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Estimation of Autocovariance Function ~(-)

Goal: Want to estimate

v(h) = Cov(ne, nesn) = E[(e = 1) (een — 11)]

using data {n;}Z,
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Estimation of Autocovariance Function ~(-) Moving Average
(ARMA) Models
Goal: Want to estimate o9% iiiitmncaan

" STATISTICAL SCIENCES

Autocovariance

’y(h) = COV("7t777t+h) = E [(Tlt — M)(T/Hh — M)] Estimation and Testing
using data {n;}~,
For |h| < T, consider

1 T-Inl
A(h) = T ; (Mt = 17) (Mexip = 1)-

We call 4(h) the sample ACVF

@ The sample ACVF 4(h) is used as the standard estimate
of v(h) and is even and non-negative definite
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Estimation of Autocovariance Function ~(-) Moving Average
(ARMA) Models
Goal: Want to estimate o9% iiiitmncaan

" STATISTICAL SCIENCES

Autocovariance

’y(h) = COV(ntath) = E [(Tlt — /’L)(T]t‘*'h — /’L)] Estimation and Testing
using data {n;}~,
For |h| < T, consider

1 T-Inl
A(h) = T ; (Mt = 17) (Mexip = 1)-

We call 4(h) the sample ACVF

@ The sample ACVF 4(h) is used as the standard estimate
of v(h) and is even and non-negative definite

@ The sample ACVF is a biased estimator of v(h), that is,
E[3(R)] #~(h)
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The Sample Autocorrelation Function

@ The sample autocorrelation function (ACF) is defined for

B < T by

p(h) = =5

j(h)
4(0)°
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Autoregressive

The Sample Autocorrelation Function Moving-Average

(ARMA) Models
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Autocovariance

@ The sample autocorrelation function (ACF) is defined for Estimation and Testing
|n| < T by
) y(h
oy = 1)
4(0)

@ Rule of thumb: Box and Jenkins (1976) recommend

. ~ ~ h
using /() and 4(h) only for 2l < 1 and T > 50



The Sample Autocorrelation Function

@ The sample autocorrelation function (ACF) is defined for
|n| < T by
y(h)

7(0)°

p(h) =

@ Rule of thumb: Box and Jenkins (1976) recommend

. ~ ~ h
using /() and 4(h) only for 2l < 1 and T > 50

@ This is because estimates p(h) and 4(h) are unstable for
large |h| as there will be no enough data points going into
the estimator
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Calculating the Sample ACF in R .

(ARMA) Models

@ Use acf function to calculate the sample ACF

Autocovariance

@ Lake Huron Example (acf (LakeHuron)—note that this is BsiimEen 2 g
NOT the right thing to do here; see the next slide))
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Sample ACF for the Lake Huron Example

@ Recall that the ACF is used to characterize a stationary
process

@ Ensure the series is (approximately) stationary; if not,
model and remove the non-stationary component.
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Autoregressive

Asymptotic Distribution of the Sample ACF [Bartlett, 1946] SOt AT
(ARMA) Models
Let {n.} be a stationary process we suppose that the ACF o8¢ iiibwmowmn

" STATISTICAL SCIENCES

p: (p(1)7p(2)7'“7p(k))T Autocovariance

Estimation and Testing

is estimated by

p=(p(1),p(2), p(k))"

o Forlarge T’
. 1
p~Nilp, W),
where Ny, is the k-variate normal distribution and 1 is an
k x k covariance matrix with (4, j) element defined by

oo
wij = Y apmagn, 1<i<k, 1<j<k
h=1

where a;, = p(h+1i) + p(h—1) = 2p(h)p(i)



Using the ACF as a Test for i.i.d. Noise

When {n:} is an i.i.d. process with finite variance, Bartlett’s
result simplifies for each i # 0

. . 1
pR) ~N(O, ).

This suggests a diagnostic for i.i.d. noise:

@ Plot the lag h versus the sample ACF j(h)
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Autoregressive

Using the ACF as a Test for i.i.d. Noise Moving-Average

(ARMA) Models

&5 b,
When {n:} is an i.i.d. process with finite variance, Bartlett’s

I’eSU|t Slmp“fleS fOI’ eaCh h * O Autocovariance

Estimation and Testing
1) N(0, =).

This suggests a diagnostic for i.i.d. noise:

@ Plot the lag h versus the sample ACF j(h)

1.96

@ Draw two horizontal lines at + -2 N

(blue dashed lines in R)
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Autoregressive

Using the ACF as a Test for i.i.d. Noise Moving-Average

(ARMA) Models

&5 b,

When {n;} is an L.i.d. process with finite variance, Bartlett’s

I’eSU|t Slmp“fleS fOI’ eaCh h * O Autocovariance
Estimation and Testing

. . 1
pR) ~N(O, ).

This suggests a diagnostic for i.i.d. noise:

@ Plot the lag h versus the sample ACF j(h)

1.96

@ Draw two horizontal lines at + -2 N

(blue dashed lines in R)

@ About 95% of the {5(h) : h = 1,2,3,---} should be within the
lines if we have i.i.d. noise

8.8



The Portmanteau Test [Box and Pierce, 1970] for i.i.d. Noise

Suppose we wish to test:

Hy: {m,n2,-,mr} is an i.i.d. noise sequence
H, : Hy is false

@ Under Hg, .

—=NO.)

. . 1,4
o) #N(O, 1) 2

@ Hence i
Q=T Z ﬁQ(h) ~ XZf:k
=1

@ We reject Hy if Q > x2(1 - «), the 1 - « quatile of the
chi-squared distribution with k& degrees of freedom
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Autoregressive

L]ung'BOX TeSt [L]ung and BOX, 1978] Moving-Average

(ARMA) Models
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Ljung and BOX [1 978] ShOWGd that Autocovariance

Estimation and Testing

Qus =T(T-2) Z X
The Ljung-Box test can be more powerful than the
Portmanteau test

Both the Portmanteau Test (aka Box-Pierce test) and
Ljung-Box test can be carried out in R using the function
Box.test, with the options type = c (“Box-Pierce”,
“Ljung—-Box")



Autoregressive

Examples In R Moving-Average
> Box.test(rnorm(100), 20) L e
Box-P1 test @5 s
oX-rierce tes

Autocovariance
Estimation and Testing

data: rnorm(100)
X-squared = 12.197, df = 20, p-value = 0.9091

> Box.test(LakeHuron, 2@)
Box-Pierce test

data: LakeHuron
X-squared = 182.43, df = 20, p-value < 2.2e-16

> Box.test(LakeHuron, 20, type = "Ljung")
Box-Ljung test

data: LakeHuron
X-squared = 192.6, df = 20, p-value < 2.2e-16



Linear Processes B

(ARMA) Models

' School of
@
@ A time series {n;} is a linear process with mean . if we
can write it as

Linear Processes

nt:;u"""Z 1/}ij3 Vt7

j==oo

where p is a real-valued constant, {Z;} is a WN(0, 0%)
process and {1; } is a set of absolutely summable
constants’

@ Absolute summability of the constants guarantees that the
infinite sum converges

TA set of real-valued constants {1, : j € Z} is absolutely summable if
Z;‘;_w ‘wﬂ < oo 8.12



Example: Moving Average Process of Order ¢, MA(q)

Let {Z;} be a WN(0,o?) process. For an integer ¢ > 0 and
constants 61, -+, 6, with 8, # 0, define

Nt = Zt + 91Zt—1 + e+ qut—q
= GOZt + 91215,1 + e+ ant—q

q
= Z ath—j’
j=0

where we let 6, = 1

{n:¢} is known as the moving average process of order ¢, or the
MA(q) process, and, by definition, is a linear process

Autoregressive
Moving-Average
(ARMA) Models
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Defining Linear Processes with Backward Shifts

@ Recall the backward shift operator, B, is defined by
Bny =ni-1
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Defining Linear Processes with Backward Shifts

@ Recall the backward shift operator, B, is defined by
Bny =ni-1

@ We can represent a linear process using the backward
shift operator as n; = u + ¥(B)Z,, where we let

W(B) = Y5 _ ;B
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Defining Linear Processes with Backward Shifts

@ Recall the backward shift operator, B, is defined by
Bny =nt1

@ We can represent a linear process using the backward
shift operator as n; = u + ¥(B)Z,, where we let

Y(B) = X3 o ;B
@ Example: we can write a mean zero MA(1) process as
ne=p+P(B)Z,

where p=0and ¢(B) =1+6B

Autoregressive
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Linear Filtering Preserves Stationarity

o Let {Y;} be atime series and {v; } be a set of absolutely
summable constants that does not depend on time

o Definition: A linear time invariant filtering of {Y;} with
coefficients {1;} that do not depend on time is defined by

@ Theorem: Suppose {Y;} is a zero mean stationary series
with ACVF 4y (-). Then {X,} is a zero mean stationary

process with ACVF

vx (h) =

Xi = z/J(B)Yt

o5} (o]

Z Z ijk'YY(J k+h)

j=—00 k=-o00
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Autoregressive

Example: The MA(q) Process is Stationary Moving:Average

(ARMA) Models

By the filtering preserves stationarity result, the MA(q) process
is a stationary process with mean zero and ACVF

Linear Processes

’7(h Z 0; 9]+h



Example: The MA(q) Process is Stationary

By the filtering preserves stationarity result, the MA(q) process
is a stationary process with mean zero and ACVF

’7(h Z 0; 9]+h

q
v(h) = Y 0i0kvz(j —k+h)
j=0 k=0
9 4a
=0” > > 0;0k1(k=3j+h)
5=0 k=0
9 q
=0 29 9j+h

0

J
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Processes with a Correlation that Cuts Off

@ Atime series 1, is ¢g-correlated if
ne and 7, are uncorrelated V|t - s| > g,

i.e., Cov(n,ms) =0,V[t—s|>q

o Atime series {n;} is ¢-dependent if
n; and 7, are independent V|t — s| > q.
@ Theorem: if {n;} is a stationary ¢-correlated time series

with zero mean, then it can be always be represented as
an MA(q) process

Autoregressive
Moving-Average
(ARMA) Models

0% iiewmom
@ STATSTICALSGIENCES

Linear Processes



AR(p): Autoregressive Process of Order p

@ This process is attributed to George Udny Yule. The AR(1)
process has also been called the Markov process

o Let {Z;} be a WN(0,0?) process and let {¢1,-, ¢, } be a
set of constants for some integer p > 0 with ¢, # 0

@ The (zero-mean) AR(p) process is defined to be the
solution to the equation

P P
Nt = Z (bjnt—j + 2y =0 - Z ¢j7]t—j =2y,
j=1 j=1

&(B)ne

where we let ¢(B) =1-%7_, ¢; B/

Autoregressive
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A Stationary Solution for AR(1) .

(ARMA) Models

0% iiewmom

@ We want the solution to the AR equation to yield a Q@ SmsTcaL cices
stationary process. Let’s first consider AR(1). We will
demonstrate that a stationary solution exists for |¢;| < 1.

Linear Processes

@ We first write
e = Q1M1+ Zp = G1( 11— + Zy1) + Zy
= ¢?77t—2 + P12 + 2y

k-1
= Py, + > ¢ Z;
=0

=27
§=0



AR(1) Example Cont’d
@ Now let 1; = ¢1. We then have

M= 0jZj.
=0

Using the fact that, for |a| < 1, ¥52, o’ = {1, the sequence
{1} is absolutely summable

@ Thus, since {n,} is a linear process, it follows by the
filtering preserves stationarity result that {r,} is a zero
mean stationary process with ACVF

8

'Y(h) = Z_:¢ "/’j+h

3=0

- 2 Z Sl

J=0

8

2gh fj(as?)j
j=0

Autoregressive
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AR(1) Example Cont’d
Now |¢1] < 1 implies that |¢?| < 1 and therefore we have

Uqu’f
1-¢2

v(h) =

When |¢1] > 1
@ No stationary solutions exist for |¢;] = 1

Autoregressive
Moving-Average
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AR(1) Example Cont'd ot o

(ARMA) Models
Now |¢1] < 1 implies that |¢7] < 1 and therefore we have 0‘5 L O
2 1h
o Py
V(h) = 2
1-¢7

Linear Processes

When |¢1| > 1
@ No stationary solutions exist for |¢;] = 1

@ When |¢4] > 1, dividing by ¢, for both sides we get
G1 e = -1 + 67" Zy
=M1 = o0 - 91 2

A linear combination of future Z;’s = we have a stationary
solution, but, n; depends on future {Z, }’'s—This process is
said to be not causal



AR(1) Example Cont’d
Now |¢1] < 1 implies that |¢?| < 1 and therefore we have

O'2¢,1L
1-¢?

v(h) =

When |¢1| > 1
@ No stationary solutions exist for |¢;] = 1
@ When |¢1] > 1, dividing by ¢, for both sides we get
Gy e = o1 + 01 Zy
= N1 = 1 - 67 2

A linear combination of future Z,’s = we have a stationary
solution, but, n; depends on future {Z, }’'s—This process is

said to be not causal

o If we assume that n, and Z, are uncorrelated for each ¢ > s,
|¢1| < 1 is the only stationary solution to the AR equation

Autoregressive
Moving-Average
(ARMA) Models
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The Autoregressive Operator

o

[ MATHEMATICAL AND

Q@ STTSTICALSCiERcES
STATISTICAL SC

@ AR(1) process

Ne=¢11+Z = (1-¢1B)=Zy = n = (1-¢1B) ' Z,




The Autoregressive Operator

@ AR(1) process

Ne=¢1M-1+ 2y = 1-1B)n=Zy = mn=(1- ¢1B)712t

@ Recall ¥52ya’ = -~ = (1-a)™". We have

1

ne=Y(1BY Z =) ¢\ BIZ; = N7y
j=0 j=0 3=0

= This is another way to show that AR(1) is a linear
process

Autoregressive
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The Autoregressive Operator

@ AR(1) process

Ne=¢1M-1+ 2y = 1-1B)n=Zy = mn=(1- ¢1B)712t

@ Recall ¥52ya’ = -~ = (1-a)™". We have

1

ne=Y(1BY Z =) ¢\ BIZ; = N7y
j=0 j=0 3=0

= This is another way to show that AR(1) is a linear
process

@ Here 1 - ¢, B is the AR characteristic polynomial

Autoregressive
Moving-Average
(ARMA) Models
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The Second-Order Autoregressive Process: AR(2)

Now consider the series satisfying

M = P11M—1 + P22 + Zy,

where, again, we assume that Z; is independent of n;_1, 12,

@ The AR characteristic polynomial is

¢(B) =1~ 1B - $2B°

Autoregressive
Moving-Average
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The Second-Order Autoregressive Process: AR(2)

Now consider the series satisfying

Nt = P1Me—1 + Pam—2 + Zy,

where, again, we assume that Z, is independent of 7;_1,7;_2, -

@ The AR characteristic polynomial is

¢(B) =1~ 1B - $2B°

@ The corresponding AR characteristic equation is

6(B) =1~ 618~ s8> =0

Autoregressive
Moving-Average
(ARMA) Models
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Autoregressive

Stationarity of the AR(2) Process Moving-Average

(ARMA) Models

0% iiewmom
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@ A stationary solution exists if and only if the roots of the
AR characteristic equation exceed 1 in absolute value

Linear Processes

@ For the AR(2) the roots of the quadratic characteristic
equation are

D1 £/% — 4o
—2¢2

These roots exceed 1 in absolute value if
Gr+da<l, ¢a—-¢d1 <1, and|gpy <1
@ We say that the roots should lie outside the unit circle in

the complex plane. This statement will generalize to the
AR(p) case



The Autocorrelation Function for the AR(2) Process

@ Yule-Walker equations:

Mg = P11M-1 + Pan2 + Ly
= MeMi-h = P1Me-1Mt-h + P2Me—2Mt—h + ZeNe-n
=(h) = gr1y(h—1) + g2y(h - 2)
= p(h) = p1p(h = 1) + g2p(h - 2),

h=1,2,

@ Setting h =1, we have

p(1) = $1 p(0) +a p(-1) = p(1) = 12~

—— —
-1 =p(1)

® p(2) = g1p(1) + ¢2p(0) =

$2(1-¢2)+¢7

1-¢2

2

Autoregressive
Moving-Average
(ARMA) Models
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The Variance for the AR(2) Model Jutoregressive

(ARMA) Models

. . . . ." MATHEMAIICA[AND
Taking the variance of both sides of AR(2) equations: @ susrcaL s

Nt = P17e—1 + Pam—2 + Zy,

Linear Processes

yields

7(0) = Var (1141 + pami—2) + Var(Zy)
= (67 + ¢3)7(0) +2¢1927(1) + 0

= (62 + 62)7(0) + 2616 (¢1”(0))

_ (1—¢2)0
(1-02)(1-¢% - ¢3) - 20207

() e




Autoregressive

The General Autoregressive Processes Moving-Average

. . ARMA) Model:
Consider now the pth-order autoregressive model: e
0% Jiitumonnn

Nt = P11+ a2 + o+ Qply—p + 2y Q@ smsrcasuces
@ AR characteristic polynomial:
¢(B)=1-¢1B~¢sB* —---— ¢, B"
AR characteristic equation:
1-¢1B-¢2B* -~ ¢,B" =0

@ Yule-Walker equations:

p(1) = @1+ gap(1) + -+ ¢pp(p 1)
p(2) = p1p(1) + o + -+ dpp(p - 2)

p(p) = p1p(p=1) + pap(p=2) + -+ ¢
@ Variance:

7(0) = p1y(1) + oy (2) + -+ + dpy(p) + 02

02

1= ¢1p(1) == dpp(p)




ARMA(p, ¢) Processes

Autoregressive
Moving-Average
(ARMA) Models

0% i
{n:} is an ARMA(p, q) process if it satisfies M 0

' 4 STATISTICAL SCIENCES

p q
M=y Gi—i = Ze+ Y. 0;Z4_;,
i=1 J=1
Autoregressive-Moving

Average Model
where {Z;} is a WN(0, 0%) process.

Stationarity, Causality,
and Invertibility

o Letp(B)=1-%,¢;B and 6(B) =1+%9_, 0;B’. Then
we can write it as

&(B)n: = 0(B)Zy

@ An ARMA(p, q) process {7j; } with mean p can be written as

¢(B) (7 = p) = 0(B) Z



A Stationary Solution to the ARMA Equation A

Moving-Average
(ARMA) Models

@ e,
A zero-mean ARMA process is stationary if it can be written as
a linear process, i.e., n; = ¢Y(B)Z;, where ¢)(B) = X2 _ ¢; B?
for an absolutely summable sequence {v;}

Autoregressive-Moving
Average Model
Stationarity, Causality,
and Invertibility

@ This only happens if one can “divide” by ¢(B), i.e., itis
stationary only if the following makes senese:

(¢(B)) " (B = (6(B)) ™ 0(B)Z,

@ Let’s forget about B is the backshift operator and replace it
with z. Now consider whether we can divide 6(z) by ¢(z)



The Roots of AR Characteristic Polynomial and Stationarity

@ A root of the polynomial f(z) = X._, a;2’ is a value ¢ such
that f(£) = 0 = it can be real-valued R or complex-valued
C

@ For example, a root can take the form & = a + b1 for real
number a and b. The modulus of a complex number |¢] is

defined by
€ = Va2 + 22

@ For any ARMA(p,q) process, a stationary and unique
solution exists if and only if

() = 1= g1z == 62" %0,
forall |z| = 1.

Note: Stationarity of the ARMA process has nothing to do
with the MA polynomial!

Autoregressive
Moving-Average
(ARMA) Models
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Stationarity, Causality,
and Invertibility
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AR(4) Example

Consider the following AR(4) process

e = 2.7607m,_1 — 3.81067_5 + 2.6535n,_5 — 0.9238n,_4 + Zi,

the AR characteristic polynomial is

#(z) =1-2.7607z + 3.81062° - 2.65352> + 0.92382"

@ Hard to find the roots of ¢(z) —we use the polyroot
function in R:

@ Use Mod in R to calculate the modulus of the roots

@ Conclusion:

Autoregressive
Moving-Average
(ARMA) Models
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Stationarity, Causality,
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Causal ARMA Processes

Autoregressive
Moving-Average
(ARMA) Models

.“s (i&hﬁbi‘mnncn iy

STATISTICAL SCIENCES

An ARMA process is causal if there exists constants {¢,} with
Yieoltil <0andn, = X207, that is, we can write {1, } as

an MA(o) process depending only on the current and past
values of {Z,}

Autoregressive-Moving
Average Model
Stationarity, Causality,
and Invertibility

@ Equivalently, an ARMA process is causal if and only if

P(2) =1-¢1z— = p2" 20,

forall 2] <1

@ The previous AR(4) example is causal since each zero, &,
of ¢(-) is such that |¢] > 1

8.32



Invertible ARMA Processes

An ARMA process is invertible if there exists constants {;}
with Z;ZO |7Tj| < oo and

o0
Zy = Z TjiNi—j»
Jj=0

that is, we can write {Z;} as an AR(o0) process depending only
on the current and past values of {n;}

@ A process is invertible if and only if

0(z) =1+012+--+0,27 0,

forall 2] <1

@ An ARMA process

¢(B)77t = Q(B)Zta

with ¢(2z) =1-0.5z and 6(z) = 1+ 0.4z has a root of the MA

characteristic polynomial at z = (ﬁ =-25

Autoregressive
Moving-Average
(ARMA) Models
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and Invertibility
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Partial Autocorrelation Functions (PACF) et
(ARMA) Models
o9% iiiitmncaan
The partial autocorrelation function (PACF) represents the QO siieiones
partial correlation of a stationary time series {n; } with its own
lagged values, while regressing out the effects of the time
series at all shorter lags

@ PACF of lag h is the autocorrelation between 7; and 7,5, Partial Autocorelation
with the linear dependence between 1, and 1.1, -+, Jen-1
removed

@ PACF plots are a commonly used tool for identifying the
order of an AR model, as the theoretical PACF “shuts off”
past the order of the model

@ One can use the function pacf in R to plot the PACF plots
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An Example of PACF Plot
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Lake Huron Series PACF Plot
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PACF Plot for a MA Process
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PACF Plot for a ARMA Process AT
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Identifying Plausible Stationary ARMA Models Pt
(ARMA) Models

We can use the sample ACF and PACF to help identify o%¢ it
plausible models: L

@ STATSTICALSENCES
Model | ACF | PACF

MA(q) | cuts off after lag ¢
AR(p) | tails off exponentially

tails off exponentially
cuts off after lag p

Partial Autocorrelation
. . . Functions
For ARMA(p, q) we will see a combination of the above
1.0 - 04
0.8

o |1 “HHI:-I-....... ’’’’’ i.plluH'“* ,,,,,,
e T
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