ϕ1 for both sides we get

ϕ−11 ηt = ηt−1 + ϕ−11 Zt

⇒ ηt−1 = ϕ−11 ηt − ϕ
−1
1 Zt

A linear combination of future Zt’s⇒ we have a stationary
solution, but, ηt depends on future {Zt}’s–This process is
said to be not causal

If we assume that ηs and Zt are uncorrelated for each t > s,
∣ϕ1∣ < 1 is the only stationary solution to the AR equation
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8.22

The Autoregressive Operator

AR(1) process

ηt = ϕ1ηt−1 +Zt ⇒ (1 − ϕ1B)ηt = Zt ⇒ ηt = (1 − ϕ1B)
−1Zt

Recall ∑∞j=0 a
j = 1

1−a = (1 − a)
−1. We have

ηt =
∞
∑
j=0
(ϕ1B)

jZt =
∞
∑
j=0

ϕj1B
jZt =

∞
∑
j=0

ϕjZt−j

⇒ This is another way to show that AR(1) is a linear
process

Here 1 − ϕ1B is the AR characteristic polynomial
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The Autoregressive Operator

AR(1) process

ηt = ϕ1ηt−1 +Zt ⇒ (1 − ϕ1B)ηt = Zt ⇒ ηt = (1 − ϕ1B)
−1Zt

Recall ∑∞j=0 a
j = 1

1−a = (1 − a)
−1. We have

ηt =
∞
∑
j=0
(ϕ1B)

jZt =
∞
∑
j=0

ϕj1B
jZt =

∞
∑
j=0

ϕjZt−j

⇒ This is another way to show that AR(1) is a linear
process

Here 1 − ϕ1B is the AR characteristic polynomial
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The Second-Order Autoregressive Process: AR(2)

Now consider the series satisfying

ηt = ϕ1ηt−1 + ϕ2ηt−2 +Zt,

where, again, we assume that Zt is independent of ηt−1, ηt−2,⋯

The AR characteristic polynomial is

ϕ(B) = 1 − ϕ1B − ϕ2B
2

The corresponding AR characteristic equation is

ϕ(B) = 1 − ϕ1B − ϕ2B
2
= 0
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Stationarity of the AR(2) Process

A stationary solution exists if and only if the roots of the
AR characteristic equation exceed 1 in absolute value

For the AR(2) the roots of the quadratic characteristic
equation are

ϕ1 ±
√
ϕ21 − 4ϕ2

−2ϕ2

These roots exceed 1 in absolute value if

ϕ1 + ϕ2 < 1, ϕ2 − ϕ1 < 1, and ∣ϕ2∣ < 1

We say that the roots should lie outside the unit circle in
the complex plane. This statement will generalize to the
AR(p) case
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The Autocorrelation Function for the AR(2) Process

Yule-Walker equations:

ηt = ϕ1ηt−1 + ϕ2η2 +Zt

⇒ ηtηt−h = ϕ1ηt−1ηt−h + ϕ2ηt−2ηt−h +Ztηt−h
⇒ γ(h) = ϕ1γ(h − 1) + ϕ2γ(h − 2)

⇒ ρ(h) = ϕ1ρ(h − 1) + ϕ2ρ(h − 2),

h = 1,2,⋯

Setting h = 1, we have
ρ(1) = ϕ1 ρ(0)

±
=1

+ϕ2 ρ(−1)
²
=ρ(1)

⇒ ρ(1) = ϕ1

1−ϕ2

ρ(2) = ϕ1ρ(1) + ϕ2ρ(0) =
ϕ2(1−ϕ2)+ϕ2

1

1−ϕ2
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The Variance for the AR(2) Model

Taking the variance of both sides of AR(2) equations:

ηt = ϕ1ηt−1 + ϕ2ηt−2 +Zt,

yields

γ(0) = Var (ϕ1ηt−1 + ϕ2ηt−2) +Var(Zt)

= (ϕ21 + ϕ
2
2)γ(0) + 2ϕ1ϕ2γ(1) + σ

2

= (ϕ21 + ϕ
2
2)γ(0) + 2ϕ1ϕ2 (

ϕ1γ(0)

1 − ϕ2
) + σ2

=
(1 − ϕ2)σ

2

(1 − ϕ2)(1 − ϕ21 − ϕ
2
2) − 2ϕ2ϕ

2
1

= (
1 − ϕ2
1 + ϕ2

)
σ2

(1 − ϕ2)2 − ϕ21
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The General Autoregressive Processes
Consider now the pth-order autoregressive model:

ηt = ϕ1ηt−1 + ϕ2ηt−2 +⋯ + ϕpηt−p +Zt

AR characteristic polynomial:

ϕ(B) = 1 − ϕ1B − ϕ2B
2
−⋯ − ϕpB

p

AR characteristic equation:

1 − ϕ1B − ϕ2B
2
−⋯ − ϕpB

p
= 0

Yule-Walker equations:

ρ(1) = ϕ1 + ϕ2ρ(1) +⋯ + ϕpρ(p − 1)

ρ(2) = ϕ1ρ(1) + ϕ2 +⋯ + ϕpρ(p − 2)

⋮

ρ(p) = ϕ1ρ(p − 1) + ϕ2ρ(p − 2) +⋯ + ϕp

Variance:

γ(0) = ϕ1γ(1) + ϕ2γ(2) +⋯ + ϕpγ(p) + σ
2

=
σ2

1 − ϕ1ρ(1) −⋯ − ϕpρ(p)
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ARMA(p, q) Processes

{ηt} is an ARMA(p, q) process if it satisfies

ηt −
p

∑
i=1
ϕiηt−i = Zt +

q

∑
j=1

θjZt−j ,

where {Zt} is a WN(0, σ2) process.

Let ϕ(B) = 1 −∑p
i=1 ϕiB

i and θ(B) = 1 +∑q
j=1 θjB

j . Then
we can write it as

ϕ(B)ηt = θ(B)Zt

An ARMA(p, q) process {η̃t} with mean µ can be written as

ϕ(B)(η̃t − µ) = θ(B)Zt
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A Stationary Solution to the ARMA Equation

A zero-mean ARMA process is stationary if it can be written as
a linear process, i.e., ηt = ψ(B)Zt, where ψ(B) = ∑∞j=−∞ ψjB

j

for an absolutely summable sequence {ψj}

This only happens if one can “divide” by ϕ(B), i.e., it is
stationary only if the following makes senese:

(ϕ(B))
−1
ϕ(B)ηt = (ϕ(B))

−1
θ(B)Zt

Let’s forget about B is the backshift operator and replace it
with z. Now consider whether we can divide θ(z) by ϕ(z)
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The Roots of AR Characteristic Polynomial and Stationarity

A root of the polynomial f(z) = ∑p
j=0 ajz

j is a value ξ such
that f(ξ) = 0⇒ it can be real-valued R or complex-valued
C

For example, a root can take the form ξ = a + b i for real
number a and b. The modulus of a complex number ∣ξ∣ is
defined by

∣ξ∣ =
√
a2 + b2

For any ARMA(p,q) process, a stationary and unique
solution exists if and only if

ϕ(z) = 1 − ϕ1z −⋯ − ϕpz
p
≠ 0,

for all ∣z∣ = 1.

Note: Stationarity of the ARMA process has nothing to do
with the MA polynomial!



Autoregressive
Moving-Average
(ARMA) Models

Autocovariance
Estimation and Testing

Linear Processes

Autoregressive-Moving
Average Model:
Stationarity, Causality,
and Invertibility

Partial Autocorrelation
Functions

8.31

AR(4) Example

Consider the following AR(4) process

ηt = 2.7607ηt−1 − 3.8106ηt−2 + 2.6535ηt−3 − 0.9238ηt−4 +Zt,

the AR characteristic polynomial is

ϕ(z) = 1 − 2.7607z + 3.8106z2 − 2.6535z3 + 0.9238z4

Hard to find the roots of ϕ(z) –we use the polyroot
function in R:

Use Mod in R to calculate the modulus of the roots

Conclusion:
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Causal ARMA Processes

An ARMA process is causal if there exists constants {ψj} with
∑
∞
j=0 ∣ψj ∣ < 0 and ηt = ∑∞j=0 ψjZt−j , that is, we can write {ηt} as

an MA(∞) process depending only on the current and past
values of {Zt}

Equivalently, an ARMA process is causal if and only if

ϕ(z) = 1 − ϕ1z −⋯ − ϕpz
p
≠ 0,

for all ∣z∣ ≤ 1

The previous AR(4) example is causal since each zero, ξ,
of ϕ(⋅) is such that ∣ξ∣ > 1
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Invertible ARMA Processes
An ARMA process is invertible if there exists constants {πj}
with ∑∞j=0 ∣πj ∣ <∞ and

Zt =
∞
∑
j=0

πjηt−j ,

that is, we can write {Zt} as an AR(∞) process depending only
on the current and past values of {ηt}

A process is invertible if and only if

θ(z) = 1 + θ1z +⋯ + θqz
q
≠ 0,

for all ∣z∣ ≤ 1

An ARMA process

ϕ(B)ηt = θ(B)Zt,

with ϕ(z) = 1− 0.5z and θ(z) = 1+ 0.4z has a root of the MA
characteristic polynomial at z = −1

0.4
= −2.5
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Partial Autocorrelation Functions (PACF)

The partial autocorrelation function (PACF) represents the
partial correlation of a stationary time series {ηt} with its own
lagged values, while regressing out the effects of the time
series at all shorter lags

PACF of lag h is the autocorrelation between ηt and ηt+h
with the linear dependence between ηt and ηt+1,⋯, ηt+h−1
removed

PACF plots are a commonly used tool for identifying the
order of an AR model, as the theoretical PACF “shuts off”
past the order of the model

One can use the function pacf in R to plot the PACF plots
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An Example of PACF Plot
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Lake Huron Series PACF Plot
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PACF Plot for a MA Process
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PACF Plot for a ARMA Process
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Identifying Plausible Stationary ARMA Models

We can use the sample ACF and PACF to help identify
plausible models:

Model ACF PACF
MA(q) cuts off after lag q tails off exponentially
AR(p) tails off exponentially cuts off after lag p

For ARMA(p, q) we will see a combination of the above
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